Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Molecules ; 29(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39124942

RESUMEN

Secondary metabolites produced by fungi are well known for their biological properties, which play important roles in medicine. These metabolites aid in managing infections and treating chronic illnesses, thereby contributing substantially to human health improvement. Despite this extensive knowledge, the vast biodiversity and biosynthetic potential of fungi is still largely unexplored, highlighting the need for further research in natural products. In this review, several secondary metabolites of fungal origin are described, emphasizing novel structures and skeletons. The detection and characterization of these metabolites have been significantly facilitated by advancements in analytical systems, particularly modern hyphenated liquid chromatography/mass spectrometry. These improvements have primarily enhanced sensitivity, resolution, and analysis flow velocity. Since the in vitro production of novel metabolites is often lower than the re-isolation of known metabolites, understanding chromatin-based alterations in fungal gene expression can elucidate potential pathways for discovering new metabolites. Several protocols for inducing metabolite production from different strains are discussed, demonstrating the need for uniformity in experimental procedures to achieve consistent biosynthetic activation.


Asunto(s)
Productos Biológicos , Cromatina , Hongos , Hongos/metabolismo , Cromatina/metabolismo , Productos Biológicos/metabolismo , Metabolismo Secundario , Humanos
2.
Chem Biodivers ; 21(8): e202400668, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763894

RESUMEN

The cytochrome P450 is a superfamily of hemoproteins mainly present in the liver and are versatile biocatalysts. They participate in the primary metabolism and biosynthesis of various secondary metabolites. Chemical catalysts are utilized to replicate the activities of enzymes. Metalloporphyrins and Salen complexes can contribute to the products' characterization and elucidate biotransformation processes, which are investigated during pre-clinical trials. These catalysts also help discover biologically active compounds and get better yields of products of industrial interest. This review aims to investigate which natural product classes are being investigated by biomimetic chemical models and the functionalities applied in the use of these catalysts. A limited number of studies were observed, with terpenes and alkaloids being the most investigated natural product classes. The research also revealed that Metalloporphyrins are still the most popular in the studies, and the identity and yield of the products obtained depend on the reaction system conditions.


Asunto(s)
Productos Biológicos , Sistema Enzimático del Citocromo P-450 , Metaloporfirinas , Productos Biológicos/química , Productos Biológicos/metabolismo , Metaloporfirinas/química , Metaloporfirinas/metabolismo , Catálisis , Sistema Enzimático del Citocromo P-450/metabolismo , Etilenodiaminas/química , Biomimética , Terpenos/química , Terpenos/metabolismo , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Complejos de Coordinación/química
3.
Anal Chem ; 96(19): 7460-7469, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38702053

RESUMEN

Natural products (or specialized metabolites) are historically the main source of new drugs. However, the current drug discovery pipelines require miniaturization and speeds that are incompatible with traditional natural product research methods, especially in the early stages of the research. This article introduces the NP3 MS Workflow, a robust open-source software system for liquid chromatography-tandem mass spectrometry (LC-MS/MS) untargeted metabolomic data processing and analysis, designed to rank bioactive natural products directly from complex mixtures of compounds, such as bioactive biota samples. NP3 MS Workflow allows minimal user intervention as well as customization of each step of LC-MS/MS data processing, with diagnostic statistics to allow interpretation and optimization of LC-MS/MS data processing by the user. NP3 MS Workflow adds improved computing of the MS2 spectra in an LC-MS/MS data set and provides tools for automatic [M + H]+ ion deconvolution using fragmentation rules; chemical structural annotation against MS2 databases; and relative quantification of the precursor ions for bioactivity correlation scoring. The software will be presented with case studies and comparisons with equivalent tools currently available. NP3 MS Workflow shows a robust and useful approach to select bioactive natural products from complex mixtures, improving the set of tools available for untargeted metabolomics. It can be easily integrated into natural product-based drug-discovery pipelines and to other fields of research at the interface of chemistry and biology.


Asunto(s)
Productos Biológicos , Descubrimiento de Drogas , Metabolómica , Programas Informáticos , Espectrometría de Masas en Tándem , Productos Biológicos/química , Productos Biológicos/metabolismo , Productos Biológicos/análisis , Cromatografía Liquida/métodos , Flujo de Trabajo
4.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364306

RESUMEN

AIM: The increased availability of genome sequences has enabled the development of valuable tools for the prediction and identification of bacterial natural products. Burkholderia catarinensis 89T produces siderophores and an unknown potent antifungal metabolite. The aim of this work was to identify and purify natural products of B. catarinensis 89T through a genome-guided approach. MATERIALS AND METHODS: The analysis of B. catarinensis 89T genome revealed 16 clusters putatively related to secondary metabolism and antibiotics production. Of particular note was the identification of a nonribosomal peptide synthetase (NRPS) cluster related to the production of the siderophore ornibactin, a hybrid NRPS-polyketide synthase Type 1 cluster for the production of the antifungal glycolipopeptide burkholdine, and a gene cluster encoding homoserine lactones (HSL), probably involved in the regulation of both metabolites. We were able to purify high amounts of the ornibactin derivatives D/C6 and F/C8, while also detecting the derivative B/C4 in mass spectrometry investigations. A group of metabolites with molecular masses ranging from 1188 to 1272 Da could be detected in MS experiments, which we postulate to be new burkholdine analogs produced by B. catarinensis. The comparison of B. catarinensis BGCs with other Bcc members corroborates the hypothesis that this bacterium could produce new derivatives of these metabolites. Moreover, the quorum sensing metabolites C6-HSL, C8-HSL, and 3OH-C8-HSL were observed in LC-MS/MS analysis. CONCLUSION: The new species B. catarinensis is a potential source of new bioactive secondary metabolites. Our results highlight the importance of genome-guided purification and identification of metabolites of biotechnological importance.


Asunto(s)
4-Butirolactona/análogos & derivados , Productos Biológicos , Complejo Burkholderia cepacia , Burkholderia , Lipopéptidos , Sideróforos/metabolismo , Antifúngicos/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Burkholderia/genética , Burkholderia/metabolismo , Complejo Burkholderia cepacia/metabolismo , Productos Biológicos/metabolismo , Proteínas Bacterianas/genética
5.
Nat Prod Rep ; 41(6): 935-967, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38411238

RESUMEN

Covering: September 1964 to June 2023Bacteria and fungi living in symbiosis with insects have been studied over the last sixty years and found to be important sources of bioactive natural products. Not only classic producers of secondary metabolites such as Streptomyces and other members of the phylum Actinobacteria but also numerous bacteria from the phyla Proteobacteria and Firmicutes and an impressive array of fungi (usually pathogenic) serve as the source of a structurally diverse number of small molecules with important biological activities including antimicrobial, cytotoxic, antiparasitic and specific enzyme inhibitors. The insect niche is often the exclusive provider of microbes producing unique types of biologically active compounds such as gerumycins, pederin, dinactin, and formicamycins. However, numerous insects still have not been described taxonomically, and in most cases, the study of their microbiota is completely unexplored. In this review, we present a comprehensive survey of 553 natural products produced by microorganisms isolated from insects by collating and classifying all the data according to the type of compound (rather than the insect or microbial source). The analysis of the correlations among the metadata related to insects, microbial partners, and their produced compounds provides valuable insights into the intricate dynamics between insects and their symbionts as well as the impact of their metabolites on these relationships. Herein, we focus on the chemical structure, biosynthesis, and biological activities of the most relevant compounds.


Asunto(s)
Productos Biológicos , Insectos , Microbiota , Insectos/microbiología , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/metabolismo , Animales , Microbiota/fisiología , Hongos/metabolismo , Hongos/química , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Simbiosis , Estructura Molecular
6.
Appl Microbiol Biotechnol ; 108(1): 112, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38217254

RESUMEN

Marine bacteria living in association with marine sponges have proven to be a reliable source of biologically active secondary metabolites. However, no studies have yet reported natural products from Microbacterium testaceum spp. We herein report the isolation of a M. testaceum strain from the sponge Tedania brasiliensis. Molecular networking analysis of bioactive pre-fractionated extracts from culture media of M. testaceum enabled the discovery of testacosides A-D. Analysis of spectroscopic data and chemical derivatizations allowed the identification of testacosides A-D as glycoglycerolipids bearing a 1-[α-glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol moiety connected to 12-methyltetradecanoic acid for testacoside A (1), 14-methylpentadecanoic acid for testacoside B (2), and 14-methylhexadecanoic acid for testacosides C (3) and D (4). The absolute configuration of the monosaccharide residues was determined by 1H-NMR analysis of the respective diastereomeric thiazolidine derivatives. This is the first report of natural products isolated from cultures of M. testaceum. KEY POINTS: • The first report of metabolites produced by Microbacterium testaceum. • 1-[α-Glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol lipids isolated and identified. • Microbacterium testaceum strain isolated from the sponge Tedania brasiliensis.


Asunto(s)
Actinomycetales , Productos Biológicos , Glucolípidos , Poríferos , Animales , Glicerol/metabolismo , Poríferos/química , Actinomycetales/metabolismo , Espectroscopía de Resonancia Magnética , Productos Biológicos/metabolismo , Microbacterium
7.
J Chem Inf Model ; 64(7): 2565-2576, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38148604

RESUMEN

American Trypanosomiasis, also known as Chagas disease, is caused by the protozoan Trypanosoma cruzi and exhibits limited options for treatment. Natural products offer various structurally complex metabolites with biological activities, including those with anti-T. cruzi potential. The discovery and development of prototypes based on natural products frequently display multiple phases that could be facilitated by machine learning techniques to provide a fast and efficient method for selecting new hit candidates. Using Random Forest and k-Nearest Neighbors, two models were constructed to predict the biological activity of natural products from plants against intracellular amastigotes of T. cruzi. The diterpenoid andrographolide was identified from a virtual screening as a promising hit compound. Hereafter, it was isolated from Cymbopogon schoenanthus and chemically characterized by spectral data analysis. Andrographolide was evaluated against trypomastigote and amastigote forms of T. cruzi, showing IC50 values of 29.4 and 2.9 µM, respectively, while the standard drug benznidazole displayed IC50 values of 17.7 and 5.0 µM, respectively. Additionally, the isolated compound exhibited a reduced cytotoxicity (CC50 = 92.8 µM) against mammalian cells and afforded a selectivity index (SI) of 32, similar to that of benznidazole (SI = 39). From the in silico analyses, we can conclude that andrographolide fulfills many requirements implemented by DNDi to be a hit compound. Therefore, this work successfully obtained machine learning models capable of predicting the activity of compounds against intracellular forms of T. cruzi.


Asunto(s)
Productos Biológicos , Enfermedad de Chagas , Cymbopogon , Diterpenos , Nitroimidazoles , Trypanosoma cruzi , Animales , Enfermedad de Chagas/tratamiento farmacológico , Diterpenos/farmacología , Diterpenos/metabolismo , Productos Biológicos/metabolismo , Mamíferos
8.
Int J Pharm ; 648: 123613, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977286

RESUMEN

The oral administration is the route preferred by patients due to its multiple advantages. In the case of biopharmaceuticals, due to their low stability and absorption in the intestine, these molecules must be administered by injectable routes. To circumvent these problems, several strategies have been studied, among which the use of nanosystems, such as polymersomes, can be highlighted. In this work the potential of poloxamer 401 polymersomes as a system for oral delivery of antibodies was evaluated. IgG-FITC-loaded poloxamer 401 polymerosomes were initially used to assess whether it improves intestinal epithelial permeation in Caco-2 cell monolayers. Subsequently, epithelial/macrophage co-culture model was used to evaluate the ability of poloxamer 401 polymersomes containing adalimumab to reduce proinflammatory cytokine levels. The data showed that polymersome-encapsulated IgG increased the transport across intestinal Caco-2 monolayers 2.7-fold compared to the antibody in solution. Also, when comparing the groups of blank polymersomes with polymersomes containing adalimumab, decreases of 1.5-, 5.5-, and 2.4-fold in TNF-α concentrations were observed for the polymersomes containing 1.5, 3.75, and 15 µg/mL of adalimumab, respectively. This could indicate a possibility for the oral administration of biopharmaceuticals which would revolutionize many conditions that require the systemic administration such as in inflammatory bowel disease.


Asunto(s)
Productos Biológicos , Poloxámero , Humanos , Células CACO-2 , Adalimumab/metabolismo , Mucosa Intestinal/metabolismo , Productos Biológicos/metabolismo , Inmunoglobulina G/metabolismo
9.
Adv Exp Med Biol ; 1439: 21-49, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37843804

RESUMEN

The biological and chemical diversity of Cyanobacteria is remarkable. These ancient prokaryotes are widespread in nature and can be found in virtually every habitat on Earth where there is light and water. They are producers of an array of secondary metabolites with important ecological roles, toxic effects, and biotechnological applications. The investigation of cyanobacterial metabolites has benefited from advances in analytical tools and bioinformatics that are employed in metabolomic analyses. In this chapter, we review selected articles highlighting the use of targeted and untargeted metabolomics in the analyses of secondary metabolites produced by cyanobacteria. Here, cyanobacterial secondary metabolites have been didactically divided into toxins and natural products according to their relevance to toxicological studies and drug discovery, respectively. This review illustrates how metabolomics has improved the chemical analysis of cyanobacteria in terms of speed, sensitivity, selectivity, and/or coverage, allowing for broader and more complex scientific questions.


Asunto(s)
Productos Biológicos , Cianobacterias , Toxinas de Cianobacterias , Microcistinas/análisis , Microcistinas/metabolismo , Microcistinas/toxicidad , Productos Biológicos/metabolismo , Cianobacterias/metabolismo , Ecosistema , Metabolómica
10.
Arch Microbiol ; 205(11): 354, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828121

RESUMEN

The urgent need for new antimicrobials arises from antimicrobial resistance. Actinobacteria, especially Streptomyces genus, are responsible for production of numerous clinical antibiotics and anticancer agents. Genome mining reveals the biosynthetic gene clusters (BGCs) related to secondary metabolites and the genetic potential of a strain to produce natural products. However, this potential may not be expressed under laboratory conditions. In the present study, the Antarctic bacterium was taxonomically affiliated as Streptomyces albidoflavus ANT_B131 (CBMAI 1855). The crude extracts showed antimicrobial activity against both fungi, Gram-positive and Gram-negative bacteria and antiproliferative activity against five human tumor cell lines. Whole-genome sequencing reveals a genome size of 6.96 Mb, and the genome mining identified 24 BGCs, representing 13.3% of the genome. The use of three culture media and three extraction methods reveals the expression and recovery of 20.8% of the BGCs. The natural products identified included compounds, such as surugamide A, surugamide D, desferrioxamine B + Al, desferrioxamine E, and ectoine. This study reveals the potential of S. albidoflavus ANT_B131 as a natural product producer. Yet, the diversity of culture media and extraction methods could enhance the BGCs expression and recovery of natural products, and could be a strategy to intensify the BGC expression of natural products.


Asunto(s)
Antiinfecciosos , Productos Biológicos , Streptomyces , Humanos , Antibacterianos/metabolismo , Bacterias Gramnegativas/genética , Bacterias Grampositivas/genética , Antiinfecciosos/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Medios de Cultivo/metabolismo , Familia de Multigenes
11.
Chem Biol Interact ; 366: 110129, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36067825

RESUMEN

In the present work, dehydrodieugenol B (1) and its methyl ether (2), isolated from Nectandra leucantha twigs, were used as starting material for the preparation of two new derivatives (1a and 2a) containing an additional methoxycarbonyl unit on allyl side chains. Compounds 1a and 2a demonstrated activity against trypomastigotes (EC50 values of 13.5 and 23.0 µM, respectively) and against intracellular amastigotes (EC50 values of 10.2 and 6.1 µM, respectively). Additionally, compound 2a demonstrated no mammalian cytotoxicity up to 200 µM whereas compound 1a exhibited a CC50 value of 139.8 µM. The mechanism of action studies of compounds 1a and 2a demonstrated a significant depolarization of the plasma membrane potential in trypomastigotes, followed by a mitochondrial membrane potential collapse. Neither calcium level nor reactive oxygen species alterations were observed after a short-time incubation. Considering the potential of compound 2a against T. cruzi and its simple preparation from the natural product 2, isolated from N. leucantha, this compound could be considered a new hit for future drug design studies in Chagas disease.


Asunto(s)
Productos Biológicos , Enfermedad de Chagas , Trypanosoma cruzi , Anisoles/metabolismo , Productos Biológicos/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Humanos , Potencial de la Membrana Mitocondrial , Especies Reactivas de Oxígeno/metabolismo , Trypanosoma cruzi/metabolismo
12.
Molecules ; 27(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684447

RESUMEN

Microalgae are complex photosynthetic organisms found in marine and freshwater environments that produce valuable metabolites. Microalgae-derived metabolites have gained remarkable attention in different industrial biotechnological processes and pharmaceutical and cosmetic industries due to their multiple properties, including antioxidant, anti-aging, anti-cancer, phycoimmunomodulatory, anti-inflammatory, and antimicrobial activities. These properties are recognized as promising components for state-of-the-art cosmetics and cosmeceutical formulations. Efforts are being made to develop natural, non-toxic, and environmentally friendly products that replace synthetic products. This review summarizes some potential cosmeceutical applications of microalgae-derived biomolecules, their mechanisms of action, and extraction methods.


Asunto(s)
Productos Biológicos , Cosmecéuticos , Cosméticos , Microalgas , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Biotecnología , Cosmecéuticos/farmacología , Cosméticos/metabolismo , Microalgas/metabolismo
13.
Molecules ; 27(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35268843

RESUMEN

The COVID-19 pandemic has led to the search for new molecules with antiviral activity against SARS-CoV-2. The entry of the virus into the cell is one of the main targets for inhibiting SARS-CoV-2 infection. Natural products are an important source of new therapeutic alternatives against diseases. Pseudotyped viruses allow the study of SARS-CoV-2 viral entry inhibitors, and due to their simplicity, they allow the screening of a large number of antiviral candidates in Biosafety Level 2 facilities. We used pseudotyped HIV-1 with the D614G SARS-CoV-2 spike glycoprotein to test its ability to infect ACE2-expressing HEK 293T cells in the presence of diverse natural products, including 21 plant extracts, 7 essential oils, and 13 compounds from plants and fungi. The 50% cytotoxic concentration (CC50) was evaluated using the resazurin method. From these analyses, we determined the inhibitory activity of the extract of Stachytarpheta cayennensis, which had a half-maximal inhibitory concentration (IC50) of 91.65 µg/mL, a CC50 of 693.5 µg/mL, and a selectivity index (SI) of 7.57, indicating its potential use as an inhibitor of SARS-CoV-2 entry. Moreover, our work indicates the usefulness of the pseudotyped-virus system in the screening of SARS-CoV-2 entry inhibitors.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/química , Internalización del Virus/efectos de los fármacos , Actinobacteria/química , Actinobacteria/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/química , Antivirales/metabolismo , Antivirales/uso terapéutico , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , COVID-19/virología , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Aceites Volátiles/química , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tratamiento Farmacológico de COVID-19
14.
Molecules ; 27(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35209167

RESUMEN

Benzophenanthridines belong to the benzylisoquinolic alkaloids, representing one of the main groups of this class. These alkaloids include over 120 different compounds, mostly in plants from the Fumariaceae, Papaveraceae, and Rutaceae families, which confer chemical protection against pathogens and herbivores. Industrial uses of BZD include the production of environmentally friendly agrochemicals and livestock food supplements. However, although mainly considered toxic compounds, plants bearing them have been used in traditional medicine and their medical applications as antimicrobials, antiprotozoals, and cytotoxic agents have been envisioned. The biosynthetic pathways for some BZD have been established in different species, allowing for the isolation of the genes and enzymes involved. This knowledge has resulted in a better understanding of the process controlling their synthesis and an opening of the gates towards their exploitation by applying modern biotechnological approaches, such as synthetic biology. This review presents the new advances on BDZ biosynthesis and physiological roles. Industrial applications, mainly with pharmacological approaches, are also revised.


Asunto(s)
Benzofenantridinas/biosíntesis , Alcaloides/biosíntesis , Alcaloides/química , Alcaloides/farmacología , Benzofenantridinas/química , Benzofenantridinas/farmacología , Productos Biológicos/química , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Vías Biosintéticas , Desarrollo de Medicamentos , Isoquinolinas/química , Isoquinolinas/farmacología , Medicina Tradicional , Fenómenos Fisiológicos de las Plantas , Relación Estructura-Actividad
15.
Molecules ; 26(23)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34885908

RESUMEN

A collection of 29 cultivable fungal strains isolated from deep-sea sediments of the Gulf of Mexico were cultivated under the "one strain, many compounds" approach to explore their chemical diversity and antimicrobial potential. From the 87 extracts tested, over 50% showed antimicrobial activity, and the most active ones were those from cultures grown at 4 °C in darkness for 60 days (resembling deep-sea temperature). PCA analysis of the LC-MS data of all the extracts confirmed that culture temperature is the primary factor in the variation of the 4462 metabolite features, accounting for 21.3% of the variation. The bioactivity-guided and conventional chemical studies of selected fungal strains allowed the identification of several active and specialized metabolites. Finally, metabolomics analysis by GNPS molecular networking and manual dereplication revealed the biosynthetic potential of these species to produce interesting chemistry. This work uncovers the chemical and biological study of marine-derived fungal strains from deep-sea sediments of the Gulf of Mexico.


Asunto(s)
Antiinfecciosos/química , Hongos/química , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Productos Biológicos/química , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Hongos/metabolismo , Sedimentos Geológicos/microbiología , Golfo de México , Metaboloma
16.
Chem Biodivers ; 18(10): e2100493, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34403573

RESUMEN

Hundreds of millions of people worldwide are affected by Chagas' disease caused by Trypanosoma cruzi. Since the current treatment lack efficacy, specificity, and suffers from several side-effects, novel therapeutics are mandatory. Natural products from endophytic fungi have been useful sources of lead compounds. In this study, three lactones isolated from an endophytic strain culture were in silico evaluated for rational guidance of their bioassay screening. All lactones displayed in vitro activity against T. cruzi epimastigote and trypomastigote forms. Notably, the IC50 values of (+)-phomolactone were lower than benznidazole (0.86 vs. 30.78 µM against epimastigotes and 0.41 vs. 4.88 µM against trypomastigotes). Target-based studies suggested that lactones displayed their trypanocidal activities due to T. cruzi glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH) inhibition, and the binding free energy for all three TcGAPDH-lactone complexes suggested that (+)-phomolactone has a lower score value (-3.38), corroborating with IC50 assays. These results highlight the potential of these lactones for further anti-T. cruzi drug development.


Asunto(s)
Productos Biológicos/farmacología , Euphorbia/química , Lactonas/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/metabolismo , Euphorbia/metabolismo , Lactonas/química , Lactonas/metabolismo , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Filogenia , Tripanocidas/química , Tripanocidas/metabolismo
17.
Molecules ; 26(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34279439

RESUMEN

COVID-19 is a pandemic disease caused by the SARS-CoV-2 virus, which is potentially fatal for vulnerable individuals. Disease management represents a challenge for many countries, given the shortage of medicines and hospital resources. The objective of this work was to review the medicinal plants, foods and natural products showing scientific evidence for host protection against various types of coronaviruses, with a focus on SARS-CoV-2. Natural products that mitigate the symptoms caused by various coronaviruses are also presented. Particular attention was placed on natural products that stabilize the Renin-Angiotensin-Aldosterone System (RAAS), which has been associated with the entry of the SARS-CoV-2 into human cells.


Asunto(s)
Productos Biológicos/farmacología , Coronavirus/efectos de los fármacos , Fitoterapia/métodos , Extractos Vegetales/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/metabolismo , Antivirales/farmacología , Productos Biológicos/metabolismo , COVID-19/virología , Humanos , Pandemias , Extractos Vegetales/metabolismo , Plantas/química , Sistema Renina-Angiotensina/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
19.
Angew Chem Int Ed Engl ; 60(24): 13536-13541, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33768597

RESUMEN

Brasilicardin A (1) consists of an unusual anti/syn/anti-perhydrophenanthrene skeleton with a carbohydrate side chain and an amino acid moiety. It exhibits potent immunosuppressive activity, yet its mode of action differs from standard drugs that are currently in use. Further pre-clinical evaluation of this promising, biologically active natural product is hampered by restricted access to the ready material, as its synthesis requires both a low-yielding fermentation process using a pathogenic organism and an elaborate, multi-step total synthesis. Our semi-synthetic approach included a) the heterologous expression of the brasilicardin A gene cluster in different non-pathogenic bacterial strains producing brasilicardin A aglycone (5) in excellent yield and b) the chemical transformation of the aglycone 5 into the trifluoroacetic acid salt of brasilicardin A (1 a) via a short and straightforward five-steps synthetic route. Additionally, we report the first preclinical data for brasilicardin A.


Asunto(s)
Aminoglicósidos/metabolismo , Ingeniería Genética , Inmunosupresores/síntesis química , Transferasas Alquil y Aril/genética , Aminoglicósidos/síntesis química , Aminoglicósidos/química , Aminoglicósidos/farmacología , Animales , Productos Biológicos/síntesis química , Productos Biológicos/química , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Inmunosupresores/química , Inmunosupresores/metabolismo , Inmunosupresores/farmacología , Ratones , Plásmidos/genética , Plásmidos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Terpenos/química
20.
Comput Biol Chem ; 92: 107460, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33621907

RESUMEN

Garcinia gardneriana is a medicinal tree species used in Brazil in the treatment of hepatitis and gastritis. This use is attributed to phenolic compounds, mainly 7-epiclusianone, guttiferone-A and fukugetin, which present several proven biological activities. However, to the best of our knowledge, no study on the phytotoxic activity of G. gardneriana extracts has been conducted until now. This research proposed to isolate and quantify by high-performance liquid chromatography (HPLC) the major compounds from G. gardneriana seed extracts in ethyl acetate and to evaluate their phytotoxic activities. The natural products 7-epiclusianone, guttiferone-A and fukugetin were quantified at concentrations varying from 0.46 to 1.13 mg mL-1 and were isolated with yields ranging from 7% to 23% (w/w). The phytotoxic assay indicated that the crude extract showed no action on the dry matter of Sorghum bicolor plants, but the isolated compounds fukugetin and 7-epiclusianone had moderate activity. On the other hand, guttiferone-A displayed a greater herbicide activity than glyphosate, a positive control, even in almost three times lower concentrations, causing severe intoxication in the plants. This work is the first report on this activity by the extract of G. gardneriana and its isolated compounds. Besides that, guttiferone-A showed up as a scaffold for the development of new agrochemicals. Complementing these findings, computational studies suggested that this benzophenone can interact effectively with transferase enzymes type, in special caffeic acid O-methyltransferase from S. bicolor (PDB code: 4PGH), indicating a possible mechanism of action in this plant.


Asunto(s)
Productos Biológicos/farmacología , Garcinia/química , Extractos Vegetales/farmacología , Sorghum/efectos de los fármacos , Productos Biológicos/aislamiento & purificación , Productos Biológicos/metabolismo , Brasil , Cromatografía Líquida de Alta Presión , Conformación Molecular , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA