Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.319
1.
Biomed Pharmacother ; 176: 116858, 2024 Jul.
Article En | MEDLINE | ID: mdl-38850669

The roles and mechanisms of A-kinase anchoring protein 1 (AKAP1) in vascular smooth muscle cell (VSMC) phenotypic modulation and neointima formation are currently unknown. AKAP1 is a mitochondrial PKA-anchored protein and maintains mitochondrial homeostasis. This study aimed to investigate how AKAP1/PKA signaling plays a protective role in inhibiting VSMC phenotypic transformation and neointima formation by regulating mitochondrial fission. The results showed that both PDGF-BB treatment and balloon injury reduced the transcription, expression, and mitochondrial anchoring of AKAP1. In vitro, the overexpression of AKAP1 significantly inhibited PDGF-BB mediated VSMC proliferation and migration, whereas AKAP1 knockdown further aggravated VSMC phenotypic transformation. Additionally, in the balloon injury model in vivo, AKAP1 overexpression reduced neointima formation, the muscle fiber area ratio, and rat VSMC proliferation and migration. Furthermore, PDGF-BB and balloon injury inhibited Drp1 phosphorylation at Ser637 and promoted Drp1 activity and mitochondrial midzone fission; AKAP1 overexpression reversed these effects. AKAP1 overexpression also inhibited the distribution of mitochondria at the plasma membrane and the reduction of PKARIIß expression induced by PDGF-BB, as evidenced by an increase in mitochondria-plasma membrane distance as well as PKARIIß protein levels. Moreover, the PKA agonist promoted Drp1 phosphorylation (Ser637) and inhibited PDGF-BB-mediated mitochondrial fission, cell proliferation, and migration. The PKA antagonist reversed the increase in Drp1 phosphorylation (Ser637) and the decline in mitochondrial midzone fission and VSMC phenotypic transformation caused by AKAP1 overexpression. The results of this study reveal that AKAP1 protects VSMCs against phenotypic modulation by improving Drp1 phosphorylation at Ser637 through PKA and inhibiting mitochondrial fission, thereby preventing neointima formation.


A Kinase Anchor Proteins , Cell Proliferation , Dynamins , Mitochondrial Dynamics , Muscle, Smooth, Vascular , Neointima , Phenotype , Rats, Sprague-Dawley , Animals , A Kinase Anchor Proteins/metabolism , A Kinase Anchor Proteins/genetics , Mitochondrial Dynamics/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Neointima/metabolism , Neointima/pathology , Dynamins/metabolism , Cell Proliferation/drug effects , Male , Rats , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Becaplermin/pharmacology , Cell Movement/drug effects , Signal Transduction , Cyclic AMP-Dependent Protein Kinases/metabolism , Phosphorylation , Cells, Cultured
2.
Int Heart J ; 65(3): 557-565, 2024.
Article En | MEDLINE | ID: mdl-38825498

When stimulated, vascular smooth muscle cells (VSMCs) change from a differentiated to a dedifferentiated phenotype. Dedifferentiated VSMCs have a key activity in cardiovascular diseases such as in-stent restenosis. MicroRNAs (miRNAs) have crucial functions in conversion of differentiated VSMCs to a dedifferentiated phenotype. We investigated the activity of miR-411-5p in the proliferation, migration, and phenotype switch of rat VSMCs.Based on a microRNA array assay, miR-411-5p expression was found to be significantly increased in cultured VSMCs stimulated by platelet-derived growth factor-BB (PDGF-BB). A CCK-8 assay, transwell assay, and scratch test were performed to measure the effect of miR-411-5p on the proliferation and migration of PDGF-BB-treated VSMCs. MiR-411-5p promoted expression of dedifferentiated phenotype markers such as osteopontin and tropomyosin 4 in PDGF-BB-treated VSMCs. Using mimics and inhibitors, we identified the target of miR-411-5p in PDGF-BB-treated VSMCs and found that calmodulin-regulated spectrin-associated protein-1 (CAMSAP1) was involved in the phenotypic switch mediated by PDGF-BB.By inhibiting expression of CAMSAP1, miR-411-5p enhanced the proliferation, migration, and phenotype switch of VSMCs.Blockade of miR-411-5p interaction with CAMSAP1 is a promising approach to treat in-stent restenosis.


Becaplermin , Cell Movement , Cell Proliferation , MicroRNAs , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phenotype , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Rats , Becaplermin/pharmacology , Cells, Cultured , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Rats, Sprague-Dawley , Male , Osteopontin/metabolism , Osteopontin/genetics
3.
BMC Oral Health ; 24(1): 527, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702671

BACKGROUND: This study aimed to assess and compare the concentrations of growth factors, white blood cells (WBCs), and platelets in injectable platelet-rich fibrin (i-PRF) derived from people with healthy periodontal conditions and those with chronic periodontitis. METHODS: Venous blood samples were obtained from 30 patients diagnosed with chronic periodontitis (test group) and 30 participants with healthy periodontal conditions (control group). The i-PRF was then acquired from centrifuged blood. The growth factors (VEGF, IGF-1, TGF-ß1, PDGF-BB and EGF) released from the i-PRF samples were compared between groups with ELISA testing. The amounts of WBCs and platelets were also compared. RESULTS: No significant differences in the concentrations of growth factors were found between the groups (the mean values for the control and test groups were, respectively: IGF: 38.82, 42.46; PDGF: 414.25, 466.28; VEGF: 375.69, 412.18; TGF-ß1: 21.50, 26.21; EGF: 138.62, 154.82). The test group exhibited a significantly higher WBC count than the control group (8.80 vs. 6.60, respectively). However, the platelet count did not show a statistically significant difference between the groups (control group 242.0 vs. test group 262.50). No significant correlation was observed between WBC count and growth factor level in either group. CONCLUSIONS: The growth factor levels in i-PRFs did not exhibit significant difference between the two groups. This suggests that the levels of these growth factors may be unaffected by the periodontal disease.


Chronic Periodontitis , Insulin-Like Growth Factor I , Intercellular Signaling Peptides and Proteins , Platelet-Rich Fibrin , Transforming Growth Factor beta1 , Vascular Endothelial Growth Factor A , Humans , Chronic Periodontitis/blood , Pilot Projects , Male , Female , Adult , Middle Aged , Vascular Endothelial Growth Factor A/blood , Insulin-Like Growth Factor I/analysis , Intercellular Signaling Peptides and Proteins/blood , Intercellular Signaling Peptides and Proteins/analysis , Transforming Growth Factor beta1/blood , Epidermal Growth Factor/blood , Epidermal Growth Factor/analysis , Leukocyte Count , Becaplermin/blood , Case-Control Studies , Blood Platelets/metabolism , Injections
4.
Clin Exp Dent Res ; 10(3): e908, 2024 Jun.
Article En | MEDLINE | ID: mdl-38798052

OBJECTIVE: Periodontitis is an inflammatory condition induced by subgingival bacterial dysbiosis, resulting in inflammatory-mediated destruction of tooth-supporting structures, potentially leading to the formation of infrabony defects. This case report describes the treatment of a patient who presented with a combination 1-2-wall defect on tooth 21. To maintain the residual periodontal attachment and minimize esthetic consequences, a regenerative approach was performed using recombinant human platelet-derived growth factor-BB (rh-PDGF-BB) and ß-tricalcium phosphate (ß-TCP). MATERIALS AND METHODS: At the time of postscaling/root planing reevaluation, a 34-year-old Asian male initially diagnosed with molar/incisor pattern stage III grade C periodontitis exhibited a 6-mm residual probing depth on the mesiopalatal aspect of tooth 21. Periodontal regenerative surgery was performed using rh-PDGF-BB with ß-TCP, without the use of a membrane. RESULTS: At the 1-year follow-up, a significant reduction in probing depth and radiographic evidence of bone fill were observed. Additionally, re-entry surgery for implant placement at site tooth 23 confirmed bone fill in the defect on tooth 21. CONCLUSION: These results demonstrate the efficacy of rh-PDGF-BB with ß-TCP in enhancing periodontal regeneration and support its use as a treatment option when treating poorly contained infrabony defects in the esthetic zone.


Becaplermin , Calcium Phosphates , Guided Tissue Regeneration, Periodontal , Humans , Male , Calcium Phosphates/therapeutic use , Adult , Becaplermin/therapeutic use , Guided Tissue Regeneration, Periodontal/methods , Recombinant Proteins/therapeutic use , Recombinant Proteins/administration & dosage , Alveolar Bone Loss/surgery , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/pathology , Periodontitis/surgery , Periodontitis/drug therapy , Proto-Oncogene Proteins c-sis/therapeutic use , Bone Regeneration/drug effects , Esthetics, Dental
5.
Phytomedicine ; 130: 155704, 2024 Jul 25.
Article En | MEDLINE | ID: mdl-38759316

BACKGROUND: Dysregulation of vascular smooth muscle cell (VSMC) function leads to a variety of diseases such as atherosclerosis and hyperplasia after injury. However, antiproliferative drug targeting VSMC exhibits poor specificity. Therefore, there is an urgent to develop highly specific antiproliferative drugs to prevention and treatment VSMC dedifferentiation associated arteriosclerosis. Kanglexin (KLX), a new anthraquinone compound designed by our team, has potential to regulate VSMC phenotype according to the physicochemical properties. PURPOSE: This project aims to evaluate the therapeutic role of KLX in VSMC dedifferentiation and atherosclerosis, neointimal formation and illustrates the underlying molecular mechanism. METHODS: In vivo, the ApoE-/- mice were fed with high-fat diet (HFD) for a duration of 13 weeks to establish the atherosclerotic model. And rat carotid artery injury model was performed to establish the neointimal formation model. In vitro, PDGF-BB was used to induce VSMC dedifferentiation. RESULTS: We found that KLX ameliorated the atherosclerotic progression including atherosclerotic lesion formation, lipid deposition and collagen deposition in aorta and aortic sinus in atherosclerotic mouse model. In addition, The administration of KLX effectively ameliorated neointimal formation in the carotid artery following balloon injury in SD rats. The findings derived from molecular docking and surface plasmon resonance (SPR) experiments unequivocally demonstrate that KLX had potential to bind PDGFR-ß. Mechanism research work proved that KLX prevented VSMC proliferation, migration and dedifferentiation via activating the PDGFR-ß-MEK -ERK-ELK-1/KLF4 signaling pathway. CONCLUSION: Collectively, we demonstrated that KLX effectively attenuated the progression of atherosclerosis in ApoE-/- mice and carotid arterial neointimal formation in SD rats by inhibiting VSMC phenotypic conversion via PDGFR-ß-MEK-ERK-ELK-1/KLF4 signaling. KLX exhibits promising potential as a viable therapeutic agent for the treatment of VSMC phenotype conversion associated arteriosclerosis.


Cell Dedifferentiation , Kruppel-Like Factor 4 , Muscle, Smooth, Vascular , Neointima , Rats, Sprague-Dawley , Animals , Cell Dedifferentiation/drug effects , Muscle, Smooth, Vascular/drug effects , Male , Mice , Neointima/drug therapy , Rats , Anthraquinones/pharmacology , Atherosclerosis/drug therapy , Myocytes, Smooth Muscle/drug effects , Arteriosclerosis/drug therapy , Arteriosclerosis/prevention & control , Disease Models, Animal , Signal Transduction/drug effects , Diet, High-Fat , Mice, Inbred C57BL , Kruppel-Like Transcription Factors/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Molecular Docking Simulation , Cell Proliferation/drug effects , Carotid Artery Injuries/drug therapy , Becaplermin/pharmacology
6.
Chem Biol Interact ; 396: 111045, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38729283

Orbital connective tissue changes are contributors to the pathogenesis in thyroid eye disease (TED). Activated fibroblasts respond to immune stimuli with proliferation and increased hyaluronan (HA) production. Cyclosporin A (CsA) was reported to be beneficial in the treatment of TED. PDGF isoforms are increased in orbital tissue of TED patients and enhance HA production. We aimed to study the effect of CsA on HA production and hyaluronan synthase (HAS1, 2 and 3) and hyaluronidase (HYAL1 and 2) mRNA expressions in orbital fibroblasts (OFs). Measurements were performed in the presence or absence of CsA (10 µM) in unstimulated or PDGF-BB (10 ng/ml) stimulated OFs. The HA production of TED OFs (n = 7) and NON-TED OFs (n = 6) were measured by ELISA. The levels of mRNA expressions were examined using RT-PCR. The proliferation rate and metabolic activity were measured by BrdU incorporation and MTT assays, respectively. Treatment with CsA resulted in an average 42% decrease in HA production of OFs (p < 0.0001). CsA decreased the expression levels of HAS2, HAS3 and HYAL2 (p = 0.005, p = 0.005 and p = 0.002, respectively.) PDGF-BB increased HA production (p < 0.001) and HAS2 expression (p = 0.004). CsA could reduce the PDGF-BB-stimulated HA production (p < 0.001) and HAS2 expression (p = 0.005) below the untreated level. In addition, CsA treatment caused a decrease in proliferation potential (p = 0.002) and metabolic activity (p < 0.0001). These findings point to the fact that CsA affects HA metabolism via HAS2, HAS3 and HYAL2 inhibition in OFs. In addition to its well characterized immunosuppressant properties, CsA's beneficial effect in TED may be related to its direct inhibitory effect on basal and growth factor stimulated HA production.


Becaplermin , Cell Proliferation , Cyclosporine , Fibroblasts , Glucuronosyltransferase , Graves Ophthalmopathy , Hyaluronan Synthases , Hyaluronic Acid , Hyaluronoglucosaminidase , Proto-Oncogene Proteins c-sis , Hyaluronic Acid/biosynthesis , Hyaluronic Acid/pharmacology , Humans , Becaplermin/metabolism , Becaplermin/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Hyaluronan Synthases/metabolism , Hyaluronan Synthases/genetics , Cyclosporine/pharmacology , Hyaluronoglucosaminidase/metabolism , Hyaluronoglucosaminidase/antagonists & inhibitors , Cell Proliferation/drug effects , Proto-Oncogene Proteins c-sis/metabolism , Glucuronosyltransferase/metabolism , Glucuronosyltransferase/genetics , Graves Ophthalmopathy/metabolism , Graves Ophthalmopathy/pathology , Graves Ophthalmopathy/drug therapy , Cells, Cultured , Orbit/metabolism , Orbit/drug effects , Orbit/pathology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Cell Adhesion Molecules/metabolism , GPI-Linked Proteins
7.
Sci Rep ; 14(1): 7947, 2024 04 04.
Article En | MEDLINE | ID: mdl-38575707

Graves' ophthalmopathy (GO) is an extra-thyroidal complication of Graves' disease which can lead to vision loss in severe cases. Currently, treatments of GO are not sufficiently effective, so novel therapeutic strategies are needed. As platelet-derived growth factor (PDGF)-BB induces several effector mechanisms in GO orbital fibroblasts including cytokine production and myofibroblast activation, this study aims to investigate the roles of histone lysine methyltransferases (HKMTs) in PDGF-BB-activated GO orbital fibroblasts by screening with HKMTs inhibitors library. From the total of twelve selective HKMT inhibitors in the library, EZH2, G9a and DOT1L inhibitors, DZNeP, BIX01294 and Pinometostat, respectively, prevented PDGF-BB-induced proliferation and hyaluronan production by GO orbital fibroblasts. However, only EZH2 inhibitor, DZNeP, significantly blocked pro-inflammatory cytokine production. For the HKMTs expression in GO orbital fibroblasts, PDGF-BB significantly and time-dependently induced EZH2, G9a and DOT1L mRNA expression. To confirm the role of EZH2 in PDGF-BB-induced orbital fibroblast activation, EZH2 silencing experiments revealed suppression of PDGF-BB-induced collagen type I and α-SMA expression along with decreasing histone H3 lysine 27 trimethylation (H3K27me3) level. In a more clinically relevant model than orbital fibroblast culture experiments, DZNeP treated GO orbital tissues significantly reduced pro-inflammatory cytokine production while slightly reduced ACTA2 mRNA expression. Our data is the first to demonstrate that among all HKMTs EZH2 dominantly involved in the expression of myofibroblast markers in PDGF-BB-activated orbital fibroblast from GO presumably via H3K27me3. Thus, EZH2 may represent a novel therapeutics target for GO.


Graves Ophthalmopathy , Histones , Humans , Becaplermin/metabolism , Proto-Oncogene Proteins c-sis/genetics , Histone Methyltransferases/metabolism , Histones/metabolism , Lysine/metabolism , Orbit/pathology , Graves Ophthalmopathy/metabolism , Cytokines/metabolism , Fibroblasts/metabolism , RNA, Messenger/genetics , Cells, Cultured , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism
8.
Cell Mol Biol Lett ; 29(1): 47, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589823

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in vascular smooth muscle cell (VSMC) phenotypic switching, which is an early pathogenic event in various vascular remodeling diseases (VRDs). However, the underlying mechanism is not fully understood. METHODS: An IP‒LC‒MS/MS assay was conducted to identify new binding partners of G6PD involved in the regulation of VSMC phenotypic switching under platelet-derived growth factor-BB (PDGF-BB) stimulation. Co-IP, GST pull-down, and immunofluorescence colocalization were employed to clarify the interaction between G6PD and voltage-dependent anion-selective channel protein 1 (VDAC1). The molecular mechanisms involved were elucidated by examining the interaction between VDAC1 and apoptosis-related biomarkers, as well as the oligomerization state of VDAC1. RESULTS: The G6PD level was significantly elevated and positively correlated with the synthetic characteristics of VSMCs induced by PDGF-BB. We identified VDAC1 as a novel G6PD-interacting molecule essential for apoptosis. Specifically, the G6PD-NTD region was found to predominantly contribute to this interaction. G6PD promotes VSMC survival and accelerates vascular neointimal hyperplasia by inhibiting VSMC apoptosis. Mechanistically, G6PD interacts with VDAC1 upon stimulation with PDGF-BB. By competing with Bax for VDAC1 binding, G6PD reduces VDAC1 oligomerization and counteracts VDAC1-Bax-mediated apoptosis, thereby accelerating neointimal hyperplasia. CONCLUSION: Our study showed that the G6PD-VDAC1-Bax axis is a vital switch in VSMC apoptosis and is essential for VSMC phenotypic switching and neointimal hyperplasia, providing mechanistic insight into early VRDs.


Glucosephosphate Dehydrogenase , Muscle, Smooth, Vascular , Voltage-Dependent Anion Channel 1 , Humans , Hyperplasia/metabolism , Hyperplasia/pathology , Becaplermin/genetics , Becaplermin/metabolism , Cell Proliferation , bcl-2-Associated X Protein/metabolism , Glucosephosphate Dehydrogenase/metabolism , Muscle, Smooth, Vascular/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Neointima/genetics , Neointima/metabolism , Neointima/pathology , Apoptosis , Myocytes, Smooth Muscle/metabolism , Cell Movement/genetics , Cells, Cultured , Phenotype
9.
World J Gastroenterol ; 30(15): 2143-2154, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38681990

BACKGROUND: Liver fibrosis is a compensatory response during the tissue repair process in chronic liver injury, and finally leads to liver cirrhosis or even hepatocellular carcinoma. The pathogenesis of hepatic fibrosis is associated with the progressive accumulation of activated hepatic stellate cells (HSCs), which can transdifferentiate into myofibroblasts to produce an excess of the extracellular matrix (ECM). Myofibroblasts are the main source of the excessive ECM responsible for hepatic fibrosis. Therefore, activated hepatic stellate cells (aHSCs), the principal ECM producing cells in the injured liver, are a promising therapeutic target for the treatment of hepatic fibrosis. AIM: To explore the effect of taurine on aHSC proliferation and the mechanisms involved. METHODS: Human HSCs (LX-2) were randomly divided into five groups: Normal control group, platelet-derived growth factor-BB (PDGF-BB) (20 ng/mL) treated group, and low, medium, and high dosage of taurine (10 mmol/L, 50 mmol/L, and 100 mmol/L, respectively) with PDGF-BB (20 ng/mL) treated group. Cell Counting Kit-8 method was performed to evaluate the effect of taurine on the viability of aHSCs. Enzyme-linked immunosorbent assay was used to estimate the effect of taurine on the levels of reactive oxygen species (ROS), malondialdehyde, glutathione, and iron concentration. Transmission electron microscopy was applied to observe the effect of taurine on the autophagosomes and ferroptosis features in aHSCs. Quantitative real-time polymerase chain reaction and Western blot analysis were performed to detect the effect of taurine on the expression of α-SMA, Collagen I, Fibronectin 1, LC3B, ATG5, Beclin 1, PTGS2, SLC7A11, and p62. RESULTS: Taurine promoted the death of aHSCs and reduced the deposition of the ECM. Treatment with taurine could alleviate autophagy in HSCs to inhibit their activation, by decreasing autophagosome formation, downregulating LC3B and Beclin 1 protein expression, and upregulating p62 protein expression. Meanwhile, treatment with taurine triggered ferroptosis and ferritinophagy to eliminate aHSCs characterized by iron overload, lipid ROS accumulation, glutathione depletion, and lipid peroxidation. Furthermore, bioinformatics analysis demonstrated that taurine had a direct targeting effect on nuclear receptor coactivator 4, exhibiting the best average binding affinity of -20.99 kcal/mol. CONCLUSION: Taurine exerts therapeutic effects on liver fibrosis via mechanisms that involve inhibition of autophagy and trigger of ferroptosis and ferritinophagy in HSCs to eliminate aHSCs.


Autophagy , Cell Proliferation , Ferroptosis , Hepatic Stellate Cells , Liver Cirrhosis , Reactive Oxygen Species , Taurine , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Humans , Autophagy/drug effects , Taurine/pharmacology , Ferroptosis/drug effects , Liver Cirrhosis/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Becaplermin/pharmacology , Becaplermin/metabolism , Cell Line , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Myofibroblasts/pathology , Cell Survival/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Signal Transduction/drug effects
10.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38612456

Platelets are actively involved in tissue injury site regeneration by producing a wide spectrum of platelet-derived growth factors such as PDGF (platelet-derived growth factor), IGF-1 (insulin-like growth factor), TGF-ß1 (transforming growth factor ß), FGF (fibroblast growth factor), etc. A rotating magnetic field (RMF) can regulate biological functions, including reduction or induction regarding inflammatory processes, cell differentiation, and gene expression, to determine the effect of an RMF on the regenerative potential of platelets. The study group consisted of 30 healthy female and male volunteers (n = 15), from which plasma was collected. A portion of the plasma was extracted and treated as an internal control group. Subsequent doses of plasma were exposed to RMF at different frequencies (25 and 50 Hz) for 1 and 3 h. Then, the concentrations of growth factors (IGF-1, PDGF-BB, TGF-ß1, and FGF-1) were determined in the obtained material by the ELISA method. There were statistically significant differences in the PDGF-BB, TGF-ß1, IGF-1, and FGF-1 concentrations between the analyzed groups. The highest concentration of PDGF-BB was observed in the samples placed in RMF for 1 h at 25 Hz. For TGF-ß1, the highest concentrations were obtained in the samples exposed to RMF for 3 h at 25 Hz and 1 h at 50 Hz. The highest concentrations of IGF-1 and FGF-1 were shown in plasma placed in RMF for 3 h at 25 Hz. An RMF may increase the regenerative potential of platelets. It was noted that female platelets may respond more strongly to RMF than male platelets.


Fibroblast Growth Factor 1 , Insulin-Like Growth Factor I , Humans , Female , Male , Becaplermin , Transforming Growth Factor beta1 , Fibroblast Growth Factors , Platelet-Derived Growth Factor , Magnetic Fields
11.
Anal Chem ; 96(17): 6692-6699, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38632948

The antibodies in the natural biological world utilize bivalency/multivalency to achieve a higher affinity for antigen capture. However, mimicking this mechanism on the electrochemical sensing interface and enhancing biological affinity through precise spatial arrangement of bivalent aptamer probes still pose a challenge. In this study, we have developed a novel self-assembly layer (SAM) incorporating triblock polyA DNA to enable accurate organization of the aptamer probes on the interface, constructing a "lock-and-key-like" proximity hybridization assay (PHA) biosensor. The polyA fragment acts as an anchoring block with a strong affinity for the gold surface. Importantly, it connects the two DNA probes, facilitating one-to-one spatial proximity and enabling a controllable surface arrangement. By precisely adjusting the length of the polyA fragment, we can tailor the distance between the probes to match the molecular dimensions of the target protein. This design effectively enhances the affinity of the aptamers. Notably, our biosensor demonstrates exceptional specificity and sensitivity in detecting PDGF-BB, as confirmed through successful validation using human serum samples. Overall, our biosensor presents a novel and versatile interface for proximity assays, offering a significantly improved surface arrangement and detection performance.


Aptamers, Nucleotide , Becaplermin , Biosensing Techniques , Nucleic Acid Hybridization , Poly A , Biosensing Techniques/methods , Humans , Aptamers, Nucleotide/chemistry , Becaplermin/blood , Poly A/chemistry , Gold/chemistry , DNA Probes/chemistry
12.
J Neuroinflammation ; 21(1): 111, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685040

BACKGROUND: It is well known that high-fat diet (HFD)-induced metabolic syndrome plays a crucial role in cognitive decline and brain-blood barrier (BBB) breakdown. However, whether the bone-brain axis participates in this pathological process remains unknown. Here, we report that platelet-derived growth factor-BB (PDGF-BB) secretion by preosteoclasts in the bone accelerates neuroinflammation. The expression of alkaline phosphatase (ALPL), a nonspecific transcytosis marker, was upregulated during HFD challenge. MAIN BODY: Preosteoclast-specific Pdgfb transgenic mice with high PDGF-BB concentrations in the circulation recapitulated the HFD-induced neuroinflammation and transcytosis shift. Preosteoclast-specific Pdgfb knockout mice were partially rescued from hippocampal neuroinflammation and transcytosis shifts in HFD-challenged mice. HFD-induced PDGF-BB elevation aggravated microglia-associated neuroinflammation and interleukin-1ß (IL-1ß) secretion, which increased ALPL expression and transcytosis shift through enhancing protein 1 (SP1) translocation in endothelial cells. CONCLUSION: Our findings confirm the role of bone-secreted PDGF-BB in neuroinflammation and the transcytosis shift in the hippocampal region during HFD challenge and identify a novel mechanism of microglia-endothelial crosstalk in HFD-induced metabolic syndrome.


Becaplermin , Diet, High-Fat , Endothelial Cells , Hippocampus , Metabolic Syndrome , Microglia , Transcytosis , Animals , Mice , Becaplermin/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Transcytosis/physiology , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Microglia/metabolism , Microglia/pathology , Diet, High-Fat/adverse effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Mice, Transgenic , Mice, Inbred C57BL , Mice, Knockout , Male , Bone and Bones/metabolism , Bone and Bones/pathology
13.
Phytomedicine ; 129: 155639, 2024 Jul.
Article En | MEDLINE | ID: mdl-38669966

BACKGROUND: Cerebral microcirculation disturbance manifested by decrease of cerebral blood flow (CBF) is one of early features of Alzheimer's disease (AD). Shenqi Yizhi prescription (SQYZ) is widely used in the treatment of AD. However, the effect of SQYZ on the early feature of AD is not clarified. PURPOSE: To explore the effect and mechanism of SQYZ on AD-like behavior from the perspective of early pathological features of AD. METHODS: The fingerprint of SQYZ was established by ultra-high-performance liquid chromatograph. The improvement effect of SQYZ on Aß1-42 Oligomer (AßO)-induced AD-like behavior of mice was evaluated by behavioral test. The changes of CBF were detected by laser doppler meter and laser speckle imaging. The pathological changes of the hippocampus were observed by HE staining and transmission electron microscope. The expressions of intercellular communication molecules were detected by western blotting or immunofluorescence staining. The content of platelet-derived growth factor-BB (PDGF-BB) was detected by ELISA. Finally, the core components of SQYZ were docked with platelet-derived growth factor receptor beta (PDGFRß) using AutoDock Vina software. RESULTS: The similarity of the components in SQYZ extracted from different batches of medicinal materials was higher than 0.9. SQYZ administration could improve AßO-induced memory impairment and CBF reduction. Compared with the sham group, the number of neurons in the hippocampi of AßO group was significantly reduced, and the microvessels were shrunken and deformed. By contrary, SQYZ administration mitigated those pathological changes. Compared with the sham mice, the expressions of CD31, N-cadherin, PDGFRß, glial fibrillary acidic protein, phosphorylation of focal adhesion kinase, integrin ß1, and integrin α5 in the hippocampi of AßO mice were significantly increased. However, SQYZ administration significantly reduced AßO-induced expression of those proteins. Interestingly, the effect of PDGFRß inhibitor, sunitinib demonstrated a consistent modulating effect as SQYZ. Finally, the brain-entering components of SQYZ, including ginsenoside Rg5, coptisine, cryptotanshinone, dihydrotanshinone IIA, stigmasterol, and tanshinone IIA had high binding force with PDGFRß, implicating PDGFRß as a potential target for SQYZ. CONCLUSIONS: Our data indicate that SQYZ improves CBF in AßO-triggered AD-like mice through inhibiting brain pericyte contractility, indicating the treatment potential of SQYZ for AD at the early stage.


Alzheimer Disease , Amyloid beta-Peptides , Drugs, Chinese Herbal , Hippocampus , Memory Disorders , Pericytes , Animals , Drugs, Chinese Herbal/pharmacology , Amyloid beta-Peptides/metabolism , Male , Mice , Memory Disorders/drug therapy , Memory Disorders/chemically induced , Alzheimer Disease/drug therapy , Pericytes/drug effects , Hippocampus/drug effects , Peptide Fragments , Becaplermin/pharmacology , Cerebrovascular Circulation/drug effects , Brain/drug effects , Disease Models, Animal , Ginsenosides/pharmacology
14.
Eur J Pharmacol ; 973: 176564, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38614383

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor ß and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor ß and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor ß after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor ß-STAT3 and PDGF-PDGF receptor ß-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.


Cell Movement , Cell Proliferation , Macrophages , Myocytes, Smooth Muscle , STAT3 Transcription Factor , Signal Transduction , Triterpenes , Triterpenes/pharmacology , Triterpenes/therapeutic use , Animals , Signal Transduction/drug effects , Humans , STAT3 Transcription Factor/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Rats , Macrophages/drug effects , Macrophages/metabolism , Male , Cell Movement/drug effects , Cell Proliferation/drug effects , Rats, Sprague-Dawley , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Platelet-Derived Growth Factor/metabolism , Cell Survival/drug effects , Monocrotaline , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Becaplermin/pharmacology , Vascular Remodeling/drug effects , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology
15.
Kaohsiung J Med Sci ; 40(6): 542-552, 2024 Jun.
Article En | MEDLINE | ID: mdl-38682650

Pulmonary vascular remodeling is a key pathological process of pulmonary arterial hypertension (PAH), characterized by uncontrolled proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). Bortezomib (BTZ) is the first Food and Drug Administration (FDA)-approved proteasome inhibitor for multiple myeloma treatment. Recently, there is emerging evidence showing its effect on reversing PAH, although its mechanisms are not well understood. In this study, anti-proliferative and anti-migratory effects of BTZ on PASMCs were first examined by different inducers such as fetal bovine serum (FBS), angiotensin II (Ang II) and platelet-derived growth factor (PDGF)-BB, while potential mechanisms including cellular reactive oxygen species (ROS) and mitochondrial ROS were then investigated; finally, signal transduction of ERK and Akt was examined. Our results showed that BTZ attenuated FBS-, Ang II- and PDGF-BB-induced proliferation and migration, with associated decreased cellular ROS production and mitochondrial ROS production. In addition, the phosphorylation of ERK and Akt induced by Ang II and PDGF-BB was also inhibited by BTZ treatment. This study indicates that BTZ can prevent proliferation and migration of PASMCs, which are possibly mediated by decreased ROS production and down-regulation of ERK and Akt. Thus, proteasome inhibition can be a novel pharmacological target in the management of PAH.


Bortezomib , Cell Movement , Cell Proliferation , Myocytes, Smooth Muscle , Proteasome Inhibitors , Proto-Oncogene Proteins c-akt , Pulmonary Artery , Reactive Oxygen Species , Bortezomib/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/cytology , Pulmonary Artery/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Proteasome Inhibitors/pharmacology , Animals , Proto-Oncogene Proteins c-akt/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Angiotensin II/pharmacology , Becaplermin/pharmacology , Signal Transduction/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Phosphorylation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism
16.
Front Med ; 18(3): 465-483, 2024 Jun.
Article En | MEDLINE | ID: mdl-38644399

Atherosclerosis is a chronic artery disease that causes various types of cardiovascular dysfunction. Vascular smooth muscle cells (VSMCs), the main components of atherosclerotic plaque, switch from contractile to synthetic phenotypes during atherogenesis. Ubiquitylation is crucial in regulating VSMC phenotypes in atherosclerosis, and it can be reversely regulated by deubiquitinases. However, the specific effects of deubiquitinases on atherosclerosis have not been thoroughly elucidated. In this study, RNAi screening in human aortic smooth muscle cells was performed to explore the effects of OTU family deubiquitinases, which revealed that silencing OTUB1 inhibited PDGF-BB-stimulated VSMC phenotype switch. Further in vivo studies using Apoe-/- mice revealed that knockdown of OTUB1 in VSMCs alleviated atherosclerosis plaque burden in the advanced stage and led to a stable plaque phenotype. Moreover, VSMC proliferation and migration upon PDGF-BB stimulation could be inhibited by silencing OTUB1 in vitro. Unbiased RNA-sequencing data indicated that knocking down OTUB1 influenced VSMC differentiation, adhesion, and proliferation. Mass spectrometry of ubiquitinated protein confirmed that proteins related to cell growth and migration were differentially ubiquitylated. Mechanistically, we found that OTUB1 recognized the K707 residue ubiquitylation of PDGFRß with its catalytic triad, thereby reducing the K48-linked ubiquitylation of PDGFRß. Inhibiting OTUB1 in VSMCs could promote PDGFRß degradation via the ubiquitin-proteasome pathway, so it was beneficial in preventing VSMCs' phenotype switch. These findings revealed that knocking down OTUB1 ameliorated VSMCs' phenotype switch and atherosclerosis progression, indicating that OTUB1 could be a valuable translational therapeutic target in the future.


Atherosclerosis , Cell Proliferation , Muscle, Smooth, Vascular , Receptor, Platelet-Derived Growth Factor beta , Ubiquitination , Animals , Atherosclerosis/metabolism , Atherosclerosis/genetics , Mice , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Humans , Receptor, Platelet-Derived Growth Factor beta/metabolism , Myocytes, Smooth Muscle/metabolism , Deubiquitinating Enzymes/metabolism , Cell Movement , Male , Becaplermin/pharmacology , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Mice, Inbred C57BL , Disease Models, Animal , Cells, Cultured
17.
Clin Exp Pharmacol Physiol ; 51(6): e13867, 2024 Jun.
Article En | MEDLINE | ID: mdl-38684457

Cardiovascular diseases, particularly those involving arterial stenosis and smooth muscle cell proliferation, pose significant health risks. This study aimed to investigate the therapeutic potential of curcumol in inhibiting platelet-derived growth factor-BB (PDGF-BB)-induced human aortic smooth muscle cell (HASMC) proliferation, migration and autophagy. Using cell viability assays, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays and Western Blot analyses, we observed that curcumol effectively attenuated PDGF-BB-induced HASMC proliferation and migration in a concentration-dependent manner. Furthermore, curcumol mitigated PDGF-BB-induced autophagy, as evidenced by the downregulation of LC3-II/LC3-I ratio and upregulation of P62. In vivo experiments using an arteriosclerosis obliterans model demonstrated that curcumol treatment significantly ameliorated arterial morphology and reduced stenosis. Additionally, curcumol inhibited the activity of the KLF5/COX2 axis, a key pathway in vascular diseases. These findings suggest that curcumol has the potential to serve as a multi-target therapeutic agent for vascular diseases.


Arteriosclerosis , Cell Proliferation , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Sesquiterpenes , Animals , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Humans , Rats , Arteriosclerosis/drug therapy , Arteriosclerosis/pathology , Arteriosclerosis/metabolism , Cell Proliferation/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/cytology , Male , Cell Movement/drug effects , Lower Extremity/blood supply , Autophagy/drug effects , Rats, Sprague-Dawley , Becaplermin/pharmacology
18.
J Control Release ; 370: 277-286, 2024 Jun.
Article En | MEDLINE | ID: mdl-38679161

Addressing bone defects represents a significant challenge to public health. Localized delivery of growth factor has emerged as promising approach for bone regeneration. However, the clinical application of Platelet-Derived Growth Factor (PDGF) is hindered by its high cost and short half-life. In this work, we introduce the application of PDGF-mimicking peptide (PMP1) hydrogels for calvarial defect restoration, showcasing their remarkable effectiveness. Through osteogenic differentiation assays and q-PCR analyses, we demonstrate PMP1's substantial capacity to enhance osteogenic differentiation of bone marrow mesenchymal stem cell (BMSC), leading to increased expression of crucial osteogenic genes. Further molecular mechanistic investigations reveal PMP1's activation of the PI3K-AKT-mTOR signaling pathway, a key element of its osteogenic effect. In vivo experiments utilizing a rat calvaria critical-sized defect model underscore the hydrogels' exceptional ability to accelerate new bone formation, thereby significantly advancing the restoration of calvaria defects. This research provides a promising bioactive material for bone tissue regeneration.


Becaplermin , Bone Regeneration , Cell Differentiation , Hydrogels , Mesenchymal Stem Cells , Osteogenesis , Rats, Sprague-Dawley , Skull , Animals , Hydrogels/chemistry , Skull/drug effects , Skull/injuries , Osteogenesis/drug effects , Becaplermin/administration & dosage , Bone Regeneration/drug effects , Mesenchymal Stem Cells/drug effects , Cell Differentiation/drug effects , Male , Peptides/chemistry , Peptides/administration & dosage , Peptides/pharmacology , Cells, Cultured , Rats
19.
PLoS One ; 19(3): e0300370, 2024.
Article En | MEDLINE | ID: mdl-38536827

Anti-VEGF (vascular endothelial growth factor) drugs such as aflibercept (AFL) and bevacizumab (BVZ) inhibit pathological neo-angiogenesis and vascular permeability in retinal vascular diseases. As cytokines and growth factors are produced by Müller glial cells under stressful and pathological conditions, we evaluated the in vitro effect of AFL (Eylea®, 0.5 mg/mL) and BVZ (Avastin®, 0.5 mg/mL) on cell viability/metabolism, and cytokine/growth factor production by Müller cells (MIO-M1) under cobalt chloride (CoCl2)-induced hypoxia after 24h, 48h and 72h. Cell viability/metabolism were analyzed by Trypan Blue and MTT assays and cytokine/growth factors in supernatants by Luminex xMAP-based multiplex bead-based immunoassay. Cell viability increased with AFL at 48h and 72h and decreased with BVZ or hypoxia at 24h. BVZ-treated cells showed lower cell viability than AFL at all exposure times. Cell metabolism increased with AFL but decreased with BVZ (72h) and hypoxia (48h and72h). As expected, AFL and BVZ decreased VEGF levels. AFL increased PDGF-BB, IL-6 and TNF-α (24h) and BVZ increased PDGF-BB (72h). Hypoxia reduced IL-1ß, -6, -8, TNF-α and PDGF-BB at 24h, and its suppressive effect was more prominent than AFL (EGF, PDGF-BB, IL-1ß, IL-6, IL-8, and TNF-α) and BVZ (PDGF-BB and IL-6) effects. Hypoxia increased bFGF levels at 48h and 72h, even when combined with anti-VEGFs. However, the stimulatory effect of BVZ predominated over hypoxia for IL-8 and TNF-α (24h), as well as for IL-1ß (72h). Thus, AFL and BVZ exhibit distinct exposure times effects on MIO-M1 cells viability, metabolism, and cytokines/growth factors. Hypoxia and BVZ decreased MIO-M1 cell viability/metabolism, whereas AFL likely induced gliosis. Hypoxia resulted in immunosuppression, and BVZ stimulated inflammation in hypoxic MIO-M1 cells. These findings highlight the complexity of the cellular response as well as the interplay between anti-VEGF treatments and the hypoxic microenvironment.


Ependymoglial Cells , Receptors, Vascular Endothelial Growth Factor , Recombinant Fusion Proteins , Vascular Endothelial Growth Factor A , Humans , Bevacizumab/pharmacology , Bevacizumab/metabolism , Vascular Endothelial Growth Factor A/metabolism , Ependymoglial Cells/metabolism , Cell Survival , Becaplermin/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-8/metabolism , Interleukin-6/metabolism , Vascular Endothelial Growth Factors/metabolism , Cytokines/metabolism , Hypoxia/metabolism , Neovascularization, Pathologic/pathology , Inflammation/pathology
20.
FASEB J ; 38(6): e23557, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38498343

Phenotypic switching of vascular smooth muscle cells (VSMCs) is essential for atherosclerosis development. Circular RNA (circRNA) is a specific non-coding RNA that is produced as a closed-loop structure in mammals, and its specific expression pattern is closely related to its cell type and tissue. To clarify the roles of circTLK1 in VSMC phenotypic switching, we performed qRT-PCR, immunoblotting, and immunostaining. qRT-PCR revealed that circTLK1 was upregulated in both mouse models of atherosclerosis in vivo and PDGF (platelet-derived growth factor)-BB-induced VSMCs in vitro. Furthermore, the overexpression of circTLK1 promoted PDGF-BB-induced VSMC phenotypic switching. Conversely, experiments performed in vivo demonstrate that the knockdown of SMC-specific circTLK1 led to a reduction in the development of atherosclerosis. The relationship between circTLK1 and miR-513a-3p and Krüppel-like factor 4 (KLF4) was detected by RNA immunoprecipitation (RIP), luciferase reporter assay, RNA pull-down, and RNA fluorescence in situ hybridization (RNA FISH). Mechanistically, circTLK1 acted as a sponge for miR-513a-3p, leading to the upregulation of KLF4, a key transcription factor for phenotypic switching. Targeting the circTLK1/miR-513a-3p/KLF4 axis may provide a potential therapeutic strategy for atherosclerosis.


Atherosclerosis , MicroRNAs , Mice , Animals , Muscle, Smooth, Vascular/metabolism , In Situ Hybridization, Fluorescence , Atherosclerosis/genetics , Atherosclerosis/metabolism , Becaplermin/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Myocytes, Smooth Muscle/metabolism , Cell Movement/genetics , Mammals/metabolism
...