Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51.426
Filtrar
1.
Zhonghua Bing Li Xue Za Zhi ; 53(7): 678-684, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-38955698

RESUMEN

Objective: To investigate the relationship between 21-gene recurrence risk score (21-Gene RS) and the prognosis and clinicopathological features of hormone receptor (HR) positive, HER2-negative early breast cancer patients who did not receive neoadjuvant therapy. Methods: A total of 469 patients with HR positive and HER2-negative early breast cancer who received surgical treatment in the First Affiliated Hospital, Zhejiang University School of Medicine from January 2014 to October 2017 were selected. Their clinicopathological data were retrospectively analyzed. Tumor tissue samples were collected from patients, and the expression of 21-gene was detected by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). The 21-Gene RS was calculated according to the Trial Assigning Individualized Options for Treatment (TAILORx) RS grouping and National Surgical Adjuvant Breast and Bowel Project B-20 (NSABP B-20) RS grouping principles. Patients were divided into low (21-Gene RS<11 or 21-Gene RS<18), intermediate (11≤21-Gene RS<26 or 18≤21-Gene RS<31) and high (21-Gene RS≥26 or 21-Gene RS≥31) risk groups, and the clinicopathological features and prognostic differences of patients in different risk groups were compared. Statistical data were compared by chi-square test. Survival analysis was performed using Kaplan-Meier curve analysis and the differences between groups were compared using Log-rank test. Multivariate analysis was conducted by COX regression analysis. Results: Based on TAILORx RS grouping, the proportions of low-risk, intermediate-risk and high-risk groups among the 469 patients were 18.8% (88/469), 48.2% (226/469) and 33.0% (155/469), respectively. Based on NSABP B-20 RS grouping, the proportion of low-risk, intermediate-risk and high-risk groups were 43.1% (202/469), 37.5% (176/469) and 19.4% (91/469), respectively. The association of 21-Gene RS with histological grading, luminal typing, Ki-67 expression, and chemotherapy and treatment modalities were statistically significant (P<0.05) regardless of TAILORx RS grouping or NSABP B-20 RS grouping. Kaplan-Meier survival curve suggested poor prognosis in high-risk group (P<0.05, Log-rank test). Multivariate COX regression analysis showed that surgical method and 21-Gene RS were risk factors affecting the prognosis of patients. Conclusions: 21-Gene RS is significantly associated with the prognosis of patients with HR-positive, HER2-negative, early-stage breast cancer not receiving neoadjuvant therapy, as well as with their clinicopathological characteristics such as patients' histologic grade, luminal typing, Ki-67 expression, and whether or not they are treated with chemotherapy or other treatment modalities.The 21-Gene RS threshold of 11 and 26 or 18 and 31 can be used to grade the prognosis in Chinese patients with early-stage breast cancer. More researches are needed to guide the selection of postoperative adjuvant therapy for patients with HR-positive and HER2-negative early-stage breast cancer.


Asunto(s)
Neoplasias de la Mama , Recurrencia Local de Neoplasia , Receptor ErbB-2 , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Recurrencia Local de Neoplasia/genética , Pronóstico , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Estudios Retrospectivos , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Persona de Mediana Edad , Factores de Riesgo
2.
Zhonghua Bing Li Xue Za Zhi ; 53(7): 691-696, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-38955700

RESUMEN

Objective: To investigate the clinical and pathological characteristics of breast cancer with HER2 low expression. Methods: The data from 3 422 patients with invasive breast cancer which archived in Peking Union Medical College Hospital between April 2019 and July 2022 were retrospectively reviewed. Among them, 136 patients were treated with neoadjuvant chemotherapy. The tumor size, histological type, tumor differentiation, lymph node metastasis, Ki-67 index, the status of estrogen receptor, progesterone receptor and HER2 as well as pathological complete response (pCR) rate were collected. Results: The HER2 status of 3 286 patients without neoadjuvant therapy, 616 (616/3 286, 18.7%) score 0, 1 047 (1 047/3 286, 31.9%) score 1+, 1 099 (1 099/3 286,33.4%) score 2+ and 524 (524/3 286,15.9%) score 3+ by immunohistochemistry (IHC). Among the 1 070 IHC 2+ cases, 161 were classified as HER2 positive by reflex fluorescence in situ hybridization (FISH) assay. In our cohort, 1 956 cases of HER2-low (IHC 1+ and IHC 2+/FISH-) breast cancer were identified. Compared to the HER2 IHC 0 group, HER2-low tumors more frequently occurred in patients with hormone receptor (HR) positive (P<0.001), Ki-67 index below 35% (P<0.001), well or moderate differentiation (P<0.001) and over the age of 50 (P=0.008). However, there were no significant differences in histological type, tumor size, and lymph node metastasis between HER2-low and HER2 IHC 0 group. For patients who had neoadjuvant therapy, the pCR rate in the patients with HER2-low was lower than those with HER2 IHC 0 (13.3%, 23.9%), but there was no significant difference. Although HER2-low breast cancers showed a slightly lower pCR rate than HER2 IHC 0 tumors, no remarkable difference was observed between tumors with HER2-low and HER2 IHC 0 regardless of hormone receptor status. Conclusions: The clinicopathological features of HER2-low breast cancers are different from those with HER2 IHC 0. It is necessary to accurately distinguish HER2-low breast cancer from HER2 IHC 0 and to reveal whether HER2-low tumor is a distinct biological entity.


Asunto(s)
Neoplasias de la Mama , Metástasis Linfática , Receptor ErbB-2 , Receptores de Estrógenos , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Receptor ErbB-2/metabolismo , Femenino , Estudios Retrospectivos , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Terapia Neoadyuvante , Hibridación Fluorescente in Situ , Inmunohistoquímica , Persona de Mediana Edad , Adulto , Antígeno Ki-67/metabolismo
3.
J Exp Clin Cancer Res ; 43(1): 182, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951853

RESUMEN

BACKGROUND: During targeted treatment, HER2-positive breast cancers invariably lose HER2 DNA amplification. In contrast, and interestingly, HER2 proteins may be either lost or gained. To longitudinally and systematically appreciate complex/discordant changes in HER2 DNA/protein stoichiometry, HER2 DNA copy numbers and soluble blood proteins (aHER2/sHER2) were tested in parallel, non-invasively (by liquid biopsy), and in two-dimensions, hence HER2-2D. METHODS: aHER2 and sHER2 were assessed by digital PCR and ELISA before and after standard-of-care treatment of advanced HER2-positive breast cancer patients (n=37) with the antibody-drug conjugate (ADC) Trastuzumab-emtansine (T-DM1). RESULTS: As expected, aHER2 was invariably suppressed by T-DM1, but this loss was surprisingly mirrored by sHER2 gain, sometimes of considerable entity, in most (30/37; 81%) patients. This unorthodox split in HER2 oncogenic dosage was supported by reciprocal aHER2/sHER2 kinetics in two representative cases, and an immunohistochemistry-high status despite copy-number-neutrality in 4/5 available post-T-DM1 tumor re-biopsies from sHER2-gain patients. Moreover, sHER2 was preferentially released by dying breast cancer cell lines treated in vitro by T-DM1. Finally, sHER2 gain was associated with a longer PFS than sHER2 loss (mean PFS 282 vs 133 days, 95% CI [210-354] vs [56-209], log-rank test p=0.047), particularly when cases (n=11) developing circulating HER2-bypass alterations during T-DM1 treatment were excluded (mean PFS 349 vs 139 days, 95% CI [255-444] vs [45-232], log-rank test p=0.009). CONCLUSIONS: HER2 gain is adaptively selected in tumor tissues and recapitulated in blood by sHER2 gain. Possibly, an increased oncogenic dosage is beneficial to the tumor during anti-HER2 treatment with naked antibodies, but favorable to the host during treatment with a strongly cytotoxic ADC such as T-DM1. In the latter case, HER2-gain tumors may be kept transiently in check until alternative oncogenic drivers, revealed by liquid biopsy, bypass HER2. Whichever the interpretation, HER2-2D might help to tailor/prioritize anti-HER2 treatments, particularly ADCs active on aHER2-low/sHER2-low tumors. TRIAL REGISTRATION: NCT05735392 retrospectively registered on January 31, 2023 https://www. CLINICALTRIALS: gov/search?term=NCT05735392.


Asunto(s)
Neoplasias de la Mama , Receptor ErbB-2 , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Receptor ErbB-2/metabolismo , Biopsia Líquida/métodos , Persona de Mediana Edad , Ado-Trastuzumab Emtansina/uso terapéutico , Anciano , Trastuzumab/uso terapéutico , Trastuzumab/farmacología , Adulto , Biomarcadores de Tumor
4.
Breast Cancer Res ; 26(1): 107, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951909

RESUMEN

PURPOSE: HER3, a member of the EGFR receptor family, plays a central role in driving oncogenic cell proliferation in breast cancer. Novel HER3 therapeutics are showing promising results while recently developed HER3 PET imaging modalities aid in predicting and assessing early treatment response. However, baseline HER3 expression, as well as changes in expression while on neoadjuvant therapy, have not been well-characterized. We conducted a prospective clinical study, pre- and post-neoadjuvant/systemic therapy, in patients with newly diagnosed breast cancer to determine HER3 expression, and to identify possible resistance mechanisms maintained through the HER3 receptor. EXPERIMENTAL DESIGN: The study was conducted between May 25, 2018 and October 12, 2019. Thirty-four patients with newly diagnosed breast cancer of any subtype (ER ± , PR ± , HER2 ±) were enrolled in the study. Two core biopsy specimens were obtained from each patient at the time of diagnosis. Four patients underwent a second research biopsy following initiation of neoadjuvant/systemic therapy or systemic therapy which we define as neoadjuvant therapy. Molecular characterization of HER3 and downstream signaling nodes of the PI3K/AKT and MAPK pathways pre- and post-initiation of therapy was performed. Transcriptional validation of finings was performed in an external dataset (GSE122630). RESULTS: Variable baseline HER3 expression was found in newly diagnosed breast cancer and correlated positively with pAKT across subtypes (r = 0.45). In patients receiving neoadjuvant/systemic therapy, changes in HER3 expression were variable. In a hormone receptor-positive (ER +/PR +/HER2-) patient, there was a statistically significant increase in HER3 expression post neoadjuvant therapy, while there was no significant change in HER3 expression in a ER +/PR +/HER2+ patient. However, both of these patients showed increased downstream signaling in the PI3K/AKT pathway. One subject with ER +/PR -/HER2- breast cancer and another subject with ER +/PR +/HER2 + breast cancer showed decreased HER3 expression. Transcriptomic findings, revealed an immune suppressive environment in patients with decreased HER3 expression post therapy. CONCLUSION: This study demonstrates variable HER3 expression across breast cancer subtypes. HER3 expression can be assessed early, post-neoadjuvant therapy, providing valuable insight into cancer biology and potentially serving as a prognostic biomarker. Clinical translation of neoadjuvant therapy assessment can be achieved using HER3 PET imaging, offering real-time information on tumor biology and guiding personalized treatment for breast cancer patients.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Terapia Neoadyuvante , Receptor ErbB-3 , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/terapia , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/diagnóstico por imagen , Terapia Neoadyuvante/métodos , Persona de Mediana Edad , Receptor ErbB-3/metabolismo , Receptor ErbB-3/genética , Estudios Prospectivos , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Receptores de Estrógenos/metabolismo , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Tomografía de Emisión de Positrones/métodos
5.
Proc Natl Acad Sci U S A ; 121(28): e2320655121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959043

RESUMEN

SLC7A11 is a cystine transporter and ferroptosis inhibitor. How the stability of SLC7A11 is coordinately regulated in response to environmental cystine by which E3 ligase and deubiquitylase (DUB) remains elusive. Here, we report that neddylation inhibitor MLN4924 increases cystine uptake by causing SLC7A11 accumulation, via inactivating Cullin-RING ligase-3 (CRL-3). We identified KCTD10 as the substrate-recognizing subunit of CRL-3 for SLC7A11 ubiquitylation, and USP18 as SLC7A11 deubiquitylase. Upon cystine deprivation, the protein levels of KCTD10 or USP18 are decreased or increased, respectively, contributing to SLC7A11 accumulation. By destabilizing or stabilizing SLC7A11, KCTD10, or USP18 inversely regulates the cystine uptake and ferroptosis. Biologically, MLN4924 combination with SLC7A11 inhibitor Imidazole Ketone Erastin (IKE) enhanced suppression of tumor growth. In human breast tumor tissues, SLC7A11 levels were negatively or positively correlated with KCTD10 or USP18, respectively. Collectively, our study defines how SLC7A11 and ferroptosis is coordinately regulated by the CRL3KCTD10/E3-USP18/DUB axis, and provides a sound rationale of drug combination to enhance anticancer efficacy.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Cistina , Ferroptosis , Pirimidinas , Ubiquitina Tiolesterasa , Humanos , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Pirimidinas/farmacología , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Animales , Cistina/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Línea Celular Tumoral , Ubiquitinación , Femenino , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Piperazinas/farmacología , Células HEK293
6.
Oncol Rep ; 52(2)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963044

RESUMEN

Lysine methyltransferase 5A (KMT5A) is the sole mammalian enzyme known to catalyse the mono­methylation of histone H4 lysine 20 and non­histone proteins such as p53, which are involved in the occurrence and progression of numerous cancers. The present study aimed to determine the function of KMT5A in inducing docetaxel (DTX) resistance in patients with breast carcinoma by evaluating glucose metabolism and the underlying mechanism involved. The upregulation or downregulation of KMT5A­related proteins was examined after KMT5A knockdown in breast cancer (BRCA) cells by Tandem Mass Tag proteomics. Through differential protein expression and pathway enrichment analysis, the upregulated key gluconeogenic enzyme fructose­1,6­bisphosphatase 1 (FBP1) was discovered. Loss of FBP1 expression is closely related to the development and prognosis of cancers. A dual­luciferase reporter gene assay confirmed that KMT5A inhibited the expression of FBP1 and that overexpression of FBP1 could enhance the chemotherapeutic sensitivity to DTX through the suppression of KMT5A expression. The KMT5A inhibitor UNC0379 was used to verify that DTX resistance induced by KMT5A through the inhibition of FBP1 depended on the methylase activity of KMT5A. According to previous literature and interaction network structure, it was revealed that KMT5A acts on the transcription factor twist family BHLH transcription factor 1 (TWIST1). Then, it was verified that TWSIT1 promoted the expression of FBP1 by using a dual­luciferase reporter gene experiment. KMT5A induces chemotherapy resistance in BRCA cells by promoting cell proliferation and glycolysis. After the knockdown of the KMT5A gene, the FBP1 related to glucose metabolism in BRCA was upregulated. KMT5A knockdown expression and FBP1 overexpression synergistically inhibit cell proliferation and block cells in the G2/M phase. KMT5A inhibits the expression of FBP1 by methylating TWIST1 and weakening its promotion of FBP1 transcription. In conclusion, KMT5A was shown to affect chemotherapy resistance by regulating the cell cycle and positively regulate glycolysis­mediated chemotherapy resistance by inhibiting the transcription of FBP1 in collaboration with TWIST1. KMT5A may be a potential therapeutic target for chemotherapy resistance in BRCA.


Asunto(s)
Neoplasias de la Mama , Docetaxel , Resistencia a Antineoplásicos , Fructosa-Bifosfatasa , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares , Proteína 1 Relacionada con Twist , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/genética , Femenino , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/metabolismo , Docetaxel/farmacología , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proliferación Celular/efectos de los fármacos , Metilación de ADN
7.
Breast Cancer Res ; 26(1): 110, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961497

RESUMEN

Breast cancer (BC) is a highly prevalent malignancy worldwide, with complex pathogenesis and treatment challenges. Research reveals that methyltransferase-like 3 (METTL3) is widely involved in the pathogenesis of several tumors through methylation of its target RNAs, and its role and mechanisms in BC are also extensively studied. In this review, we aim to provide a comprehensive interpretation of available studies and elucidate the relationship between METTL3 and BC. This review suggests that high levels of METTL3 are associated with the pathogenesis, poor prognosis, and drug resistance of BC, suggesting METTL3 as a potential diagnostic or prognostic biomarker and therapeutic target. Collectively, this review provides a comprehensive understanding of how METTL3 functions through RNA methylation, which provides a valuable reference for future fundamental studies and clinical applications.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Metiltransferasas , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Resistencia a Antineoplásicos/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Metiltransferasas/antagonistas & inhibidores , Biomarcadores de Tumor/metabolismo , Pronóstico , Terapia Molecular Dirigida , Animales
8.
Braz J Med Biol Res ; 57: e13357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38958364

RESUMEN

The overexpression of P-glycoprotein (P-gp/ABCB1) is a leading cause of multidrug resistance (MDR). Hence, it is crucial to discover effective pharmaceuticals that counteract ABCB1-mediated multidrug resistance. FRAX486 is a p21-activated kinase (PAK) inhibitor. The objective of this study was to investigate whether FRAX486 can reverse ABCB1-mediated multidrug resistance, while also exploring its mechanism of action. The CCK8 assay demonstrated that FRAX486 significantly reversed ABCB1-mediated multidrug resistance. Furthermore, western blotting and immunofluorescence experiments revealed that FRAX486 had no impact on expression level and intracellular localization of ABCB1. Notably, FRAX486 was found to enhance intracellular drug accumulation and reduce efflux, resulting in the reversal of multidrug resistance. Docking analysis also indicated a strong affinity between FRAX486 and ABCB1. This study highlights the ability of FRAX486 to reverse ABCB1-mediated multidrug resistance and provides valuable insights for its clinical application.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Neoplasias de la Mama , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Femenino , Quinasas p21 Activadas/antagonistas & inhibidores , Quinasas p21 Activadas/metabolismo , Línea Celular Tumoral , Western Blotting
9.
Cancer Immunol Immunother ; 73(9): 177, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954046

RESUMEN

Paclitaxel and anthracycline-based chemotherapy is one of the standard treatment options for breast cancer. However, only about 6-30% of breast cancer patients achieved a pathological complete response (pCR), and the mechanism responsible for the difference is still unclear. In this study, random forest algorithm was used to screen feature genes, and artificial neural network (ANN) algorithm was used to construct an ANN model for predicting the efficacy of neoadjuvant chemotherapy for breast cancer. Furthermore, digital pathology, cytology, and molecular biology experiments were used to verify the relationship between the efficacy of neoadjuvant chemotherapy and immune ecology. It was found that paclitaxel and doxorubicin, an anthracycline, could induce typical pyroptosis and bubbling in breast cancer cells, accompanied by gasdermin E (GSDME) cleavage. Paclitaxel with LDH release and Annexin V/PI doubule positive cell populations, and accompanied by the increased release of damage-associated molecular patterns, HMGB1 and ATP. Cell coculture experiments also demonstrated enhanced phagocytosis of macrophages and increased the levels of IFN-γ and IL-2 secretion after paclitaxel treatment. Mechanistically, GSDME may mediate paclitaxel and doxorubicin-induced pyroptosis in breast cancer cells through the caspase-9/caspase-3 pathway, activate anti-tumor immunity, and promote the efficacy of paclitaxel and anthracycline-based neoadjuvant chemotherapy. This study has practical guiding significance for the precision treatment of breast cancer, and can also provide ideas for understanding molecular mechanisms related to the chemotherapy sensitivity.


Asunto(s)
Neoplasias de la Mama , Terapia Neoadyuvante , Piroptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Humanos , Piroptosis/efectos de los fármacos , Femenino , Terapia Neoadyuvante/métodos , Ratones , Animales , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Gasderminas
10.
BMC Cancer ; 24(1): 792, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38956496

RESUMEN

The in vivo functions of SerpinB2 in tumor cells and tumor-associated macrophages (TAMs) during breast cancer development and metastasis remain elusive. SerpinB2-deficient MMTV-PyMT mice (PyMTSB2-/-) were previously produced to explore the biological roles of SerpinB2 in breast cancer. Compared with MMTV-PyMT wild-type (PyMTWT) mice, PyMTSB2-/- mice showed delayed tumor progression and reduced CK8 + tumor cell dissemination to lymph nodes. RNA-Seq data revealed significantly enriched genes associated with inflammatory responses, especially upregulated M1 and downregulated M2 macrophage marker genes in PyMTSB2-/- tumors. Decreased CD206+M2 and increased NOS2+M1 markers were detected in the primary tumors and metastatic lymph nodes of PyMTSB2-/- mice. In an in vitro study, SerpinB2 knockdown decreased the sphere formation and migration of MDA-MB-231 cells and suppressed protumorigenic M2 polarization of RAW264.7 cells. The combination of low SerpinB2, high NOS2, and low CD206 expression was favorable for survival in patients with breast cancer, as assessed in the BreastMark dataset. Our study demonstrates that SerpinB2 deficiency delays mammary tumor development and metastasis in PyMTWT mice, along with reduced sphere formation and migration abilities of tumor cells and decreased macrophage protumorigenic polarization.


Asunto(s)
Neoplasias de la Mama , Inhibidor 2 de Activador Plasminogénico , Animales , Ratones , Femenino , Inhibidor 2 de Activador Plasminogénico/genética , Inhibidor 2 de Activador Plasminogénico/metabolismo , Inhibidor 2 de Activador Plasminogénico/deficiencia , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Macrófagos/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Línea Celular Tumoral , Ratones Noqueados , Células RAW 264.7 , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Movimiento Celular/genética
11.
Acta Oncol ; 63: 535-541, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967128

RESUMEN

BACKGROUND: Hormone receptor positivity predicts benefit from endocrine therapy but the knowledge about the long-term survival of patients with different tumor receptor levels is limited. In this study, we describe the 25 years outcome of tamoxifen (TAM) treated patients. PATIENTS AND METHODS: Between 1983 and 1992, a total of 4,610 postmenopausal patients with early-stage breast cancer were randomized to receive totally 2 or 5 years of TAM therapy. After 2 years, 4,124 were alive and free of breast cancer recurrence. Among these, 2,481 had demonstrated estrogen receptor positive (ER+) disease. From 1988, the Abbot enzyme immunoassay became available and provided quantitative receptor levels for 1,210 patients, for which our analyses were done. RESULTS: After 5 years of follow-up, when all TAM treatment was finished, until 15 years of follow-up, breast cancer mortality for patients with ER+ disease was significantly reduced in the 5-year group as compared with the 2-year group (hazard ratios [HR] 0.67, 95% confidence intervals [CI] 0.55-0.83, p < 0.001). After 15 years, the difference between the groups remained but did not increase further. A substantial benefit from prolonged TAM therapy was only observed for the subgroup of patients with ER levels below the median (HR = 0.62, 95% CI 0.46-0.84, p = 0.002). Similarly, patients with progesterone receptor negative (PR-) disease did benefit from prolonged TAM treatment. For patients with progesterone receptor positive (PR+) disease, there was no statistically significant benefit from more than 2 years of TAM.  Interpretation: As compared with 2 years of adjuvant TAM, 5 years significantly prolonged breast cancer-specific survival. The benefit from prolonged TAM therapy was statistically significant for patients with ER levels below median or PR-negative disease. There was no evident benefit from prolonged TAM for patients with high ER levels or with PR+ tumors.


Asunto(s)
Antineoplásicos Hormonales , Neoplasias de la Mama , Receptores de Estrógenos , Receptores de Progesterona , Tamoxifeno , Humanos , Tamoxifeno/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/análisis , Estudios de Seguimiento , Persona de Mediana Edad , Antineoplásicos Hormonales/uso terapéutico , Receptores de Progesterona/metabolismo , Quimioterapia Adyuvante/métodos , Anciano , Posmenopausia , Adulto , Resultado del Tratamiento
12.
Sci Rep ; 14(1): 15557, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969706

RESUMEN

Metastasis is driven by extensive cooperation between a tumor and its microenvironment, resulting in the adaptation of molecular mechanisms that evade the immune system and enable pre-metastatic niche (PMN) formation. Little is known of the tumor-intrinsic factors that regulate these mechanisms. Here we show that expression of the transcription factor interferon regulatory factor 5 (IRF5) in osteosarcoma (OS) and breast carcinoma (BC) clinically correlates with prolonged survival and decreased secretion of tumor-derived extracellular vesicles (t-dEVs). Conversely, loss of intra-tumoral IRF5 establishes a PMN that supports metastasis. Mechanistically, IRF5-positive tumor cells retain IRF5 transcripts within t-dEVs that contribute to altered composition, secretion, and trafficking of t-dEVs to sites of metastasis. Upon whole-body pre-conditioning with t-dEVs from IRF5-high or -low OS and BC cells, we found increased lung metastatic colonization that replicated findings from orthotopically implanted cancer cells. Collectively, our findings uncover a new role for IRF5 in cancer metastasis through its regulation of t-dEV programming of the PMN.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Factores Reguladores del Interferón , Metástasis de la Neoplasia , Microambiente Tumoral , Vesículas Extracelulares/metabolismo , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Humanos , Animales , Ratones , Línea Celular Tumoral , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Osteosarcoma/patología , Osteosarcoma/genética , Osteosarcoma/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Regulación Neoplásica de la Expresión Génica
13.
Breast Cancer Res ; 26(1): 113, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965558

RESUMEN

GNA13 (Gα13) is one of two alpha subunit members of the G12/13 family of heterotrimeric G-proteins which mediate signaling downstream of GPCRs. It is known to be essential for embryonic development and vasculogenesis and has been increasingly shown to be involved in mediating several steps of cancer progression. Recent studies found that Gα13 can function as an oncogene and contributes to progression and metastasis of multiple tumor types, including ovarian, head and neck and prostate cancers. In most cases, Gα12 and Gα13, as closely related α-subunits in the subfamily, have similar cellular roles. However, in recent years their differences in signaling and function have started to emerge. We previously identified that Gα13 drives invasion of Triple Negative Breast Cancer (TNBC) cells in vitro. As a highly heterogenous disease with various well-defined molecular subtypes (ER+ /Her2-, ER+ /Her2+, Her2+, TNBC) and subtype associated outcomes, the function(s) of Gα13 beyond TNBC should be explored. Here, we report the finding that low expression of GNA13 is predictive of poorer survival in breast cancer, which challenges the conventional idea of Gα12/13 being universal oncogenes in solid tumors. Consistently, we found that Gα13 suppresses the proliferation in multiple ER+ breast cancer cell lines (MCF-7, ZR-75-1 and T47D). Loss of GNA13 expression drives cell proliferation, soft-agar colony formation and in vivo tumor formation in an orthotopic xenograft model. To evaluate the mechanism of Gα13 action, we performed RNA-sequencing analysis on these cell lines and found that loss of GNA13 results in the upregulation of MYC signaling pathways in ER+ breast cancer cells. Simultaneous silencing of MYC reversed the proliferative effect from the loss of GNA13, validating the role of MYC in Gα13 regulation of proliferation. Further, we found Gα13 regulates the expression of MYC, at both the transcript and protein level in an ERα dependent manner. Taken together, our study provides the first evidence for a tumor suppressive role for Gα13 in breast cancer cells and demonstrates for the first time the direct involvement of Gα13 in ER-dependent regulation of MYC signaling. With a few exceptions, elevated Gα13 levels are generally considered to be oncogenic, similar to Gα12. This study demonstrates an unexpected tumor suppressive role for Gα13 in ER+ breast cancer via regulation of MYC, suggesting that Gα13 can have subtype-dependent tumor suppressive roles in breast cancer.


Asunto(s)
Proliferación Celular , Receptor alfa de Estrógeno , Subunidades alfa de la Proteína de Unión al GTP G12-G13 , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc , Humanos , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Femenino , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Animales , Línea Celular Tumoral , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Transducción de Señal , Regulación hacia Arriba
14.
Breast Cancer Res ; 26(1): 111, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965614

RESUMEN

BACKGROUND: Endocrine therapy is the most important treatment modality of breast cancer patients whose tumors express the estrogen receptor α (ERα). The androgen receptor (AR) is also expressed in the vast majority (80-90%) of ERα-positive tumors. AR-targeting drugs are not used in clinical practice, but have been evaluated in multiple trials and preclinical studies. METHODS: We performed a genome-wide study to identify hormone/drug-induced single nucleotide polymorphism (SNP) genotype - dependent gene-expression, known as PGx-eQTL, mediated by either an AR agonist (dihydrotestosterone) or a partial antagonist (enzalutamide), utilizing a previously well characterized lymphoblastic cell line panel. The association of the identified SNPs-gene pairs with breast cancer phenotypes were then examined using three genome-wide association (GWAS) studies that we have published and other studies from the GWAS catalog. RESULTS: We identified 13 DHT-mediated PGx-eQTL loci and 23 Enz-mediated PGx-eQTL loci that were associated with breast cancer outcomes post ER antagonist or aromatase inhibitors (AI) treatment, or with pharmacodynamic (PD) effects of AIs. An additional 30 loci were found to be associated with cancer risk and sex-hormone binding globulin levels. The top loci involved the genes IDH2 and TMEM9, the expression of which were suppressed by DHT in a PGx-eQTL SNP genotype-dependent manner. Both of these genes were overexpressed in breast cancer and were associated with a poorer prognosis. Therefore, suppression of these genes by AR agonists may benefit patients with minor allele genotypes for these SNPs. CONCLUSIONS: We identified AR-related PGx-eQTL SNP-gene pairs that were associated with risks, outcomes and PD effects of endocrine therapy that may provide potential biomarkers for individualized treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Receptores Androgénicos , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Dihidrotestosterona/farmacología , Feniltiohidantoína/farmacología , Feniltiohidantoína/uso terapéutico , Nitrilos/uso terapéutico , Genotipo , Farmacogenética/métodos , Variantes Farmacogenómicas , Antineoplásicos Hormonales/uso terapéutico , Antineoplásicos Hormonales/farmacología , Benzamidas
15.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38960406

RESUMEN

Spatial transcriptomics data play a crucial role in cancer research, providing a nuanced understanding of the spatial organization of gene expression within tumor tissues. Unraveling the spatial dynamics of gene expression can unveil key insights into tumor heterogeneity and aid in identifying potential therapeutic targets. However, in many large-scale cancer studies, spatial transcriptomics data are limited, with bulk RNA-seq and corresponding Whole Slide Image (WSI) data being more common (e.g. TCGA project). To address this gap, there is a critical need to develop methodologies that can estimate gene expression at near-cell (spot) level resolution from existing WSI and bulk RNA-seq data. This approach is essential for reanalyzing expansive cohort studies and uncovering novel biomarkers that have been overlooked in the initial assessments. In this study, we present STGAT (Spatial Transcriptomics Graph Attention Network), a novel approach leveraging Graph Attention Networks (GAT) to discern spatial dependencies among spots. Trained on spatial transcriptomics data, STGAT is designed to estimate gene expression profiles at spot-level resolution and predict whether each spot represents tumor or non-tumor tissue, especially in patient samples where only WSI and bulk RNA-seq data are available. Comprehensive tests on two breast cancer spatial transcriptomics datasets demonstrated that STGAT outperformed existing methods in accurately predicting gene expression. Further analyses using the TCGA breast cancer dataset revealed that gene expression estimated from tumor-only spots (predicted by STGAT) provides more accurate molecular signatures for breast cancer sub-type and tumor stage prediction, and also leading to improved patient survival and disease-free analysis. Availability: Code is available at https://github.com/compbiolabucf/STGAT.


Asunto(s)
Perfilación de la Expresión Génica , RNA-Seq , Transcriptoma , Humanos , RNA-Seq/métodos , Perfilación de la Expresión Génica/métodos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Biología Computacional/métodos , Femenino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
16.
Nat Commun ; 15(1): 5597, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961064

RESUMEN

Cyclin-dependent kinases 4 and 6 (CDK4/6) play a pivotal role in cell cycle and cancer development. Targeting CDK4/6 has demonstrated promising effects against breast cancer. However, resistance to CDK4/6 inhibitors (CDK4/6i), such as palbociclib, remains a substantial challenge in clinical settings. Using high-throughput combinatorial drug screening and genomic sequencing, we find that the microphthalmia-associated transcription factor (MITF) is activated via O-GlcNAcylation by O-GlcNAc transferase (OGT) in palbociclib-resistant breast cancer cells and tumors. Mechanistically, O-GlcNAcylation of MITF at Serine 49 enhances its interaction with importin α/ß, thus promoting its translocation to nuclei, where it suppresses palbociclib-induced senescence. Inhibition of MITF or its O-GlcNAcylation re-sensitizes resistant cells to palbociclib. Moreover, clinical studies confirm the activation of MITF in tumors from patients who are palbociclib-resistant or undergoing palbociclib treatment. Collectively, our studies shed light on the mechanism regulating palbociclib resistance and present clinical evidence for developing therapeutic approaches to treat CDK4/6i-resistant breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Resistencia a Antineoplásicos , Factor de Transcripción Asociado a Microftalmía , N-Acetilglucosaminiltransferasas , Piperazinas , Piridinas , Humanos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Quinasa 6 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Femenino , Resistencia a Antineoplásicos/efectos de los fármacos , Piperazinas/farmacología , Piridinas/farmacología , Línea Celular Tumoral , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/genética , Animales , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Sci Rep ; 14(1): 15314, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961104

RESUMEN

This work examines the capacity of Naringin and Rutin to influence the DNA damage response (DDR) pathway by investigating their interactions with key DDR proteins, including PARP-1, ATM, ATR, CHK1, and WEE1. Through a combination of in silico molecular docking and in vitro evaluations, we investigated the cytotoxic and genotoxic effects of these compounds on MDA-MB-231 cells, comparing them to normal human fibroblast cells (2DD) and quiescent fibroblast cells (QFC). The research found that Naringin and Rutin had strong affinities for DDR pathway proteins, indicating their capacity to specifically regulate DDR pathways in cancer cells. Both compounds exhibited preferential cytotoxicity towards cancer cells while preserving the vitality of normal 2DD fibroblast cells, as demonstrated by cytotoxicity experiments conducted at a dose of 10 µM. The comet experiments performed particularly on QFC cells provide valuable information on the genotoxic impact of Naringin and Rutin, highlighting the targeted initiation of DNA damage in cancer cells. The need to use precise cell models to appropriately evaluate toxicity and genotoxicity is emphasized by this discrepancy. In addition, ADMET and drug-likeness investigations have emphasized the pharmacological potential of these compounds; however, they have also pointed out the necessity for optimization to improve their therapeutic profiles. The antioxidant capabilities of Naringin and Rutin were assessed using DPPH and free radical scavenging assays at a concentration of 10 µM. The results confirmed that both compounds have a role in reducing oxidative stress, hence enhancing their anticancer effects. Overall, Naringin and Rutin show potential as medicines for modulating the DDR in cancer treatment. They exhibit selective toxicity towards cancer cells while sparing normal cells and possess strong antioxidant properties. This analysis enhances our understanding of the therapeutic uses of natural chemicals in cancer treatment, supporting the need for more research on their mechanisms of action and clinical effectiveness.


Asunto(s)
Antioxidantes , Neoplasias de la Mama , Daño del ADN , Flavanonas , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Rutina , Humanos , Flavanonas/farmacología , Rutina/farmacología , Daño del ADN/efectos de los fármacos , Antioxidantes/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Estrés Oxidativo/efectos de los fármacos , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Supervivencia Celular/efectos de los fármacos
18.
Nat Commun ; 15(1): 5620, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965208

RESUMEN

Glutaminase (GLS) is directly related to cell growth and tumor progression, making it a target for cancer treatment. The RNA-binding protein HuR (encoded by the ELAVL1 gene) influences mRNA stability and alternative splicing. Overexpression of ELAVL1 is common in several cancers, including breast cancer. Here we show that HuR regulates GLS mRNA alternative splicing and isoform translation/stability in breast cancer. Elevated ELAVL1 expression correlates with high levels of the glutaminase isoforms C (GAC) and kidney-type (KGA), which are associated with poor patient prognosis. Knocking down ELAVL1 reduces KGA and increases GAC levels, enhances glutamine anaplerosis into the TCA cycle, and drives cells towards glutamine dependence. Furthermore, we show that combining chemical inhibition of GLS with ELAVL1 silencing synergistically decreases breast cancer cell growth and invasion. These findings suggest that dual inhibition of GLS and HuR offers a therapeutic strategy for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Proteína 1 Similar a ELAV , Glutaminasa , Glutaminasa/metabolismo , Glutaminasa/genética , Glutaminasa/antagonistas & inhibidores , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , ARN Mensajero/metabolismo , ARN Mensajero/genética , Regulación Neoplásica de la Expresión Génica , Empalme Alternativo , Proliferación Celular , Glutamina/metabolismo , Estabilidad del ARN
19.
Cell Death Dis ; 15(7): 480, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965233

RESUMEN

Chemotherapy persists as the primary intervention for breast cancer, with chemoresistance posing the principal obstacle to successful treatment. Herein, we show that cartilage oligomeric matrix protein (COMP) expression leads to increased cancer cell survival and attenuated apoptosis under treatment with several chemotherapeutic drugs, anti-HER2 targeted treatment, and endocrine therapy in several breast cancer cell lines tested. The COMP-induced chemoresistance was independent of the breast cancer subtype. Extracellularly delivered recombinant COMP failed to rescue cells from apoptosis while endoplasmic reticulum (ER)-restricted COMP-KDEL conferred resistance to apoptosis, consistent with the localization of COMP in the ER, where it interacted with calpain. Calpain activation was reduced in COMP-expressing cells and maintained at a lower level of activation during treatment with epirubicin. Moreover, the downstream caspases of calpain, caspases -9, -7, and -3, exhibited significantly reduced activation in COMP-expressing cells under chemotherapy treatment. Chemotherapy, when combined with calpain activators, rendered the cells expressing COMP more chemosensitive. Also, the anti-apoptotic proteins phospho-Bcl2 and survivin were increased in COMP-expressing cells upon chemotherapy. Cells expressing a mutant COMP lacking thrombospondin repeats exhibited reduced chemoresistance compared to cells expressing full-length COMP. Evaluation of calcium levels in the ER, cytosol, and mitochondria revealed that COMP expression modulates intracellular calcium homeostasis. Furthermore, patients undergoing chemotherapy or endocrine therapy demonstrated significantly reduced overall survival time when tumors expressed high levels of COMP. This study identifies a novel role of COMP in chemoresistance and calpain inactivation in breast cancer, a discovery with potential implications for anti-cancer therapy.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Calpaína , Proteína de la Matriz Oligomérica del Cartílago , Resistencia a Antineoplásicos , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Proteína de la Matriz Oligomérica del Cartílago/metabolismo , Proteína de la Matriz Oligomérica del Cartílago/genética , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Calpaína/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos
20.
Adv Exp Med Biol ; 1445: 169-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38967759

RESUMEN

Over the past 20 years, increasing evidence has demonstrated that immunoglobulins (Igs) can be widely generated from non B cells, including normal and malignant mammary epithelial cells. In normal breast tissue, the expression of IgG and IgA has been identified in epithelial cells of mammary glands during pregnancy and lactation, which can be secreted into milk, and might participate in neonatal immunity. On the other hand, non B-IgG is highly expressed in breast cancer cells, correlating with the poor prognosis of patients with breast cancer. Importantly, a specific group of IgG, bearing a unique N-linked glycan on the Asn162 site and aberrant sialylation modification at the end of the novel glycan (referred to as sialylated IgG (SIA-IgG)), has been found in breast cancer stem/progenitor-like cells. SIA-IgG can significantly promote the capacity of migration, invasiveness, and metastasis, as well as enhance self-renewal and tumorigenicity in vitro and in vivo. These findings suggest that breast epithelial cells can produce Igs with different biological activities under physiological and pathological conditions. During lactation, these Igs could be the main source of milk Igs to protect newborns from pathogenic infections, while under pathological conditions, they display oncogenic activity and promote the occurrence and progression of breast cancer.


Asunto(s)
Neoplasias de la Mama , Células Epiteliales , Glándulas Mamarias Humanas , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/inmunología , Células Epiteliales/metabolismo , Animales , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Lactancia/metabolismo , Embarazo , Inmunoglobulina G/metabolismo , Inmunoglobulina G/inmunología , Inmunoglobulinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...