Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46.743
Filtrar
1.
J Phys Chem Lett ; 15(31): 8078-8084, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39087732

RESUMEN

Bacteriophytochromes are light-sensing biological machines that switch between two photoreversible states, Pr and Pfr. Their relative stability is opposite in canonical and bathy bacteriophytochromes, but in both cases the switch between them is triggered by the photoisomerization of an embedded bilin chromophore. We applied an integrated multiscale strategy of excited-state QM/MM nonadiabatic dynamics and (QM/)MM molecular dynamics simulations with enhanced sampling techniques to the Agrobacterium fabrum bathy phytochrome and compared the results with those obtained for the canonical phytochrome Deinococcus radiodurans. Contrary to what recently suggested, we found that photoactivation in both phytochromes is triggered by the same hula-twist motion of the bilin chromophore. However, only in the bathy phytochrome, the bilin reaches the final rotated structure already in the first intermediate. This allows a reorientation of the binding pocket in a microsecond time scale, which can propagate through the entire protein causing the spine to tilt.


Asunto(s)
Agrobacterium , Deinococcus , Simulación de Dinámica Molecular , Fitocromo , Fitocromo/química , Fitocromo/metabolismo , Deinococcus/química , Agrobacterium/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Teoría Cuántica
2.
Sci Rep ; 14(1): 17910, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095538

RESUMEN

Helicobacter pylori (H. pylori) is responsible for various chronic or acute diseases, such as stomach ulcers, dyspepsia, peptic ulcers, gastroesophageal reflux, gastritis, lymphoma, and stomach cancers. Although specific drugs are available to treat the bacterium's harmful effects, there is an urgent need to develop a preventive or therapeutic vaccine. Therefore, the current study aims to create a multi-epitope vaccine against H. pylori using lipid nanoparticles. Five epitopes from five target proteins of H. pylori, namely, Urease, CagA, HopE, SabA, and BabA, were used. Immunogenicity, MHC (Major Histocompatibility Complex) bonding, allergenicity, toxicity, physicochemical analysis, and global population coverage of the entire epitopes and final construct were carefully examined. The study involved using various bioinformatic web tools to accomplish the following tasks: modeling the three-dimensional structure of a set of epitopes and the final construct and docking them with Toll-Like Receptor 4 (TLR4). In the experimental phase, the final multi-epitope construct was synthesized using the solid phase method, and it was then enclosed in lipid nanoparticles. After synthesizing the construct, its loading, average size distribution, and nanoliposome shape were checked using Nanodrop at 280 nm, dynamic light scattering (DLS), and atomic force microscope (AFM). The designed vaccine has been confirmed to be non-toxic and anti-allergic. It can bind with different MHC alleles at a rate of 99.05%. The construct loading was determined to be about 91%, with an average size of 54 nm. Spherical shapes were also observed in the AFM images. Further laboratory tests are necessary to confirm the safety and immunogenicity of the multi-epitope vaccine.


Asunto(s)
Vacunas Bacterianas , Biología Computacional , Helicobacter pylori , Nanopartículas , Helicobacter pylori/inmunología , Nanopartículas/química , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/química , Biología Computacional/métodos , Humanos , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/química , Epítopos/inmunología , Epítopos/química , Simulación del Acoplamiento Molecular , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/química , Infecciones por Helicobacter/prevención & control , Infecciones por Helicobacter/inmunología , Receptor Toll-Like 4/inmunología , Ureasa/inmunología , Ureasa/química , Inmunoinformática , Liposomas
3.
Nat Commun ; 15(1): 6673, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107302

RESUMEN

Allosteric regulation of inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme of purine metabolism, contributes to the homeostasis of adenine and guanine nucleotides. However, the precise molecular mechanism of IMPDH regulation in bacteria remains unclear. Using biochemical and cryo-EM approaches, we reveal the intricate molecular mechanism of the IMPDH allosteric regulation in mycobacteria. The enzyme is inhibited by both GTP and (p)ppGpp, which bind to the regulatory CBS domains and, via interactions with basic residues in hinge regions, lock the catalytic core domains in a compressed conformation. This results in occlusion of inosine monophosphate (IMP) substrate binding to the active site and, ultimately, inhibition of the enzyme. The GTP and (p)ppGpp allosteric effectors bind to their dedicated sites but stabilize the compressed octamer by a common mechanism. Inhibition is relieved by the competitive displacement of GTP or (p)ppGpp by ATP allowing IMP-induced enzyme expansion. The structural knowledge and mechanistic understanding presented here open up new possibilities for the development of allosteric inhibitors with antibacterial potential.


Asunto(s)
Guanosina Trifosfato , IMP Deshidrogenasa , IMP Deshidrogenasa/metabolismo , IMP Deshidrogenasa/química , IMP Deshidrogenasa/antagonistas & inhibidores , Regulación Alostérica , Guanosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Dominio Catalítico , Modelos Moleculares , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Guanosina Pentafosfato/metabolismo , Inosina Monofosfato/metabolismo , Inosina Monofosfato/química , Unión Proteica , Adenosina Trifosfato/metabolismo , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/metabolismo
4.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126090

RESUMEN

Recently, prokaryotic laccases from lactic acid bacteria (LAB), which can degrade biogenic amines, were discovered. A laccase enzyme has been cloned from Oenococcus oeni, a very important LAB in winemaking, and it has been expressed in Escherichia coli. This enzyme has similar characteristics to those previously isolated from LAB as the ability to oxidize canonical substrates such as 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (2,6-DMP), and potassium ferrocyanide K4[Fe(CN6)], and non-conventional substrates as biogenic amines. However, it presents some distinctiveness, the most characteristic being its psychrophilic behaviour, not seen before among these enzymes. Psychrophilic enzymes capable of efficient catalysis at low temperatures are of great interest due to their potential applications in various biotechnological processes. In this study, we report the discovery and characterization of a new psychrophilic laccase, a multicopper oxidase (MCO), from the bacterium Oenococcus oeni. The psychrophilic laccase gene, designated as LcOe 229, was identified through the genomic analysis of O. oeni, a Gram-positive bacterium commonly found in wine fermentation. The gene was successfully cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. Biochemical characterization of the psychrophilic laccase revealed its optimal activity at low temperatures, with a peak at 10 °C. To our knowledge, this is the lowest optimum temperature described so far for laccases. Furthermore, the psychrophilic laccase demonstrated remarkable stability and activity at low pH (optimum pH 2.5 for ABTS), suggesting its potential for diverse biotechnological applications. The kinetic properties of LcOe 229 were determined, revealing a high catalytic efficiency (kcat/Km) for several substrates at low temperatures. This exceptional cold adaptation of LcOe 229 indicates its potential as a biocatalyst in cold environments or applications requiring low-temperature processes. The crystal structure of the psychrophilic laccase was determined using X-ray crystallography demonstrating structural features similar to other LAB laccases, such as an extended N-terminal and an extended C-terminal end, with the latter containing a disulphide bond. Also, the structure shows two Met residues at the entrance of the T1Cu site, common in LAB laccases, which we suggest could be involved in substrate binding, thus expanding the substrate-binding pocket for laccases. A structural comparison of LcOe 229 with Antarctic laccases has not revealed specific features assigned to cold-active laccases versus mesophilic. Thus, further investigation of this psychrophilic laccase and its engineering could lead to enhanced cold-active enzymes with improved properties for future biotechnological applications. Overall, the discovery of this novel psychrophilic laccase from O. oeni expands our understanding of cold-adapted enzymes and presents new opportunities for their industrial applications in cold environments.


Asunto(s)
Lacasa , Oenococcus , Oenococcus/enzimología , Oenococcus/genética , Lacasa/metabolismo , Lacasa/genética , Lacasa/química , Especificidad por Sustrato , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Secuencia de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Clonación Molecular , Cinética , Modelos Moleculares , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno
5.
J Agric Food Chem ; 72(32): 18100-18109, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39090787

RESUMEN

Inulin has found commercial applications in the pharmaceutical, nutraceutical, and food industries due to its beneficial health effects. The enzymatic biosynthesis of microbial inulin has garnered increasing attention. In this study, molecular modification was applied to Lactobacillus mulieris UMB7800 inulosucrase, an enzyme that specifically produces high-molecular weight inulin, to enhance its catalytic activity and thermostability. Among the 18 variable regions, R5 was identified as a crucial region significantly impacting enzymatic activity by replacing it with more conserved sequences. Site-directed mutagenesis combined with saturated mutagenesis revealed that the mutant A250 V increased activity by 68%. Additionally, after screening candidate mutants by rational design, four single-point mutants, S344D, H434P, E526D, and G531P, were shown to enhance thermostability. The final combinational mutant, M5, exhibited a 66% increase in activity and a 5-fold enhancement in half-life at 55 °C. These findings are significant for understanding the catalytic activity and thermostability of inulosucrase and are promising for the development of microbial inulin biosynthesis platforms.


Asunto(s)
Proteínas Bacterianas , Estabilidad de Enzimas , Hexosiltransferasas , Inulina , Lactobacillus , Mutagénesis Sitio-Dirigida , Inulina/metabolismo , Inulina/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Hexosiltransferasas/química , Lactobacillus/enzimología , Lactobacillus/genética , Lactobacillus/metabolismo , Cinética , Calor , Ingeniería de Proteínas , Especificidad por Sustrato
6.
Sci Rep ; 14(1): 18242, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107474

RESUMEN

Iron storage proteins, e.g., vertebrate ferritin, and the ferritin-like bacterioferritin (Bfr) and bacterial ferritin (Ftn), are spherical, hollow proteins that catalyze the oxidation of Fe2+ at binuclear iron ferroxidase centers (FOC) and store the Fe3+ in their interior, thus protecting cells from unwanted Fe3+/Fe2+ redox cycling and storing iron at concentrations far above the solubility of Fe3+. Vertebrate ferritins are heteropolymers of H and L subunits with only the H subunits having FOC. Bfr and Ftn were thought to coexist in bacteria as homopolymers, but recent evidence indicates these molecules are heteropolymers assembled from Bfr and Ftn subunits. Despite the heteropolymeric nature of vertebrate and bacterial ferritins, structures have been determined only for recombinant proteins constituted by a single subunit type. Herein we report the structure of Acinetobacter baumannii bacterioferritin, the first structural example of a heteropolymeric ferritin or ferritin-like molecule, assembled from completely overlapping Ftn homodimers harboring FOC and Bfr homodimers devoid of FOC but binding heme. The Ftn homodimers function by catalyzing the oxidation of Fe2+ to Fe3+, while the Bfr homodimers bind a cognate ferredoxin (Bfd) which reduces the stored Fe3+ by transferring electrons via the heme, enabling Fe2+ mobilization to the cytosol for incorporation in metabolism.


Asunto(s)
Acinetobacter baumannii , Proteínas Bacterianas , Grupo Citocromo b , Ferritinas , Ferritinas/química , Ferritinas/metabolismo , Acinetobacter baumannii/metabolismo , Grupo Citocromo b/química , Grupo Citocromo b/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Multimerización de Proteína , Hierro/metabolismo , Hierro/química , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Oxidación-Reducción , Conformación Proteica
7.
Appl Microbiol Biotechnol ; 108(1): 436, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126499

RESUMEN

Microbial non-phosphorylative oxidative pathways present promising potential in the biosynthesis of platform chemicals from the hemicellulosic fraction of lignocellulose. An L-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii catalyzes the rate-limiting step in the non-phosphorylative oxidative pathways, that is, converts sugar acid to 2-dehydro-3-deoxy sugar acid. We have shown earlier that the enzyme forms a dimer of dimers, in which the C-terminal histidine residue from one monomer participates in the formation of the active site of an adjacent monomer. The histidine appears to be conserved across the sequences of sugar acid dehydratases. To study the role of the C-terminus, five variants (H579A, H579F, H579L, H579Q, and H579W) were produced. All variants showed decreased activity for the tested sugar acid substrates, except the variant H579L on D-fuconate, which showed about 20% increase in activity. The reaction kinetic data showed that the substrate preference was slightly modified in H579L compared to the wild-type enzyme, demonstrating that the alternation of the substrate preference of sugar acid dehydratases is possible. In addition, a crystal structure of H579L was determined at 2.4 Å with a product analog 2-oxobutyrate. This is the first enzyme-ligand complex structure from an IlvD/EDD superfamily enzyme. The binding of 2-oxobutyrate suggests how the substrate would bind into the active site in the orientation, which could lead to the dehydration reaction. KEY POINTS: • Mutation of the last histidine at the C-terminus changed the catalytic activity of L-arabinonate dehydratase from R. leguminosarum bv. trifolii against various C5/C6 sugar acids. • The variant H579L of L-arabinonate dehydratase showed an alteration of substrate preferences compared with the wild type. • The first enzyme-ligand complex crystal structure of an IlvD/EDD superfamily enzyme was solved.


Asunto(s)
Hidroliasas , Rhizobium leguminosarum , Hidroliasas/metabolismo , Hidroliasas/genética , Hidroliasas/química , Especificidad por Sustrato , Rhizobium leguminosarum/enzimología , Rhizobium leguminosarum/genética , Cinética , Dominio Catalítico , Azúcares Ácidos/metabolismo , Histidina/metabolismo , Histidina/química , Histidina/genética , Multimerización de Proteína , Modelos Moleculares , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo
8.
Sci Rep ; 14(1): 18587, 2024 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127763

RESUMEN

Phenol soluble modulins (PSMs) are small amphipathic peptides involved in a series of biological functions governing staphylococcal pathogenesis, primarily by facilitating the formation of an extracellular fibril structure with amyloid-like properties. This fibrillar architecture stabilizes the staphylococcal biofilm making it resilient to antibiotic treatment. Our study aims to abrogate the amyloid fibrillation of PSM α1 with novel insights on the amyloid modulatory potential of a prenylated chalcone, Isobavachalcone (IBC). A combination of biophysical and computational assays to address the amyloid modulatory effect of IBC has been undertaken to arrive at a model for the inhibition of PSM α1 fibrillation. ThT kinetics studies indicated that IBC must be stably interacting with the amyloidogenic core of PSM α1 monomers or it may be inhibiting the pre-fibrillar aggregates populated at the early stages of amyloid transformation kinetics. This heteromolecular association further inhibits the amyloid transformation corroborated by a ∼ 94% and ∼ 91% reduction in the ThT maxima, even at sub-stoichiometric concentrations. Transmission electron microscopy (TEM) of end-stage aggregates (∼ 55 h) depict mature, inter-twined, laterally stacked amyloid fibrils in untreated PSM α1 samples while this fibrillar load is remarkably reduced in the presence of IBC. The inhibitory effect of IBC on the ß-sheet transitions of PSM α1 were also validated using far-UV CD spectra. Molecular dynamics simulation studies with PSM aggregates (PSM-A) have also suggested that IBC disrupts the hydrogen bonding interactions and corroborates the inhibition of alpha to beta transitions of PSM-A. Collectively, our data proposes a novel structural motif for the rational discovery of non-toxic therapeutic agents targeting the functional amyloids which have slowly emerged as potent factors, consolidating the antibiotic resistant staphylococcal biofilm assembly.


Asunto(s)
Amiloide , Chalconas , Staphylococcus aureus , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Chalconas/farmacología , Chalconas/química , Chalconas/metabolismo , Amiloide/metabolismo , Amiloide/química , Simulación de Dinámica Molecular , Cinética , Prenilación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Biopelículas/efectos de los fármacos , Toxinas Bacterianas
9.
Sci Adv ; 10(32): eadq0653, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121216

RESUMEN

Phytochromes are red-light photoreceptors discovered in plants with homologs in bacteria and fungi that regulate a variety of physiological responses. They display a reversible photocycle between two distinct states: a red-light-absorbing Pr state and a far-red light-absorbing Pfr state. The photoconversion regulates the activity of an enzymatic domain, usually a histidine kinase (HK). The molecular mechanism that explains how light controls the HK activity is not understood because structures of unmodified bacterial phytochromes with HK activity are missing. Here, we report three cryo-electron microscopy structures of a wild-type bacterial phytochrome with HK activity determined as Pr and Pfr homodimers and as a Pr/Pfr heterodimer with individual subunits in distinct states. We propose that the Pr/Pfr heterodimer is a physiologically relevant signal transduction intermediate. Our results offer insight into the molecular mechanism that controls the enzymatic activity of the HK as part of a bacterial two-component system that perceives and transduces light signals.


Asunto(s)
Microscopía por Crioelectrón , Fitocromo , Transducción de Señal , Fitocromo/metabolismo , Fitocromo/química , Microscopía por Crioelectrón/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Histidina Quinasa/metabolismo , Histidina Quinasa/química , Modelos Moleculares , Multimerización de Proteína , Luz , Fotorreceptores Microbianos/metabolismo , Fotorreceptores Microbianos/química
10.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125594

RESUMEN

Pseudomonas aeruginosa (P. aeruginosa) poses a significant threat as a nosocomial pathogen due to its robust resistance mechanisms and virulence factors. This study integrates subtractive proteomics and ensemble docking to identify and characterize essential proteins in P. aeruginosa, aiming to discover therapeutic targets and repurpose commercial existing drugs. Using subtractive proteomics, we refined the dataset to discard redundant proteins and minimize potential cross-interactions with human proteins and the microbiome proteins. We identified 12 key proteins, including a histidine kinase and members of the RND efflux pump family, known for their roles in antibiotic resistance, virulence, and antigenicity. Predictive modeling of the three-dimensional structures of these RND proteins and subsequent molecular ensemble-docking simulations led to the identification of MK-3207, R-428, and Suramin as promising inhibitor candidates. These compounds demonstrated high binding affinities and effective inhibition across multiple metrics. Further refinement using non-covalent interaction index methods provided deeper insights into the electronic effects in protein-ligand interactions, with Suramin exhibiting superior binding energies, suggesting its broad-spectrum inhibitory potential. Our findings confirm the critical role of RND efflux pumps in antibiotic resistance and suggest that MK-3207, R-428, and Suramin could be effectively repurposed to target these proteins. This approach highlights the potential of drug repurposing as a viable strategy to combat P. aeruginosa infections.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Reposicionamiento de Medicamentos , Simulación del Acoplamiento Molecular , Proteoma , Proteómica , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteómica/métodos , Proteoma/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Suramina/farmacología , Suramina/química , Humanos
11.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125688

RESUMEN

Polyethylene terephthalate (PET) degradation by enzymatic hydrolysis is significant for addressing plastic pollution and fostering sustainable waste management practices. Identifying thermophilic and thermostable PET hydrolases is particularly crucial for industrial bioprocesses, where elevated temperatures may enhance enzymatic efficiency and process kinetics. In this study, we present the discovery of a novel thermophilic and thermostable PETase enzyme named Sis, obtained through metagenomic sequence-based analysis. Sis exhibits robust activity on nanoPET substrates, demonstrating effectiveness at temperatures up to 70 °C and displaying exceptional thermal stability with a melting temperature (Tm) of 82 °C. Phylogenetically distinct from previously characterised PET hydrolases, Sis represents a valuable addition to the repertoire of enzymes suitable for PET degradation.


Asunto(s)
Estabilidad de Enzimas , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Hidrólisis , Filogenia , Temperatura , Especificidad por Sustrato , Cinética , Hidrolasas/química , Hidrolasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
12.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39125801

RESUMEN

Mannheimia haemolytica is the main etiological bacterial agent in ruminant respiratory disease. M. haemolytica secretes leukotoxin, lipopolysaccharides, and proteases, which may be targeted to treat infections. We recently reported the purification and in vivo detection of a 110 kDa Zn metalloprotease with collagenase activity (110-Mh metalloprotease) in a sheep with mannheimiosis, and this protease may be an important virulence factor. Due to the increase in the number of multidrug-resistant strains of M. haemolytica, new alternatives to antibiotics are being explored; one option is lactoferrin (Lf), which is a multifunctional iron-binding glycoprotein from the innate immune system of mammals. Bovine apo-lactoferrin (apo-bLf) possesses many properties, and its bactericidal and bacteriostatic effects have been highlighted. The present study was conducted to investigate whether apo-bLf inhibits the secretion and proteolytic activity of the 110-Mh metalloprotease. This enzyme was purified and sublethal doses of apo-bLf were added to cultures of M. haemolytica or co-incubated with the 110-Mh metalloprotease. The collagenase activity was evaluated using zymography and azocoll assays. Our results showed that apo-bLf inhibited the secretion and activity of the 110-Mh metalloprotease. Molecular docking and overlay assays showed that apo-bLf bound near the active site of the 110-Mh metalloprotease, which affected its enzymatic activity.


Asunto(s)
Lactoferrina , Mannheimia haemolytica , Metaloproteasas , Proteolisis , Lactoferrina/metabolismo , Lactoferrina/farmacología , Metaloproteasas/metabolismo , Metaloproteasas/antagonistas & inhibidores , Animales , Apoproteínas/metabolismo , Apoproteínas/química , Simulación del Acoplamiento Molecular , Ovinos , Bovinos , Colagenasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Zinc/metabolismo
13.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125830

RESUMEN

The increase in the resistance of mutant strains of Neisseria gonorrhoeae to the antibiotic ceftriaxone is pronounced in the decrease in the second-order acylation rate constant, k2/KS, by penicillin-binding protein 2 (PBP2). These changes can be caused by both the decrease in the acylation rate constant, k2, and the weakening of the binding affinity, i.e., an increase in the substrate constant, KS. A501X mutations in PBP2 affect second-order acylation rate constants. The PBP2A501V variant exhibits a higher k2/KS value, whereas for PBP2A501R and PBP2A501P variants, these values are lower. We performed molecular dynamic simulations with both classical and QM/MM potentials to model both acylation energy profiles and conformational dynamics of four PBP2 variants to explain the origin of k2/KS changes. The acylation reaction occurs in two elementary steps, specifically, a nucleophilic attack by the oxygen atom of the Ser310 residue and C-N bond cleavage in the ß-lactam ring accompanied by the elimination of the leaving group of ceftriaxone. The energy barrier of the first step increases for PBP2 variants with a decrease in the observed k2/KS value. Submicrosecond classic molecular dynamic trajectories with subsequent cluster analysis reveal that the conformation of the ß3-ß4 loop switches from open to closed and its flexibility decreases for PBP2 variants with a lower k2/KS value. Thus, the experimentally observed decrease in the k2/KS in A501X variants of PBP2 occurs due to both the decrease in the acylation rate constant, k2, and the increase in KS.


Asunto(s)
Ceftriaxona , Simulación de Dinámica Molecular , Neisseria gonorrhoeae , Proteínas de Unión a las Penicilinas , Ceftriaxona/farmacología , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria gonorrhoeae/metabolismo , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/metabolismo , Antibacterianos/farmacología , Mutación , Farmacorresistencia Bacteriana/genética , Acilación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina
14.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125840

RESUMEN

Living organisms are constructed from proteins that assemble into biomolecular complexes, each with a unique shape and function. Our knowledge about the structure-activity relationship of these complexes is still limited, mainly because of their small size, complex structure, fast processes, and changing environment. Furthermore, the constraints of current microscopic tools and the difficulty in applying molecular dynamic simulations to capture the dynamic response of biomolecular complexes and long-term phenomena call for new supplementary tools and approaches that can help bridge this gap. In this paper, we present an approach to comparing biomolecular and origami hierarchical structures and apply it to comparing bacterial microcompartments (BMCs) with spiral-based origami models. Our first analysis compares proteins that assemble the BMC with an origami model called "flasher", which is the unit cell of an assembled origami model. Then, the BMC structure is compared with the assembled origami model and based on the similarity, a physical scaled-up origami model, which is analogous to the BMC, is constructed. The origami model is translated into a computer-aided design model and manufactured via 3D-printing technology. Finite element analysis and physical experiments of the origami model and 3D-printed parts reveal trends in the mechanical response of the icosahedron, which is constructed from tiled-chiral elements. The chiral elements rotate as the icosahedron expands and we deduce that it allows the BMC to open gates for transmembrane passage of materials.


Asunto(s)
Impresión Tridimensional , Simulación de Dinámica Molecular , Modelos Moleculares , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Análisis de Elementos Finitos , Proteínas/química , Proteínas/metabolismo
15.
Nat Commun ; 15(1): 6950, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138159

RESUMEN

Microbial ion-pumping rhodopsins (MRs) are extensively studied retinal-binding membrane proteins. However, their biogenesis, including oligomerisation and retinal incorporation, remains poorly understood. The bacterial green-light absorbing proton pump proteorhodopsin (GPR) has emerged as a model protein for MRs and is used here to address these open questions using cryo-electron microscopy (cryo-EM) and molecular dynamics (MD) simulations. Specifically, conflicting studies regarding GPR stoichiometry reported pentamer and hexamer mixtures without providing possible assembly mechanisms. We report the pentameric and hexameric cryo-EM structures of a GPR mutant, uncovering the role of the unprocessed N-terminal signal peptide in the assembly of hexameric GPR. Furthermore, certain proteorhodopsin-expressing bacteria lack retinal biosynthesis pathways, suggesting that they scavenge the cofactor from their environment. We shed light on this hypothesis by solving the cryo-EM structure of retinal-free proteoopsin, which together with mass spectrometry and MD simulations suggests that decanoate serves as a temporary placeholder for retinal in the chromophore binding pocket. Further MD simulations elucidate possible pathways for the exchange of decanoate and retinal, offering a mechanism for retinal scavenging. Collectively, our findings provide insights into the biogenesis of MRs, including their oligomeric assembly, variations in protomer stoichiometry and retinal incorporation through a potential cofactor scavenging mechanism.


Asunto(s)
Microscopía por Crioelectrón , Simulación de Dinámica Molecular , Retinaldehído , Rodopsinas Microbianas , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Retinaldehído/metabolismo , Retinaldehído/química , Multimerización de Proteína , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Conformación Proteica
16.
Proc Natl Acad Sci U S A ; 121(34): e2400267121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39136990

RESUMEN

The fusion of hydrogenases and photosynthetic reaction centers (RCs) has proven to be a promising strategy for the production of sustainable biofuels. Type I (iron-sulfur-containing) RCs, acting as photosensitizers, are capable of promoting electrons to a redox state that can be exploited by hydrogenases for the reduction of protons to dihydrogen (H2). While both [FeFe] and [NiFe] hydrogenases have been used successfully, they tend to be limited due to either O2 sensitivity, binding specificity, or H2 production rates. In this study, we fuse a peripheral (stromal) subunit of Photosystem I (PS I), PsaE, to an O2-tolerant [FeFe] hydrogenase from Clostridium beijerinckii using a flexible [GGS]4 linker group (CbHydA1-PsaE). We demonstrate that the CbHydA1 chimera can be synthetically activated in vitro to show bidirectional activity and that it can be quantitatively bound to a PS I variant lacking the PsaE subunit. When illuminated in an anaerobic environment, the nanoconstruct generates H2 at a rate of 84.9 ± 3.1 µmol H2 mgchl-1 h-1. Further, when prepared and illuminated in the presence of O2, the nanoconstruct retains the ability to generate H2, though at a diminished rate of 2.2 ± 0.5 µmol H2 mgchl-1 h-1. This demonstrates not only that PsaE is a promising scaffold for PS I-based nanoconstructs, but the use of an O2-tolerant [FeFe] hydrogenase opens the possibility for an in vivo H2 generating system that can function in the presence of O2.


Asunto(s)
Hidrógeno , Hidrogenasas , Luz , Oxígeno , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/química , Hidrogenasas/metabolismo , Hidrogenasas/química , Hidrógeno/metabolismo , Oxígeno/metabolismo , Oxígeno/química , Clostridium beijerinckii/metabolismo , Clostridium beijerinckii/genética , Oxidación-Reducción , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Fotosíntesis
17.
PLoS One ; 19(8): e0307512, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39093838

RESUMEN

The multifunctional autoprocessing repeat-in-toxin (MARTX) toxin is the primary virulence factor of Vibrio vulnificus displaying cytotoxic and hemolytic properties. The cysteine protease domain (CPD) is responsible for activating the MARTX toxin by cleaving the toxin precursor and releasing the mature toxin fragments. To investigate the structural determinants for inositol hexakisphosphate (InsP6)-mediated activation of the CPD, we determined the crystal structures of unprocessed and ß-flap truncated MARTX CPDs of Vibrio vulnificus strain MO6-24/O in complex with InsP6 at 1.3 and 2.2Å resolution, respectively. The CPD displays a conserved domain with a central seven-stranded ß-sheet flanked by three α-helices. The scissile bond Leu3587-Ala3588 is bound in the catalytic site of the InsP6-loaded form of the Cys3727Ala mutant. InsP6 interacts with the conserved basic cleft and the ß-flap inducing the active conformation of catalytic residues. The ß-flap of the post-CPD is flexible in the InsP6-unbound state. The structure of the CPD Δß-flap showed an inactive conformation of the catalytic residues due to the absence of interaction between the active site and the ß-flap. This study confirms the InsP6-mediated activation of the MARTX CPDs in which InsP6-binding induces conformational changes of the catalytic residues and the ß-flap that holds the N terminus of the CPD in the active site, facilitating hydrolysis of the scissile bond.


Asunto(s)
Ácido Fítico , Vibrio vulnificus , Vibrio vulnificus/enzimología , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo , Ácido Fítico/metabolismo , Dominio Catalítico , Proteasas de Cisteína/metabolismo , Proteasas de Cisteína/química , Proteasas de Cisteína/genética , Cristalografía por Rayos X , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Dominios Proteicos , Modelos Moleculares , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Secuencia de Aminoácidos
18.
Commun Biol ; 7(1): 942, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097633

RESUMEN

Quorum sensing (QS) is a mechanism that regulates group behavior in bacteria, and in Gram-positive bacteria, the communication molecules are often cyclic peptides, called autoinducing peptides (AIPs). We recently showed that pentameric thiolactone-containing AIPs from Listeria monocytogenes, and from other species, spontaneously undergo rapid rearrangement to homodetic cyclopeptides, which hampers our ability to study the activity of these short-lived compounds. Here, we developed chemically modified analogues that closely mimic the native AIPs while remaining structurally intact, by introducing N-methylation or thioester-to-thioether substitutions. The stabilized AIP analogues exhibit strong QS agonism in L. monocytogenes and allow structure-activity relationships to be studied. Our data provide evidence to suggest that the most potent AIP is in fact the very short-lived thiolactone-containing pentamer. Further, we find that the QS system in L. monocytogenes is more promiscuous with respect to the structural diversity allowed for agonistic AIPs than reported for the more extensively studied QS systems in Staphylococcus aureus and Staphylococcus epidermidis. The developed compounds will be important for uncovering the biology of L. monocytogenes, and the design principles should be broadly applicable to the study of AIPs in other species.


Asunto(s)
Listeria monocytogenes , Percepción de Quorum , Listeria monocytogenes/fisiología , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/química , Relación Estructura-Actividad , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Transducción de Señal
19.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39101501

RESUMEN

Engineering enzyme-substrate binding pockets is the most efficient approach for modifying catalytic activity, but is limited if the substrate binding sites are indistinct. Here, we developed a 3D convolutional neural network for predicting protein-ligand binding sites. The network was integrated by DenseNet, UNet, and self-attention for extracting features and recovering sample size. We attempted to enlarge the dataset by data augmentation, and the model achieved success rates of 48.4%, 35.5%, and 43.6% at a precision of ≥50% and 52%, 47.6%, and 58.1%. The distance of predicted and real center is ≤4 Å, which is based on SC6K, COACH420, and BU48 validation datasets. The substrate binding sites of Klebsiella variicola acid phosphatase (KvAP) and Bacillus anthracis proline 4-hydroxylase (BaP4H) were predicted using DUnet, showing high competitive performance of 53.8% and 56% of the predicted binding sites that critically affected the catalysis of KvAP and BaP4H. Virtual saturation mutagenesis was applied based on the predicted binding sites of KvAP, and the top-ranked 10 single mutations contributed to stronger enzyme-substrate binding varied while the predicted sites were different. The advantage of DUnet for predicting key residues responsible for enzyme activity further promoted the success rate of virtual mutagenesis. This study highlighted the significance of correctly predicting key binding sites for enzyme engineering.


Asunto(s)
Aprendizaje Automático , Sitios de Unión , Ingeniería de Proteínas/métodos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fosfatasa Ácida/química , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Especificidad por Sustrato , Bacillus anthracis/genética , Bacillus anthracis/enzimología , Klebsiella/genética , Klebsiella/enzimología , Ligandos , Unión Proteica , Modelos Moleculares , Redes Neurales de la Computación
20.
Molecules ; 29(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124879

RESUMEN

Flavin-containing monooxygenase from Methylophaga sp. (mFMO) was previously discovered to be a valuable biocatalyst used to convert small amines, such as trimethylamine, and various indoles. As FMOs are also known to act on sulfides, we explored mFMO and some mutants thereof for their ability to convert prochiral aromatic sulfides. We included a newly identified thermostable FMO obtained from the bacterium Nitrincola lacisaponensis (NiFMO). The FMOs were found to be active with most tested sulfides, forming chiral sulfoxides with moderate-to-high enantioselectivity. Each enzyme variant exhibited a different enantioselective behavior. This shows that small changes in the substrate binding pocket of mFMO influence selectivity, representing a tunable biocatalyst for enantioselective sulfoxidations.


Asunto(s)
Oxigenasas , Oxigenasas/metabolismo , Oxigenasas/química , Especificidad por Sustrato , Biocatálisis , Oxidación-Reducción , Sulfuros/metabolismo , Sulfuros/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sulfóxidos/química , Sulfóxidos/metabolismo , Catálisis , Flavinas/metabolismo , Flavinas/química , Estereoisomerismo , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA