Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Sci Total Environ ; 947: 174652, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38992377

RESUMEN

The ability of soil to sequester carbon and reduce atmospheric CO2 concentrations is limited and depends on the soil minerals and their interaction with the microbiota. Microbial activities are closely associated with the types and amounts of soil organic matter (SOM) and clay minerals that have functional groups that interact with energy in Vis NIR-SWIR and Mid-IR wavelengths. The main objective of this research was to determine, based on these spectral ranges, the relation between mineralogical and organic compounds, as their sequestration and specialization in soils from Brazil. It was possible to map microbiological activity by spectral transfer functions and digital soil mapping reaching R2 from 0.77 to 0.85. Multiple regression equations were constructed to quantify enzymatic activity, microbial biomass carbon (MBC), particulate organic matter (POM), and resistant forms of carbon, and SOM associated with the mineral fraction (MAOM). All these properties were detected by specific bands obtained with the recursive feature elimination (RFE) algorithm, reaching correlations from 0.64 to 0.98 in specific ranges. The prediction model of the carbon sequestration potential was adjusted with microbiological and mineralogical variables from Vis-NIR-SWIR and the Mid-IR spectral range. A SARAR double autoregressive model was adjusted with r 0.61 and to a spatial error model (SEM) with r 0.7. The explanatory variables were associated with kaolinite, hematite, goethite, gibbsite, and the abundance of fungi, actinomycetes, vesico-arbuscular mycorrhizal fungi, enzymatic activity of beta-glucosidase, urease and phosphatase, and POM. Among the microbiological variables, the general abundance of fungi was the most important, in contrast to enzymatic activity that was the least important. The interaction between the different maps constructed and historical land use allowed the identification of areas that contribute to sequestering new carbon and could be the key to climate change mitigation strategies.


Asunto(s)
Secuestro de Carbono , Microbiología del Suelo , Suelo , Suelo/química , Minerales/análisis , Brasil , Carbono/análisis , Monitoreo del Ambiente/métodos
2.
Nature ; 631(8019): 111-117, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898277

RESUMEN

Amazonia contains the most extensive tropical forests on Earth, but Amazon carbon sinks of atmospheric CO2 are declining, as deforestation and climate-change-associated droughts1-4 threaten to push these forests past a tipping point towards collapse5-8. Forests exhibit complex drought responses, indicating both resilience (photosynthetic greening) and vulnerability (browning and tree mortality), that are difficult to explain by climate variation alone9-17. Here we combine remotely sensed photosynthetic indices with ground-measured tree demography to identify mechanisms underlying drought resilience/vulnerability in different intact forest ecotopes18,19 (defined by water-table depth, soil fertility and texture, and vegetation characteristics). In higher-fertility southern Amazonia, drought response was structured by water-table depth, with resilient greening in shallow-water-table forests (where greater water availability heightened response to excess sunlight), contrasting with vulnerability (browning and excess tree mortality) over deeper water tables. Notably, the resilience of shallow-water-table forest weakened as drought lengthened. By contrast, lower-fertility northern Amazonia, with slower-growing but hardier trees (or, alternatively, tall forests, with deep-rooted water access), supported more-drought-resilient forests independent of water-table depth. This functional biogeography of drought response provides a framework for conservation decisions and improved predictions of heterogeneous forest responses to future climate changes, warning that Amazonia's most productive forests are also at greatest risk, and that longer/more frequent droughts are undermining multiple ecohydrological strategies and capacities for Amazon forest resilience.


Asunto(s)
Resistencia a la Sequía , Sequías , Bosques , Agua Subterránea , Fotosíntesis , Suelo , Luz Solar , Árboles , Brasil , Secuestro de Carbono , Sequías/estadística & datos numéricos , Agua Subterránea/análisis , Suelo/química , Árboles/clasificación , Árboles/metabolismo , Árboles/fisiología , Clima Tropical , Resistencia a la Sequía/fisiología , Filogeografía , Conservación de los Recursos Naturales
3.
PLoS One ; 19(5): e0302680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753896

RESUMEN

Scalesia pendunculata Hook.f. is the dominant tree in several highlands' areas of the Galapagos Archipelago, yet in inhabited islands the conversion to agricultural fields has reduced its cover. The transition to agroforestry systems including the species shows promising scenarios to restore its cover and to provide ecosystem services such as carbon sequestration. Here, based on field gathered data, we model the potential contribution of S. pedunculata stands in the carbon sequestration of Galapagos. Between 2013-2021, 426 S. pedunculata seedlings were planted in the highlands of Santa Cruz and Floreana islands using several restoration technologies, and their height and survival were monitored every three months. A sub-sample of 276 trees alive since 2020 was used to estimate the DBH based on plant age and height. Based on scientific literature, biomass and carbon content were estimated across time. The final modelling included the density of plants in the restoration sites, estimated DBH, potential survival by restoration treatment, and a Brownian noise to add stochastic events. Overall, survival of S. pedunculata was high in control and slightly increased by most restoration treatments. A stand of 530 trees/ha was projected to sequester ~21 Mg C/ha in 10 years. If this is replicated over all Galapagos coffee production would contribute to the reduction of -1.062% of the Galapagos carbon footprint for the same period. This study adds to compiling benefits of restoring Galapagos flora.


Asunto(s)
Agricultura , Secuestro de Carbono , Agricultura/métodos , Ecuador , Ecosistema , Carbono/metabolismo , Árboles/crecimiento & desarrollo , Biomasa , Conservación de los Recursos Naturales/métodos
6.
Nat Commun ; 14(1): 8500, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135682

RESUMEN

Coastal vegetated ecosystems are acknowledged for their capacity to sequester organic carbon (OC), known as blue C. Yet, blue C global accounting is incomplete, with major gaps in southern hemisphere data. It also shows a large variability suggesting that the interaction between environmental and biological drivers is important at the local scale. In southwest Atlantic salt marshes, to account for the space occupied by crab burrows, it is key to avoid overestimates. Here we found that southern southwest Atlantic salt marshes store on average 42.43 (SE = 27.56) Mg OC·ha-1 (40.74 (SE = 2.7) in belowground) and bury in average 47.62 g OC·m-2·yr-1 (ranging from 7.38 to 204.21). Accretion rates, granulometry, plant species and burrowing crabs were identified as the main factors in determining belowground OC stocks. These data lead to an updated global estimation for stocks in salt marshes of 185.89 Mg OC·ha-1 (n = 743; SE = 4.92) and a C burial rate of 199.61 g OC·m-2·yr-1 (n = 193; SE = 16.04), which are lower than previous estimates.


Asunto(s)
Braquiuros , Humedales , Animales , Ecosistema , Carbono , Secuestro de Carbono
8.
Nature ; 621(7978): 318-323, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612502

RESUMEN

The Amazon forest carbon sink is declining, mainly as a result of land-use and climate change1-4. Here we investigate how changes in law enforcement of environmental protection policies may have affected the Amazonian carbon balance between 2010 and 2018 compared with 2019 and 2020, based on atmospheric CO2 vertical profiles5,6, deforestation7 and fire data8, as well as infraction notices related to illegal deforestation9. We estimate that Amazonia carbon emissions increased from a mean of 0.24 ± 0.08 PgC year-1 in 2010-2018 to 0.44 ± 0.10 PgC year-1 in 2019 and 0.52 ± 0.10 PgC year-1 in 2020 (± uncertainty). The observed increases in deforestation were 82% and 77% (94% accuracy) and burned area were 14% and 42% in 2019 and 2020 compared with the 2010-2018 mean, respectively. We find that the numbers of notifications of infractions against flora decreased by 30% and 54% and fines paid by 74% and 89% in 2019 and 2020, respectively. Carbon losses during 2019-2020 were comparable with those of the record warm El Niño (2015-2016) without an extreme drought event. Statistical tests show that the observed differences between the 2010-2018 mean and 2019-2020 are unlikely to have arisen by chance. The changes in the carbon budget of Amazonia during 2019-2020 were mainly because of western Amazonia becoming a carbon source. Our results indicate that a decline in law enforcement led to increases in deforestation, biomass burning and forest degradation, which increased carbon emissions and enhanced drying and warming of the Amazon forests.


Asunto(s)
Dióxido de Carbono , Secuestro de Carbono , Conservación de los Recursos Naturales , Política Ambiental , Aplicación de la Ley , Bosque Lluvioso , Biomasa , Brasil , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Política Ambiental/legislación & jurisprudencia , Atmósfera/química , Incendios Forestales/estadística & datos numéricos , Conservación de los Recursos Naturales/estadística & datos numéricos , El Niño Oscilación del Sur , Sequías/estadística & datos numéricos
9.
Proc Biol Sci ; 290(2003): 20230803, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37491960

RESUMEN

Primary production underpins most ecosystem services, including carbon sequestration and fisheries. Artificial reefs (ARs) are widely used for fisheries management. Research has shown that a mechanism by which ARs in seagrass beds can support fisheries and carbon sequestration is through increasing primary production via fertilization from aggregating fish excretion. Seagrass beds are heavily affected by anthropogenic nutrient input and fishing that reduces nutrient input by consumers. The effect of these stressors is difficult to predict because impacts of simultaneous stressors are typically non-additive. We used a long-term experiment to identify the mechanisms by which simultaneous impacts of sewage enrichment and fishing alter seagrass production around ARs across non-orthogonal gradients in human-dominated and relatively unimpacted regions in Haiti and The Bahamas. Merging trait-based measures of seagrass and seagrass ecosystem processes, we found that ARs consistently enhanced per capita seagrass production and maintained ecosystem-scale production despite drastic shifts in controls on production from human stressors. Importantly, we also show that coupled human stressors on seagrass production around ARs were additive, contrasting expectations. These findings are encouraging for conservation because they indicate that seagrass ecosystems are highly resistant to coupled human stressors and that ARs promote ecosystem services even in human-dominated ecosystems.


Asunto(s)
Ecosistema , Explotaciones Pesqueras , Animales , Humanos , Nutrientes , Secuestro de Carbono , Bahamas
10.
J Environ Manage ; 344: 118573, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37459811

RESUMEN

Forest restoration mitigates climate change by removing CO2 and storing C in terrestrial ecosystems. However, incomplete information on C storage in restored tropical forests often fails to capture the ecosystem's holistic C dynamics. This study provides an integrated assessment of C storage in above to belowground subsystems, its consequences for greenhouse gas (GHG) fluxes, and the quantity, quality, and origin of soil organic matter (SOM) in restored Atlantic forests in Brazil. Relations between SOM properties and soil health indicators were also explored. We examined two restorations using tree planting ('active restoration'): an 8-year-old forest with green manure and native trees planted in two rounds, and a 15-year-old forest with native-planted trees in one round without green manure. Restorations were compared to reformed pasture and primary forest sites. We measured C storage in soil layers (0-10, 10-20, and 20-30 cm), litter, and plants. GHG emissions were assessed using CH4 and CO2 fluxes. SOM quantity was evaluated using C and N, quality using humification index (HLIFS), and origin using δ13C and δ15N. Nine soil health indicators were interrelated with SOM attributes. The primary forest presented the highest C stocks (107.7 Mg C ha-1), followed by 15- and 8-year-old restorations and pasture with 69.8, 55.5, and 41.8 Mg C ha-1, respectively. Soil C stocks from restorations and pasture were 20% lower than primary forest. However, 8- and 15-year-old restorations stored 12.3 and 28.3 Mg ha-1 more aboveground C than pasture. The younger forest had δ13C and δ15N values of 2.1 and 1.7‰, respectively, lower than the 15-year-old forest, indicating more C derived from C3 plants and biological N fixation. Both restorations and pasture had at least 34% higher HLIFS in deeper soil layers (10-30 cm) than primary forest, indicating a lack of labile SOM. Native and 15-year-old forests exhibited higher soil methane influx (141.1 and 61.9 µg m-2 h-1). Forests outperformed pasture in most soil health indicators, with 69% of their variance explained by SOM properties. However, SOM quantity and quality regeneration in both restorations approached the pristine forest state only in the top 10 cm layer, while deeper soil retained agricultural degradation legacies. In conclusion, active restoration of the Atlantic Forest is a superior approach compared to pasture reform for GHG mitigation. Nonetheless, the development of restoration techniques to facilitate labile C input into deeper soil layers (>10 cm) is needed to further improve soil multifunctionality and long-term C storage.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Ecosistema , Brasil , Secuestro de Carbono , Dióxido de Carbono/análisis , Estiércol , Carbono/análisis , Bosques , Árboles
11.
Sci Total Environ ; 876: 162600, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36871717

RESUMEN

Tropical ecosystems are central to the global focus on halting and reversing habitat destruction as a means of mitigating carbon emissions. Brazil has been highlighted as a vital part of global climate agreements because, whilst ongoing land-use change causes it to be the world's fifth biggest greenhouse gas emitting country, it also has one of the greatest potentials to implement ecosystem restoration. Global carbon markets provide the opportunity of a financially viable way to implement restoration projects at scale. However, except for rainforests, the restoration potential of many major tropical biomes is not widely recognised, with the result that carbon sequestration potential may be squandered. We synthesize data on land availability, land degradation status, restoration costs, area of native vegetation remaining, carbon storage potential and carbon market prices for 5475 municipalities across Brazil's major biomes, including the savannas and tropical dry forests. Using a modelling analysis, we determine how fast restoration could be implemented across these biomes within existing carbon markets. We argue that even with a sole focus on carbon, we must restore other tropical biomes, as well as rainforests, to effectively increase benefits. The inclusion of dry forests and savannas doubles the area which could be restored in a financially viable manner, increasing the potential CO2e sequestered >40 % above that offered by rainforests alone. Importantly, we show that in the short-term avoiding emissions through conservation will be necessary for Brazil to achieve it's 2030 climate goal, because it can sequester 1.5 to 4.3 Pg of CO2e by 2030, relative to 0.127 Pg CO2e from restoration. However, in the longer term, restoration across all biomes in Brazil could draw down between 3.9 and 9.8 Pg of CO2e from the atmosphere by 2050 and 2080.


Asunto(s)
Secuestro de Carbono , Ecosistema , Brasil , Análisis Costo-Beneficio , Bosques , Carbono , Conservación de los Recursos Naturales
12.
Nature ; 615(7952): 436-442, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922608

RESUMEN

The globally important carbon sink of intact, old-growth tropical humid forests is declining because of climate change, deforestation and degradation from fire and logging1-3. Recovering tropical secondary and degraded forests now cover about 10% of the tropical forest area4, but how much carbon they accumulate remains uncertain. Here we quantify the aboveground carbon (AGC) sink of recovering forests across three main continuous tropical humid regions: the Amazon, Borneo and Central Africa5,6. On the basis of satellite data products4,7, our analysis encompasses the heterogeneous spatial and temporal patterns of growth in degraded and secondary forests, influenced by key environmental and anthropogenic drivers. In the first 20 years of recovery, regrowth rates in Borneo were up to 45% and 58% higher than in Central Africa and the Amazon, respectively. This is due to variables such as temperature, water deficit and disturbance regimes. We find that regrowing degraded and secondary forests accumulated 107 Tg C year-1 (90-130 Tg C year-1) between 1984 and 2018, counterbalancing 26% (21-34%) of carbon emissions from humid tropical forest loss during the same period. Protecting old-growth forests is therefore a priority. Furthermore, we estimate that conserving recovering degraded and secondary forests can have a feasible future carbon sink potential of 53 Tg C year-1 (44-62 Tg C year-1) across the main tropical regions studied.


Asunto(s)
Secuestro de Carbono , Carbono , Conservación de los Recursos Naturales , Bosques , Humedad , Árboles , Clima Tropical , Carbono/metabolismo , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Árboles/metabolismo , Agricultura Forestal/estadística & datos numéricos , Imágenes Satelitales , Temperatura , Bosque Lluvioso , Borneo , África Central , Brasil
13.
Ciênc. rural (Online) ; 53(4): e20210208, 2023. ilus, tab, mapa
Artículo en Inglés | VETINDEX | ID: biblio-1412142

RESUMEN

Urban expansion has led to the replacement of natural landscapes and environmental degradation, making cities and their urban and peri-urban forests (UPFs) vulnerable to climate change, especially on the formation of heat islands. Using i-Tree Canopy program (v. 7.0), we estimate the ecosystem services provided by UPFs in Juiz de Fora (Minas Gerais State, Southeastern Brazil), through the analysis of the (1) annual removal of atmospheric pollutants, (2) annual removal of atmospheric carbon, (3) total carbon stock in vegetation, and (4) the monetary benefits of sequestered and stocked carbon, based on Future Carbon Credit (CFI2Z1) as a monetary proxy. The results showed an average total amount of removal of 4.45 thousand tons of air pollution annually. The average annual total carbon storage was 158 thousand tons and the equivalent CO2 was 580 thousand tons, with an estimated total value of R$ 173 million per year. Significant values of the gross carbon stock (3.98 million tons) and equivalent CO2 (14.59 million tons) were found, being valued at R$ 4.35 billion. We concluded that the Juiz de Fora UPFs have a great potential for socio-environmental and economic benefits.


A expansão urbana levou à substituição de paisagens naturais por paisagens urbanas e à degradação ambiental, tornando cidades e suas florestas urbanas e peri-urbanas (FUPs) vulneráveis às mudanças climáticas, especialmente à formação de ilhas de calor. Utilizando o software i-Tree Canopy (v.7.0), estimamos os serviços ecossistêmicos promovidos pelas UPFs em Juiz de Fora (Minas Gerais, Sudeste do Brasil), por meio da análise de (1) remoção anual de poluentes atmosféricos, (2) remoção anual de carbono atmosférico, (3) estoque de carbono na vegetação e (4) os benefícios monetários do carbono sequestrado anualmente e estocado, utilizando o Mercado de Crédito de Carbono Futuro (CFI2Z1) como um proxy monetário. Os resultados apresentam uma quantidade total média de remoção de 4,45 mil toneladas de poluentes do ar, anualmente. O armazenamento médio anual de carbono total foi de 158 mil toneladas e o de CO2 equivalente foi de 580 mil toneladas, com um valor total estimado anual de R$ 173 milhões. Foram encontrados expressivos valores do estoque bruto de carbono (3,98 milhões de toneladas) e CO2 equivalente (14,59 milhões de toneladas), sendo avaliado em R$ 4,35 bilhões. Concluímos que as FUPs de Juiz de Fora possuem um grande potencial para benefícios socioambientais e econômicos.


Asunto(s)
Bosques , Área Urbana , Contaminantes Atmosféricos , Secuestro de Carbono
14.
Nature ; 612(7940): 483-487, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477532

RESUMEN

Recent observations suggest that the large carbon sink in mature and recovering forests may be strongly limited by nitrogen1-3. Nitrogen-fixing trees (fixers) in symbiosis with bacteria provide the main natural source of new nitrogen to tropical forests3,4. However, abundances of fixers are tightly constrained5-7, highlighting the fundamental unanswered question of what limits new nitrogen entering tropical ecosystems. Here we examine whether herbivory by animals is responsible for limiting symbiotic nitrogen fixation in tropical forests. We evaluate whether nitrogen-fixing trees experience more herbivory than other trees, whether herbivory carries a substantial carbon cost, and whether high herbivory is a result of herbivores targeting the nitrogen-rich leaves of fixers8,9. We analysed 1,626 leaves from 350 seedlings of 43 tropical tree species in Panama and found that: (1) although herbivory reduces the growth and survival of all seedlings, nitrogen-fixing trees undergo 26% more herbivory than non-fixers; (2) fixers have 34% higher carbon opportunity costs owing to herbivory than non-fixers, exceeding the metabolic cost of fixing nitrogen; and (3) the high herbivory of fixers is not driven by high leaf nitrogen. Our findings reveal that herbivory may be sufficient to limit tropical symbiotic nitrogen fixation and could constrain its role in alleviating nitrogen limitation on the tropical carbon sink.


Asunto(s)
Bosques , Herbivoria , Fijación del Nitrógeno , Nitrógeno , Árboles , Clima Tropical , Animales , Carbono/metabolismo , Secuestro de Carbono , Nitrógeno/metabolismo , Panamá , Hojas de la Planta , Plantones , Árboles/clasificación , Árboles/metabolismo
15.
Sci Rep ; 12(1): 16769, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202891

RESUMEN

A large area of the terrestrial land surface is used for livestock grazing. Trees on grazing lands provide and can enhance multiple ecosystem services such as provisioning, cultural and regulating, that include carbon sequestration. In this study, we assessed the above- and belowground carbon stocks across six different land-uses in livestock-dominated landscapes of Mexico. We measured tree biomass and soil organic carbon (SOC) stocks in fodder banks, live fences, pasturelands with dispersed trees, secondary forests, and primary forests from three different geographical regions and compared them with conventional open pasturelands respectively. We also calculated tree diversity indices for each land-use and their similarity with native primary forests. The aboveground woody biomass stocks differed significantly between land-uses and followed the gradient from less diverse conventional open pasturelands to silvopastoral systems and ecologically complex primary forests. The SOC stocks showed a differential response to the land-use gradient dependent on the study region. Multivariate analyses showed that woody biomass, fine root biomass, and SOC concentrations were positively related, while land-use history and soil bulk density showed an inverse relationship to these variables. Silvopastoral systems and forest remnants stored 27-163% more carbon compared to open pasturelands. Our results demonstrate the importance of promoting appropriate silvopastoral systems and conserving forest remnants within livestock-dominated landscapes as a land-based carbon mitigation strategy. Furthermore, our findings also have important implications to help better manage livestock-dominated landscapes and minimize pressures on natural protected areas and biodiversity in the hotspots of deforestation for grassland expansion.


Asunto(s)
Carbono , Ecosistema , Animales , Biomasa , Carbono/análisis , Secuestro de Carbono , Bosques , Ganado , México , Suelo , Árboles
16.
Sci Rep ; 12(1): 15064, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36065006

RESUMEN

Food systems (FSs) emit ~ 20 GtCO2e/y (~ 35% of global greenhouse gas emissions). This level tends to raise given the expected increases in food demands, which may threaten global climate targets. Through a rapid assessment, evaluating 60+ scenarios based on existing low-emission and carbon sequestration practices, we estimate that intensifying FSs could reduce its emissions from 21.4 to - 2.0 GtCO2e/y and address increasing food demands without relying on carbon offsets (e.g., related to afforestation and reforestation programs). However, given historical trends and regional contexts, a more diverse portfolio of practices, including diet shifts and new-horizon technologies, will be needed to increase the feasibility of achieving net-zero FSs. One likely pathway consists of implementing practices that shift food production to the 30th-percentile of least emission-intensive FSs (~ 45% emissions reduction), sequester carbon at 50% of its potential (~ 5 GtCO2e/y) and adopt diet shifts and new-horizon technologies (~ 6 GtCO2e/y). For a successful transition to happen, the global FSs would, in the next decade (2020s), need to implement cost-effective mitigation practices and technologies, supported by improvements in countries' governance and technical assistance, innovative financial mechanisms and research focused on making affordable technologies in the following two decades (2030-2050). This work provides options and a vision to guide global FSs to achieving net-zero by 2050.


Asunto(s)
Secuestro de Carbono , Gases de Efecto Invernadero , Carbono , Clima , Alimentos , Efecto Invernadero
17.
J Environ Manage ; 323: 116269, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36126601

RESUMEN

Climate change is a major constraint on the sustainability of the humid tropics, maintaining ecosystem services, food production, and social functioning. Humid tropics play an essential role in C storage and greenhouse gas (GHG) emission reduction. Unfortunately, unplanned economic exploration, human occupation, and lack of knowledge of techniques to maintain ecosystem services negatively affect the humid tropics. In this study, we focused on the mechanisms of GHG emissions, C storage, and their mitigation strategies. This review indicated technologies that can be adopted by farmers in humid tropics to maintain or increase their capacity to store C stocks and reduce GHG emissions. The adoption of climate-smart agriculture technologies and the regulation of ecosystem services markets will accelerate the progress of preserving the humid tropics. Improved management practices, such as proper N fertilizer management and the introduction of N2-fixing legumes, can increase soil C sequestration, providing economic and environmental trade-offs associated with these management strategies. Public and private investments toward knowledge dissemination and technology adoption regarding GHG emissions reduction and soil C storage are needed to allow humid tropics to maintain their critical function of generating environmental and societal benefits.


Asunto(s)
Gases de Efecto Invernadero , Agricultura , Brasil , Carbono , Secuestro de Carbono , Ecosistema , Fertilizantes , Pradera , Efecto Invernadero , Gases de Efecto Invernadero/análisis , Humanos , Suelo
18.
Nature ; 608(7923): 558-562, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948632

RESUMEN

The productivity of rainforests growing on highly weathered tropical soils is expected to be limited by phosphorus availability1. Yet, controlled fertilization experiments have been unable to demonstrate a dominant role for phosphorus in controlling tropical forest net primary productivity. Recent syntheses have demonstrated that responses to nitrogen addition are as large as to phosphorus2, and adaptations to low phosphorus availability appear to enable net primary productivity to be maintained across major soil phosphorus gradients3. Thus, the extent to which phosphorus availability limits tropical forest productivity is highly uncertain. The majority of the Amazonia, however, is characterized by soils that are more depleted in phosphorus than those in which most tropical fertilization experiments have taken place2. Thus, we established a phosphorus, nitrogen and base cation addition experiment in an old growth Amazon rainforest, with a low soil phosphorus content that is representative of approximately 60% of the Amazon basin. Here we show that net primary productivity increased exclusively with phosphorus addition. After 2 years, strong responses were observed in fine root (+29%) and canopy productivity (+19%), but not stem growth. The direct evidence of phosphorus limitation of net primary productivity suggests that phosphorus availability may restrict Amazon forest responses to CO2 fertilization4, with major implications for future carbon sequestration and forest resilience to climate change.


Asunto(s)
Cambio Climático , Fósforo , Bosque Lluvioso , Suelo , Árboles , Clima Tropical , Aclimatación , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Secuestro de Carbono , Cationes/metabolismo , Cationes/farmacología , Cambio Climático/estadística & datos numéricos , Modelos Biológicos , Nitrógeno/metabolismo , Nitrógeno/farmacología , Fósforo/metabolismo , Fósforo/farmacología , Suelo/química , Árboles/efectos de los fármacos , Árboles/metabolismo , Incertidumbre
19.
Nat Commun ; 13(1): 4051, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831284

RESUMEN

A significant proportion of carbon (C) captured by terrestrial primary production is buried in lacustrine ecosystems, which have been substantially affected by anthropogenic activities globally. However, there is a scarcity of sedimentary organic carbon (OC) accumulation information for lakes surrounded by highly productive rainforests at warm tropical latitudes, or in response to land cover and climate change. Here, we combine new data from intensive campaigns spanning 13 lakes across remote Amazonian regions with a broad literature compilation, to produce the first spatially-weighted global analysis of recent OC burial in lakes (over ~50-100-years) that integrates both biome type and forest cover. We find that humid tropical forest lake sediments are a disproportionately important global OC sink of ~80 Tg C yr-1 with implications for climate change. Further, we demonstrate that temperature and forest conservation are key factors in maintaining massive organic carbon pools in tropical lacustrine sediments.


Asunto(s)
Carbono , Lagos , Secuestro de Carbono , Ecosistema , Bosques , Sedimentos Geológicos , Clima Tropical
20.
Sci Total Environ ; 845: 157324, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35843316

RESUMEN

This study looked at the potential of thermal comfort provided to animals by four different Brazilian savanna (Cerrado) native trees, as well as their potential for carbon sink. The evaluations were carried out during the summer of 2020, which consisted of the collection of microclimate variables. The Mean Radiant Temperature (TMR, °C) was derived from the shaded and unshaded areas under the trees, and from that, the Radiant Heat Load (RHL, W m-2) was calculated as an index of thermal comfort. Solar radiation was estimated considering the sum of the direct, diffuse, and reflected components (W m-2), and carbon stock from trees biomass for CO2 sequestration was estimated from an allometric model applied to the native Cerrado tree species. The shade of the native trees reduced the meteorological variables such as dry bulb and black globe temperatures, to values considered adequate for the thermal comfort of animals, with an average reduction respectively equal to 1.3 °C and 6.4 °C. This represents a significant difference compared to the unshaded area as well as among tree species (P < 0.05), reflecting in lower values of TMR and RHL in the shaded area provided by each species. Carbon sequestration individually estimated by each native tree species was on average 8.85 Mg per tree. These results demonstrate the great potential for native tree species in the Cerrado biome to be used in agroforestry systems to provide higher levels of thermal comfort to animals and to combat climate change through their aptitude of CO2 sink.


Asunto(s)
Secuestro de Carbono , Árboles , Animales , Brasil , Dióxido de Carbono , Pradera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA