Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42.312
1.
Mikrochim Acta ; 191(7): 370, 2024 06 05.
Article En | MEDLINE | ID: mdl-38837084

The development of an ultrasensitive and precise measurement of a breast cancer biomarker (cancer antigen 15-3; CA15-3) in complex human serum is essential for the early diagnosis of cancer in groups of healthy populations and the treatment of patients. However, currently available testing technologies suffer from insufficient sensitivity toward CA15-3, which severely limits early large-scale screening of breast cancer patients. We report a versatile electrochemical immunoassay method based on atomically cobalt-dispersed nitrogen-doped carbon (Co-NC)-modified disposable screen-printed carbon electrode (SPCE) with alkaline phosphatase (ALP) and its metabolite, ascorbic acid 2-phosphate (AAP), as the electrochemical labeling and redox signaling unit for sensitive detection of low-abundance CA15-3. During electrochemical detection by differential pulse voltammetry (DPV), it was found that the Co-NC-SPCE electrode did not have a current signal response to the AAP substrate; however, it had an extremely favorable response current to ascorbic acid (AA). Based on the above principle, the target CA15-3-triggered immunoassay enriched ALP-catalyzed AAP produces a large amount of AA, resulting in a significant change in the system current signal, thereby realizing the highly sensitive detection of CA15-3. Under the optimal AAP substrate concentration and ALP catalysis time, the Co-NC-SPCE-based electrochemical immunoassay demonstrated a good DPV current for CA15-3 in the assay interval of 1.0 mU/mL to 10,000 mU/mL, with a calculated limit of detection of 0.38 mU/mL. Since Co-NC-SPCE has an excellent DPV current response to AA and employs split-type scheme, the constructed electrochemical immunoassay has the merits of high preciseness and anti-interference, and its clinical diagnostic results are comparable to those of commercial kits.


Ascorbic Acid , Biomarkers, Tumor , Breast Neoplasms , Carbon , Cobalt , Electrochemical Techniques , Mucin-1 , Nitrogen , Humans , Immunoassay/methods , Breast Neoplasms/blood , Mucin-1/blood , Biomarkers, Tumor/blood , Electrochemical Techniques/methods , Carbon/chemistry , Nitrogen/chemistry , Cobalt/chemistry , Ascorbic Acid/chemistry , Ascorbic Acid/blood , Ascorbic Acid/analogs & derivatives , Female , Limit of Detection , Alkaline Phosphatase/blood , Alkaline Phosphatase/chemistry , Electrodes , Biosensing Techniques/methods
2.
BMC Oral Health ; 24(1): 680, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38867181

BACKGROUND: To investigate the effect of a 50% ascorbic acid with 50% citric acid solution on the immediate shear bond strength (SBS) of metallic brackets after tooth bleaching. The enamel etching pattern and the required quantity of these combined acids as antioxidants following 35% hydrogen peroxide (HP) bleaching were also determined. METHODS: The stability of the solution at room temperature was assessed at various time intervals. Fifty teeth were randomly divided into five groups: non-bleached (G1), bleached then acid etched (G2), bleached followed by a 10-minute treatment with 10% sodium ascorbate and acid etched (G3), 5-minute treatment with 50% ascorbic acid (G4), and 5-minute treatment with a combination of 50% ascorbic acid and 50% citric acid (G5). Groups G2, G3, G4 and G5 were bleached by 35% HP gel for a total of 32 min. Acid etching in groups G1, G2, and G3 was performed using 37% phosphoric acid (Ormco®, Orange, CA, USA) for 15 s. In all groups, metal brackets were immediately bonded using Transbond™ XT primer and Transbond™ PLUS adhesive, with light curing for 40 s. The SBS was tested with a universal testing machine, and statistical analysis was conducted using one-way ANOVA followed by Tukey's HSD test. The level of significance was set at p < 0.05 for all statistical tests. RESULTS: Stability tests demonstrated that the combined acids remained effective for up to 21 days. Group G5 significantly increased the SBS of bleached teeth to the level of G1 (p < 0.05), while G3 did not achieve the same increase in SBS (p > 0.05). SEM analysis revealed enamel etching patterns similar to those of both control groups (G1 and G2). Kinetic studies at 6 min indicated that the antioxidation in G5 reacted 0.2 mmole lower than in G3 and G4. CONCLUSION: 5-minute application of the combined acids enhanced the SBS of bleached teeth comparable to unbleached teeth. The combined acids remain stable over two weeks, presenting a time-efficient, single-step solution for antioxidant application and enamel etching in orthodontic bracket bonding.


Ascorbic Acid , Citric Acid , Dental Bonding , Dental Enamel , Orthodontic Brackets , Shear Strength , Tooth Bleaching , Ascorbic Acid/pharmacology , Citric Acid/pharmacology , Citric Acid/chemistry , Tooth Bleaching/methods , Humans , Pilot Projects , Dental Enamel/drug effects , Dental Bonding/methods , Acid Etching, Dental , Antioxidants/pharmacology , Surface Properties , Time Factors , Hydrogen Peroxide/chemistry , Tooth Bleaching Agents/chemistry , Phosphoric Acids , Dental Stress Analysis
3.
Nanotechnology ; 35(36)2024 Jun 17.
Article En | MEDLINE | ID: mdl-38838648

Ascorbic acid (AA), known as vitamin C, is a vital bioactive compound that plays a crucial role in several metabolic processes, including the synthesis of collagen and neurotransmitters, the removal of harmful free radicals, and the uptake of iron by cells in the human intestines. As a result, there is an absolute need for a highly selective, sensitive, and economically viable sensing platform for AA detection. Herein, we demonstrate a Pt-decorated MoS2for efficient detection of an AA biosensor. MoS2hollow rectangular structures were synthesized using an easy and inexpensive chemical vapor deposition approach to meet the increasing need for a reliable detection platform. The synthesized MoS2hollow rectangular structures are characterized through field effect scanning electron microscopy (FESEM), energy-dispersive spectroscopy elemental mapping, Raman spectroscopy, and x-ray photoelectron spectroscopy. We fabricate a chemiresistive biosensor based on Pt-decorated MoS2that measures AA with great precision and high sensitivity. The experiments were designed to evaluate the response of the Pt-decorated MoS2biosensor in the presence and absence of AA, and selectivity was evaluated for a variety of biomolecules, and it was observed to be very selective towards AA. The Pt-MoS2device had a higher response of 125% against 1 mM concentration of AA biomolecules, when compared to that of all other devices and 2.2 times higher than that of the pristine MoS2device. The outcomes of this study demonstrate the efficacy of Pt-decorated MoS2as a promising material for AA detection. This research contributes to the ongoing efforts to enhance our capabilities in monitoring and detecting AA, fostering advancements in environmental, biomedical, and industrial applications.


Ascorbic Acid , Biosensing Techniques , Disulfides , Molybdenum , Platinum , Ascorbic Acid/analysis , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Disulfides/chemistry , Molybdenum/chemistry , Platinum/chemistry , Humans , Spectrum Analysis, Raman/methods
4.
Sci Rep ; 14(1): 13803, 2024 06 14.
Article En | MEDLINE | ID: mdl-38877060

Topical consumer interest in natural, healthier, safer and nutritional juice, has inspired the search for innovative technologies that can minimize product degradation. In this regard, thermosonication has been proposed as a potential processing technology that can preserve and produce "fresh" products. Watermelon (Citrullus lanatus) juice is a nutrient-rich fruit juice that is desired by consumers due to its appealing color, pleasant odor, sweet taste and low-calorie content. This fruit juice is, however, highly perishable and prone to microorganisms, because of its neutral pH value and high amount of water activity. In addition, it is thermo-sensitive and therefore degrades quickly under thermal processing. This study aimed to identify the optimal thermosonication processing conditions for retaining the critical quality parameters (lycopene, ß-carotene, ascorbic acid and total polyphenolic content) of watermelon juice. Response surface methodology, employing a central composite design, was used to determine the effects of temperature (18-52 °C), processing time (2-13 min) and amplitude level (24-73 µm) at a constant frequency of 25 kHz. The highest quality parameters were obtained at 25 °C, 2 min, and 24 µm at a constant frequency of 25 kHz, which resulted in lycopene of 8.10 mg/100 g, ß-carotene of 0.19 mg/100 g, ascorbic acid of 3.11 mg/100 g and total polyphenolic content of 23.96 mg/GAE/g with a desirability of 0.81. The proposed model was adequate (p < 0.0001), with a satisfactory determination coefficient (R2) of less than 0.8 for all phytochemicals. Thermosonicated watermelon juice samples showed minimal changes in their phytochemical properties, when compared to fresh juices; the lycopene content showed a significant increase after thermosonication, and a significant retention of ß-carotene, ascorbic acid and total polyphenolic acid was observed. According to the findings, thermosonication could be a viable method for preserving watermelon juice, with minimal quality loss and improved functional attributes.


Citrullus , Fruit and Vegetable Juices , Citrullus/chemistry , Fruit and Vegetable Juices/analysis , Lycopene/analysis , Ascorbic Acid/analysis , Sonication/methods , Food Handling/methods , Temperature , Hot Temperature , Polyphenols/analysis
5.
Mikrochim Acta ; 191(7): 384, 2024 06 11.
Article En | MEDLINE | ID: mdl-38861028

Multifunctional N, Fe-doped carbon dots (N, Fe-CDs) were synthesized by the one-step hydrothermal method using ferric ammonium citrate and dicyandiamide as raw materials. The N, Fe-CDs exhibited peroxidase-like (POD) activity by catalyzing the oxidization of 3,3',5,5'-tetramethylbenzidine (TMB) to the green oxidation state ox-TMB in the presence of hydrogen peroxide (H2O2). Subsequently, based on the POD activity of N, Fe-CDs, an efficient and sensitive colorimetric method for the detection of H2O2 and ascorbic acid (AA) was established with a limit of detection of 0.40 µM and 2.05 µM. The proposed detection method has been successfully applied to detect AA in fruit juice, vitamin C tablets, and human serum samples and has exhibited excellent application prospects in biotechnology and food fields. Furthermore, N, Fe-CDs also showed a protective effect on the cell damage caused by H2O2 and could be used as an antioxidant agent.


Ascorbic Acid , Carbon , Fruit and Vegetable Juices , Hydrogen Peroxide , Oxidation-Reduction , Quantum Dots , Hydrogen Peroxide/chemistry , Ascorbic Acid/chemistry , Humans , Carbon/chemistry , Quantum Dots/chemistry , Fruit and Vegetable Juices/analysis , Benzidines/chemistry , Colorimetry/methods , Limit of Detection , Iron/chemistry , Nitrogen/chemistry , Peroxidase/chemistry , Peroxidase/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology
6.
ACS Nano ; 18(24): 15617-15626, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38850556

Ferritin, a spherical protein shell assembled from 24 subunits, functions as an efficient iron storage and release system through its channels. Understanding how various chemicals affect the structural behavior of ferritin is crucial for unravelling the origins of iron-related diseases in living organisms including humans. In particular, the influence of chemicals on ferritin's dynamics and iron release is barely explored at the single-protein level. Here, by employing optical nanotweezers using double-nanohole (DNH) structures, we examined the effect of ascorbic acid (reducing reagent) and pH on individual ferritin's conformational dynamics. The dynamics of ferritin increased as the concentration of ascorbic acid approached saturation. At pH 2.0, ferritin exhibited significant structural fluctuations and eventually underwent a stepwise disassembly into fragments. This work demonstrated the disassembly pathway and kinetics of a single ferritin molecule in solution. We identified four critical fragments during its disassembly pathway, which are 22-mer, 12-mer, tetramer, and dimer subunits. Moreover, we present single-molecule evidence of the cooperative disassembly of ferritin. Interrogating ferritin's structural change in response to different chemicals holds importance for understanding their roles in iron metabolism, hence facilitating further development of medical treatments for its associated diseases.


Ascorbic Acid , Ferritins , Optical Tweezers , Ferritins/chemistry , Ferritins/metabolism , Kinetics , Ascorbic Acid/chemistry , Hydrogen-Ion Concentration , Protein Conformation , Iron/chemistry , Humans
7.
Molecules ; 29(11)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38893508

In recent years, the utilization of natural components has become crucial across various industries, including medicine. Particularly in biomedical contexts, hydrogel materials are of significant importance. Therefore, the objective of this research was to develop and analyze hydrogel materials infused with vitamin C. A key focus of this study was to conduct multiple syntheses with varying levels of vitamin C to explore the feasibility of creating materials with adjustable properties. The produced hydrogels underwent comprehensive physicochemical evaluation. The findings of this examination verified the correlation between the vitamin C content and the specific characteristics of the hydrogels. It was determined from these results that the samples displayed both sorptive and antioxidative capabilities, enabling their potential application in wound dressings or other biomedical uses. A notable benefit of these hydrogels is their adaptability, allowing for modifications to achieve desired attributes tailored to particular applications.


Antioxidants , Ascorbic Acid , Hydrogels , Plant Extracts , Ascorbic Acid/chemistry , Hydrogels/chemistry , Plant Extracts/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Biocompatible Materials/chemistry
8.
Cells ; 13(11)2024 May 21.
Article En | MEDLINE | ID: mdl-38891020

Improving the drought resistance of rice is of great significance for expanding the planting area and improving the stable yield of rice. In our previous work, we found that ROLLED AND ERECT LEAF1 (REL1) protein promoted enhanced tolerance to drought stress by eliminating reactive oxygen species (ROS) levels and triggering the abscisic acid (ABA) response. However, the mechanism through which REL1 regulates drought tolerance by removing ROS is unclear. In this study, we identified REL1 interacting protein 5 (RIP5) and found that it directly combines with REL1 in the chloroplast. We found that RIP5 was strongly expressed in ZH11 under drought-stress conditions, and that the rip5-ko mutants significantly improved the tolerance of rice plants to drought, whereas overexpression of RIP5 resulted in greater susceptibility to drought. Further investigation suggested that RIP5 negatively regulated drought tolerance in rice by decreasing the content of ascorbic acid (AsA), thereby reducing ROS clearance. RNA sequencing showed that the knockout of RIP5 caused differential gene expression that is chiefly associated with ascorbate and aldarate metabolism. Furthermore, multiple experimental results suggest that REL1 is involved in regulating drought tolerance by inhibiting RIP5. Collectively, our findings reveal the importance of the inhibition of RIP5 by REL1 in affecting the rice's response to drought stress. This work not only explains the drought tolerance mechanism of rice, but will also help to improve the drought tolerance of rice.


Droughts , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Reactive Oxygen Species , Oryza/genetics , Oryza/metabolism , Oryza/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Reactive Oxygen Species/metabolism , Stress, Physiological , Abscisic Acid/metabolism , Chloroplasts/metabolism , Adaptation, Physiological/genetics , Plants, Genetically Modified , Ascorbic Acid/metabolism , Protein Binding , Drought Resistance
9.
PLoS One ; 19(6): e0304402, 2024.
Article En | MEDLINE | ID: mdl-38870164

BACKGROUND: There is a consistent association between exposure to air pollution and elevated rates of cardiopulmonary illnesses. As public health activities emphasize the paramount need to reduce exposure, it is crucial to examine strategies like the antioxidant diet that could potentially protect individuals who are unavoidably exposed. METHODS: A systematic search was performed in PubMed/Medline, EMBASE, CENTRAL, and ClinicalTrials.gov up to March 31, 2023, for clinical trials assessing dietary supplements against cardiovascular (blood pressure, heart rate, heart rate variability, brachial artery diameter, flow-mediated dilation, and lipid profile) or pulmonary outcomes (pulmonary function and airway inflammation) attributed to air pollution exposure. RESULTS: After reviewing 4681 records, 18 studies were included. There were contradictory findings on the effects of fish oil and olive oil supplementations on cardiovascular outcomes. Although with limited evidence, fish oil offered protection against pulmonary dysfunction induced by pollutants. Most studies on vitamin C did not find protective cardiovascular effects; however, the combination of vitamin C and E offered protective effects against pulmonary dysfunction but showed conflicting results for cardiovascular outcomes. Other supplements like sulforaphane, L-arginine, n-acetylcysteine, and B vitamins showed potential beneficial effects but need further research due to the limited number of existing trials. CONCLUSIONS: Although more research is needed to determine the efficacy and optimal dose of anti-inflammatory and antioxidant dietary supplements against air pollution toxicity, this low-cost preventative strategy has the potential to offer protection against outcomes of air pollution exposure.


Air Pollution , Dietary Supplements , Humans , Air Pollution/adverse effects , Antioxidants/administration & dosage , Cardiovascular Diseases/prevention & control , Clinical Trials as Topic , Fish Oils/administration & dosage , Ascorbic Acid/administration & dosage
10.
Nutrients ; 16(11)2024 May 29.
Article En | MEDLINE | ID: mdl-38892605

The relation of vitamin C with Alzheimer's disease (AD) is equivocal. The aim of this study was to assess the relation of serum vitamin C levels with AD-related mortality, and to evaluate the threshold beyond which the potential benefits of higher serum concentrations of vitamin C for AD mortality ceases. The cohort consisted of 4504 adults aged ≥60 years enrolled in the National Health and Nutrition Examination Survey who had serum measures of vitamin C and no cognitive impairment at baseline (1988-1994) and were followed-up for mortality until 2019. Vitamin C was assayed from fasting blood samples using isocratic high-performance liquid chromatography. At baseline, the mean age of participants was 70 years, with 42.7% being men. At the end of follow-up (median: 15 years), the AD mortality rate was 2.4 per 1000 person-years. In the Cox regression models, compared to participants in the lowest tertile of serum vitamin C (<0.56 mg/dL), those in the highest tertile (>0.98 mg/dL) had a lower risk of AD mortality (hazard ratio: 0.44, 95% confidence intervals: 0.25-0.77) after adjusting for sociodemographic factors, behavior/lifestyle factors, prevalent health conditions, and dietary vitamin C intake. In dose-response analysis using restricted cubic splines, vitamin C concentrations beyond 2.3 mg/dL were associated with the elevated risk of AD-related mortality. The findings from this national sample of community-dwelling elderly adults suggest that higher levels of serum vitamin C are associated with slower AD disease progression, although levels beyond the normal reference values were associated with a higher risk of AD mortality.


Alzheimer Disease , Ascorbic Acid , Independent Living , Nutrition Surveys , Humans , Alzheimer Disease/blood , Alzheimer Disease/mortality , Male , Female , Ascorbic Acid/blood , Aged , Middle Aged , Cohort Studies , Proportional Hazards Models , Aged, 80 and over , Risk Factors
11.
Nutrients ; 16(11)2024 May 29.
Article En | MEDLINE | ID: mdl-38892614

Aging and its related disorders are important issues nowadays and the first cause of this physio-pathological condition is the overproduction of ROS. Ascorbic acid is an antioxidant mediator and its anti-aging proprieties are well known. Our previous data demonstrated that Voghera sweet pepper (VP), a distinctive type of pepper cultivated in Italy, is particularly rich in ascorbic acid. Based on these data, the anti-aging effect mediated by extracts of the edible part of VP was evaluated on an in vitro model of both young and old Normal Human Diploid Fibroblasts (NHDF). Using phase contrast microscopy, we observed that VP may help cells in the maintenance of physiological morphology during aging. Cytofluorimetric analyses revealed that VP extracts led to an increase in DNA synthesis and percentage of living cells, linked to a consequent increase in mitotic events. This hypothesis is supported by the enhancement of PCNA expression levels observed in old, treated fibroblasts, corroborating the idea that this extract could recover a young phenotype in adult fibroblasts, confirmed by the study of p16 and p53 expression levels and TEM analyses. Based on these results, we may suppose that VP can lead to the partial recovery of "young-like" phenotypes in old fibroblasts.


Ascorbic Acid , Capsicum , Cell Proliferation , Cellular Senescence , Fibroblasts , Plant Extracts , Tumor Suppressor Protein p53 , Humans , Fibroblasts/drug effects , Fibroblasts/metabolism , Capsicum/chemistry , Cellular Senescence/drug effects , Plant Extracts/pharmacology , Cell Proliferation/drug effects , Ascorbic Acid/pharmacology , Tumor Suppressor Protein p53/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Aging/physiology , Antioxidants/pharmacology , Diploidy , Cells, Cultured , Italy
12.
J Eur Acad Dermatol Venereol ; 38 Suppl 4: 15-22, 2024 Jul.
Article En | MEDLINE | ID: mdl-38881445

Skin aging has long been considered a purely cosmetic problem. However, as life expectancy increases, skin aging is taking on a functional dimension that goes beyond cosmetics and appearance. Preventive or therapeutic strategies are needed to target cellular senescence, a key process underlying the alterations in skin function and appearance that occur with aging, as well as to address the age-related skin changes associated with 'dermatoporosis' and chronic skin insufficiency/fragility syndrome. Thus, given the need for effective anti-aging products that improve both the appearance and function of the skin, it is essential to distinguish active ingredients that have been proven to be effective, among the large number of available over-the-counter cosmeceuticals. This brief review focuses on a core group of topical actives, describing their clinical effects on senescence and aging, and their molecular mechanisms of action. These actives include hyaluronic acid, which has hydrating and viscoelastic properties and has been shown to reduce skin atrophy; retinaldehyde, which activates retinoid receptors and increases cutaneous elasticity; vitamins C and E, which provide stable oxidative protection; and niacinamide, which reduces inflammation and mitigates the effects of senescence.


Cellular Senescence , Skin Aging , Skin Aging/drug effects , Skin Aging/physiology , Humans , Cellular Senescence/drug effects , Hyaluronic Acid/pharmacology , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Niacinamide/pharmacology , Niacinamide/therapeutic use , Vitamin E/pharmacology , Cosmeceuticals/pharmacology , Skin/pathology , Skin/drug effects
13.
BMC Plant Biol ; 24(1): 574, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38890583

BACKGROUND: Fruit cracking impacts the quality of sweet cherry, significantly affecting its marketability due to increased susceptibility to injury, aesthetic flaws, and susceptibility to pathogens. The effect of 1% biofilm (Parka™) application regimes on fruit cracking and other quality parameters in the '0900 Ziraat' cherry cultivar was investigated in this study. Fruit sprayed with water were served as control (U1). Fruit treated only once with biofilm three, two and one week before the commercial harvest were considered as U2, U3 and U4, respectively. Fruit treated with biofilm three, two, and one week before harvest were considered as U5; three and two week before harvest as U6; two and one week before harvest as U7; and fruit treated three and one week before harvest as U8. RESULTS: In both measurement periods, the lower cracking index was obtained in biofilm-treated sweet cherry fruit. However, the firmness of biofilm-treated fruit was higher than that of the control fruit. The lowest respiration rate was observed in U7, while the highest weight was recorded in U4 and U5 than the control. The biofilm application decreased fruit coloration. The biofilm application also increased the soluble solids content of the fruit. The U2, U3 and U4 applications at harvest showed higher titratable acidity than the control. In both measurement periods, the vitamin C content of the U2, U5, U6, U7 and U8 applications was found to be higher than that of the control. The total monomeric anthocyanin of the U3 and U8 applications was higher than that of the control. Furthermore, the antioxidant activity of the U2, U3 and U5 in the DPPH, and the U7 and U8 in FRAP were measured higher thanthat of the control. CONCLUSIONS: The application of biofilms has the potential to mitigate fruit cracking, prolong postharvest life of sweet cherries, and enhance fruit firmness.


Biofilms , Fruit , Prunus avium , Fruit/microbiology , Fruit/physiology , Biofilms/drug effects , Prunus avium/physiology , Prunus avium/drug effects , Ascorbic Acid/metabolism
14.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38828917

Alpha-tocopherol (vitamin E) is an antioxidant that is largely involved in immune defense and enhancing the ability of biological systems to respond to oxidative stress. During the process of free radical scavenging, vitamin C supports the regeneration of vitamin E. Although the functions of antioxidants and their importance have been widely studied, the intricate interplay between antioxidants has yet to be fully elucidated, especially in dogs and cats. As such, the objective of the present study was to determine the effect of a combination of dietary antioxidants on DNA damage and antioxidant status in dogs and cats. Forty adult mixed-breed dogs and 40 adult domestic shorthair cats were randomly assigned to one of four treatment groups per species. Dogs and cats remained in these groups for the 84-d duration of the study. The food differed in antioxidant supplementation with the control food meeting all of the Association of American Feed Control Officials requirements for complete and balanced nutrition, including sufficient vitamin E to exceed the published minimum. The treatment diets were targeted to include either 500, 1,000, or 1,500 IU vitamin E/kg as well as 100 ppm of vitamin C and 1.5 ppm of ß-carotene in the food. The effect of vitamin E supplementation level on serum vitamin E concentration, DNA damage, and total antioxidant power was evaluated. Feeding diets enriched with antioxidants resulted in an increased (P < 0.05) circulating vitamin E concentration, increased (P < 0.05) immune cell protection, reduced (P < 0.05) DNA damage in dogs, and an improved (P < 0.05) antioxidant status. Overall, these data demonstrated that feeding a dry kibble with an antioxidant blend inclusive of vitamin E, vitamin C, and ß-carotene enhanced cell protection and improved antioxidant status in dogs and cats.


Animals have an impressive array of defenses to excessive reactive oxygen species in the body. The antioxidant defense system is complex and sophisticated. vitamin E, vitamin C, and ß-carotene are known to scavenge free radicals that are created during times of oxidative stress. To evaluate the effect of the various antioxidants, dogs and cats were fed one of four diets for 84 d. Diets included a control group that had vitamin E concentrations that exceeded regulatory minimums and four treatment groups that were targeted to include 500, 1,000, or 1,500 IU vitamin E/kg as well as 100 ppm of vitamin C and 1.5 ppm of ß-carotene in the food. To assess the effectiveness of the different vitamin E concentrations provided in the foods, circulating vitamin E, DNA damage, and total antioxidant power were assessed. Results from the parameters assessed showed that dogs and cats benefit from supplementing their diet with a blend of antioxidants targeted to include 100 ppm of vitamin C, 1.5 ppm of ß-carotene, and have varying benefits to increased vitamin E/kg in the food.


Animal Feed , Antioxidants , Ascorbic Acid , DNA Damage , Diet , Dietary Supplements , Vitamin E , Animals , Dogs , Cats , Antioxidants/pharmacology , DNA Damage/drug effects , Diet/veterinary , Animal Feed/analysis , Dietary Supplements/analysis , Male , Ascorbic Acid/pharmacology , Ascorbic Acid/administration & dosage , Female , Vitamin E/pharmacology , Vitamin E/administration & dosage , Free Radicals/metabolism , Oxidative Stress/drug effects , beta Carotene/pharmacology , beta Carotene/administration & dosage
15.
Molecules ; 29(11)2024 May 21.
Article En | MEDLINE | ID: mdl-38893303

In this study, we designed a novel electrochemical sensor by modifying a glass carbon electrode (GCE) with Pd confined mesoporous carbon hollow nanospheres (Pd/MCHS) for the simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The structure and morphological characteristics of the Pd/MCHS nanocomposite and the Pd/MCHS/GCE sensor are comprehensively examined using SEM, TEM, XRD and EDX. The electrochemical properties of the prepared sensor are investigated through CV and DPV, which reveal three resolved oxidation peaks for AA, DA, and UA, thereby verifying the simultaneous detection of the three analytes. Benefiting from its tailorable properties, the Pd/MCHS nanocomposite provides a large surface area, rapid electron transfer ability, good catalytic activity, and high conductivity with good electrochemical behavior for the determination of AA, DA, and UA. Under optimized conditions, the Pd/MCHS/GCE sensor exhibited a linear response in the concentration ranges of 300-9000, 2-50, and 20-500 µM for AA, DA, and UA, respectively. The corresponding limit of detection (LOD) values were determined to be 51.03, 0.14, and 4.96 µM, respectively. Moreover, the Pd/MCHS/GCE sensor demonstrated outstanding selectivity, reproducibility, and stability. The recovery percentages of AA, DA, and UA in real samples, including a vitamin C tablet, DA injection, and human urine, range from 99.8-110.9%, 99.04-100.45%, and 98.80-100.49%, respectively. Overall, the proposed sensor can serve as a useful reference for the construction of a high-performance electrochemical sensing platform.


Ascorbic Acid , Carbon , Dopamine , Electrochemical Techniques , Limit of Detection , Nanospheres , Palladium , Uric Acid , Ascorbic Acid/analysis , Ascorbic Acid/urine , Uric Acid/urine , Uric Acid/analysis , Dopamine/analysis , Dopamine/urine , Nanospheres/chemistry , Electrochemical Techniques/methods , Carbon/chemistry , Palladium/chemistry , Porosity , Humans , Electrodes , Biosensing Techniques/methods , Reproducibility of Results
16.
Molecules ; 29(11)2024 May 23.
Article En | MEDLINE | ID: mdl-38893324

Rosehip fruits, characterized by their high concentrations of bioactive compounds and antioxidant activity (AA), have been traditionally used to make jams, infusions, and juices. Thus, the objective of this research was to evaluate the stability of rosehip juice by determining the concentrations of bioactive compounds and total phenols and the AA using chromatographic and spectroscopic methods. The stability of the juice was evaluated with three treatments and different storage conditions, namely, unpasteurized-refrigerated, pasteurized-room temperature, and pasteurized-refrigerated, and measurements were taken for eight months. Individual and total phenolic compounds, evaluated by chromatographic methods, reported differences until the end of this study. The total phenolic compounds by Folin-Ciocalteu method presented an average decrease of 57% in the three treatments in relation to the initial conditions. On the other hand, the ascorbic acid content decreased considerably, disappearing at week six. Furthermore, for the unpasteurized-refrigerated and pasteurized-refrigerated samples, a correlation was found between flavonols, total phenols, ascorbic acid, and antioxidant activity determined by the TEAC method. For the pasteurized-room temperature samples, correlations were found between the levels of several flavonols, hydroxycinnamic acid, total phenols, and ascorbic acid and the antioxidant activity determined by the CUPRAC method. The stability of the compounds was mainly correlated with the storage conditions of the juice and not with pasteurization. The highest stability was observed for the unpasteurized-refrigerated and pasteurized-refrigerated samples. Although the concentrations of the compounds evaluated decreased during this study, significant levels of AA persisted, providing beneficial characteristics for consumer health.


Antioxidants , Fruit and Vegetable Juices , Phenols , Rosa , Antioxidants/chemistry , Antioxidants/analysis , Fruit and Vegetable Juices/analysis , Rosa/chemistry , Phenols/analysis , Phenols/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Phytochemicals/chemistry , Phytochemicals/analysis , Fruit/chemistry , Plant Extracts/chemistry , Plant Extracts/analysis
17.
Mikrochim Acta ; 191(7): 409, 2024 06 20.
Article En | MEDLINE | ID: mdl-38898141

Amlodipine (AM) is a long active calcium channel blocker used to relax blood vessels by preventing calcium ion transport into the vascular walls and its supporting molecules acetaminophen (AP) and ascorbic acid (AA) are recommended for hypertension control and prevention. Considering their therapeutic importance and potential side effects due to over dosage, we have fabricated a sensor for individual and simultaneous determination of AA, AP, and AM in pharmaceuticals and human urine using novel Zn-doped Ca2CuO3 nanoparticles modified glassy carbon electrode (GCE). Optimally doped Ca2CuO3 (2.5 wt% Zn at Cu site) enhanced the detection of target molecules over much wider concentration ranges of 50 to 3130 µM for AA, 0.25 to 417 µM for AP, and 0.8 to 354 µM for AM with the corresponding lowest detection limits of 14 µM, 0.05 µM, and 0.07 µM, respectively. Furthermore, the Zn-Ca2CuO3/GCE exhibited excellent selectivity and high sensitivity even in the presence of several potential interfering agents. The usefulness of the developed electrode was tested using an amlodipine besylate tablet and urine samples of seven hypertension patients under medication. The results confirmed the presence of a significant amount of AP and AM in six patients' urine samples indicating that the personalized medication is essential and the quantum of medication need to be fixed by knowing the excess medicines excreted through urine. Thus, the Zn-Ca2CuO3/GCE with a high recovery percentage and good sensitivity shall be useful in the pharmaceutical and biomedical sectors.


Acetaminophen , Amlodipine , Ascorbic Acid , Copper , Electrodes , Hypertension , Zinc , Amlodipine/urine , Amlodipine/analysis , Humans , Ascorbic Acid/urine , Copper/chemistry , Acetaminophen/urine , Zinc/chemistry , Zinc/urine , Hypertension/drug therapy , Hypertension/urine , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Limit of Detection , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Carbon/chemistry
18.
PLoS One ; 19(6): e0304112, 2024.
Article En | MEDLINE | ID: mdl-38900829

The development and application of functional feed ingredients represents a great opportunity to advance fish growth and health, boost the immune system, and induce physiological benefits beyond those provided by traditional feeds. In the present study, we looked at the feasibility of in vitro methods for screening the qualities of functional feed ingredients using the fish cell line RTgill-W1, which has never been used in fish nutrition, and the culture of Paramoeba perurans. Five functional feed ingredients (arginine, ß-glucan, vitamin C, and two phytogenic feed additives) were selected to investigate their effects on cell viability and reactive oxygen species production. Three of the selected ingredients (arginine and two phytogenic feed additives) were additionally tested to assess their potential amoebicidal activity. As these functional ingredients are the core of a commercially available feed (Protec Gill, Skretting AS), their beneficial effects were further assessed in a field trial in fish affected by complex gill disease. Here, the analyzed parameters included the evaluation of macroscopic and histopathological gill conditions, pathogen detections, and analyses of plasma parameters. RTgill-W1 cell line assays were a good tool for screening functional ingredients and provided information about the optimal ingredient concentration ranges, which can be helpful for adjusting the concentrations in future feed diets. Through the culture of P. perurans, the tested ingredients showed a clear amoebicidal activity, suggesting that their inclusions in dietary supplements could be a viable way to prevent microbial infections. A three-week period of feeding Protec Gill slowed the disease progression, by reducing the pathogen load and significantly improving gill tissue conditions, as revealed by histological evaluation. The use of diets containing selected functional ingredients may be a feasible strategy for preventing or mitigating the increasingly common gill diseases, particularly in cases of complex gill disease, as documented in this study.


Animal Feed , Fish Diseases , Gills , Salmo salar , Animals , Animal Feed/analysis , Fish Diseases/prevention & control , Gills/pathology , Gills/parasitology , Gills/drug effects , Cell Line , beta-Glucans/pharmacology , Arginine/pharmacology , Ascorbic Acid/pharmacology , Reactive Oxygen Species/metabolism , Dietary Supplements , Amebiasis/parasitology , Cell Survival/drug effects
19.
Food Res Int ; 188: 114415, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823855

Several scientific studies have warned that the ingestion of dietary lipid oxidation products (LOPs) may initiate or exacerbate the development of several chronic non-communicable diseases in humans. Indeed, the constantly increasing consumption of culinary oils by larger global populations indicates the need for scientific techniques to suppress the evolution of LOPs in thermo-oxidised oils. This study employed a 600.13 MHz frequency NMR spectrometer in evaluating the effect of 10, 50, and 100 ppm concentrations of chemical compounds reported to have antioxidant properties in continuously-stirred and thermally stressed polyunsaturated fatty acid (PUFA)-rich hemp seed oil at a frying temperature of 180℃ for 180 min. Research data acquired showed that the antioxidants α- and γ-tocopherol, γ-oryzanol, ß-carotene, eugenol, resveratrol, ascorbyl palmitate, gentisic acid, and L-ascorbic acid all played a vital role in suppressing the evolution of secondary aldehydic lipid oxidation products in hemp seed oil. However, the most ineffective LOP-suppressing agent was L-lysine, an observation which may be accountable by its poor oil solubility. Nonetheless, trends deduced for compounds acting as antioxidants were mainly unique for each class of agent tested. Conversely, the antioxidant capacity of resveratrol was consistently higher, and this effect was found to be independent of its added amounts. This report provides a direct approach in developing scientific methods for the suppression of LOPs in thermo-oxidatively susceptible PUFA-rich cooking oils.


Antioxidants , Cannabis , Hot Temperature , Lipid Peroxidation , Plant Oils , Antioxidants/chemistry , Plant Oils/chemistry , Cannabis/chemistry , Lipid Peroxidation/drug effects , Cooking , Seeds/chemistry , Resveratrol/chemistry , Fatty Acids, Unsaturated/analysis , Fatty Acids, Unsaturated/chemistry , Magnetic Resonance Spectroscopy , Ascorbic Acid/chemistry , Plant Extracts
20.
Mikrochim Acta ; 191(7): 365, 2024 06 04.
Article En | MEDLINE | ID: mdl-38831060

Copper-cobalt bimetallic nitrogen-doped carbon-based nanoenzymatic materials (CuCo@NC) were synthesized using a one-step pyrolysis process. A three-channel colorimetric sensor array was constructed for the detection of seven antioxidants, including cysteine (Cys), uric acid (UA), tea polyphenols (TP), lysine (Lys), ascorbic acid (AA), glutathione (GSH), and dopamine (DA). CuCo@NC with peroxidase activity was used to catalyze the oxidation of TMB by H2O2 at three different ratios of metal sites. The ability of various antioxidants to reduce the oxidation products of TMB (ox TMB) varied, leading to distinct absorbance changes. Linear discriminant analysis (LDA) results showed that the sensor array was capable of detecting seven antioxidants in buffer and serum samples. It could successfully discriminate antioxidants with a minimum concentration of 10 nM. Thus, multifunctional sensor arrays based on CuCo@NC bimetallic nanoenzymes not only offer a promising strategy for identifying various antioxidants but also expand their applications in medical diagnostics and environmental analysis of food.


Antioxidants , Carbon , Colorimetry , Copper , Nitrogen , Nitrogen/chemistry , Colorimetry/methods , Carbon/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Copper/chemistry , Cobalt/chemistry , Hydrogen Peroxide/chemistry , Humans , Catalysis , Limit of Detection , Glutathione/chemistry , Glutathione/blood , Dopamine/blood , Dopamine/analysis , Dopamine/chemistry , Benzidines/chemistry , Polyphenols/chemistry , Polyphenols/analysis , Ascorbic Acid/chemistry , Ascorbic Acid/blood , Ascorbic Acid/analysis , Oxidation-Reduction , Uric Acid/blood , Uric Acid/chemistry , Uric Acid/analysis , Cysteine/chemistry , Cysteine/blood
...