Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.244
Filtrar
1.
FASEB J ; 38(15): e23851, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39108204

RESUMEN

Targeting cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) with specific antibody offers long-term benefits for cancer immunotherapy but can cause severe adverse effects in the heart. This study aimed to investigate the role of anti-CTLA-4 antibody in pressure overload-induced cardiac remodeling and dysfunction. Transverse aortic constriction (TAC) was used to induce cardiac hypertrophy and heart failure in mice. Two weeks after the TAC treatment, mice received anti-CTLA-4 antibody injection twice a week at a dose of 10 mg/kg body weight. The administration of anti-CTLA-4 antibody exacerbated TAC-induced decline in cardiac function, intensifying myocardial hypertrophy and fibrosis. Further investigation revealed that anti-CTLA-4 antibody significantly elevated systemic inflammatory factors levels and facilitated the differentiation of T helper 17 (Th17) cells in the peripheral blood of TAC-treated mice. Importantly, anti-CTLA-4 mediated differentiation of Th17 cells and hypertrophic phenotype in TAC mice were dramatically alleviated by the inhibition of interleukin-17A (IL-17A) by an anti-IL-17A antibody. Furthermore, the C-X-C motif chemokine receptor 4 (CXCR4) antagonist AMD3100, also reversed anti-CTLA-4-mediated cardiotoxicity in TAC mice. Overall, these results suggest that the administration of anti-CTLA-4 antibody exacerbates pressure overload-induced heart failure by activating and promoting the differentiation of Th17 cells. Targeting the CXCR4/Th17/IL-17A axis could be a potential therapeutic strategy for mitigating immune checkpoint inhibitors-induced cardiotoxicity.


Asunto(s)
Antígeno CTLA-4 , Insuficiencia Cardíaca , Ratones Endogámicos C57BL , Células Th17 , Animales , Células Th17/inmunología , Células Th17/metabolismo , Ratones , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/antagonistas & inhibidores , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Masculino , Interleucina-17/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inhibidores , Diferenciación Celular , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/etiología
2.
Biochim Biophys Acta Gen Subj ; 1868(9): 130666, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38955313

RESUMEN

BACKGROUND: Diabetic stress acts on the cardiac tissue to induce cardiac hypertrophy and fibrosis. Diabetes induced activated renin angiotensin system (RAS) has been reported to play a critical role in mediating cardiac hypertrophy and fibrosis. Angiotensin converting enzyme (ACE) in producing Angiotensin-II, promotes cardiomyocyte hypertrophy and fibrotic damage. ACE2, a recently discovered molecule structurally homologous to ACE, has been reported to be beneficial in reducing the effect of RAS driven pathologies. METHODS: In vivo diabetic mouse model was used and co-labelling immunostaining assay have been performed to analyse the fibrotic remodeling and involvement of associated target signaling molecules in mouse heart tissue. For in vitro analyses, qPCR and western blot experiments were performed in different groups for RNA and protein expression analyses. RESULTS: Fibrosis markers were observed to be upregulated in the diabetic mouse heart tissue as well as in high glucose treated fibroblast and cardiomyocyte cells. Hyperglycemia induced overexpression of YAP1 leads to increased expression of ß-catenin (CTNNB1) and ACE with downregulated ACE2 expression. The differential expression of ACE/ACE2 promotes TGFB1-SMAD2/3 pathway in the hyperglycemic cardiomyocyte and fibroblast resulting in increased cardiac fibrotic remodeling. CONCLUSION: In the following study, we have reported YAP1 modulates the RAS signaling pathway by inducing ACE and inhibiting ACE2 activity to augment cardiomyocyte hypertrophy and fibrosis in hyperglycemic condition. Furthermore, we have shown that hyperglycemia induced dysregulation of ACE-ACE2 activity by YAP1 promotes cardiac fibrosis through ß-catenin/TGFB1 dependent pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Enzima Convertidora de Angiotensina 2 , Fibrosis , Hiperglucemia , Miocitos Cardíacos , Peptidil-Dipeptidasa A , Proteínas Señalizadoras YAP , Animales , Fibrosis/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Ratones , Proteínas Señalizadoras YAP/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Hiperglucemia/metabolismo , Hiperglucemia/patología , Masculino , Factor de Crecimiento Transformador beta1/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Transducción de Señal , Miocardio/metabolismo , Miocardio/patología , Proteína Smad2/metabolismo , Ratones Endogámicos C57BL , Cardiomegalia/metabolismo , Cardiomegalia/patología , Proteína smad3/metabolismo , Sistema Renina-Angiotensina , beta Catenina/metabolismo
3.
J Cell Mol Med ; 28(14): e18543, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39054575

RESUMEN

The significance of iron in myocardial mitochondria function cannot be underestimated, because deviations in iron levels within cardiomyocytes may have profound detrimental effects on cardiac function. In this study, we investigated the effects of ferroportin 1 (FPN1) on cardiac iron levels and pathological alterations in mice subjected to chronic intermittent hypoxia (CIH). The cTNT-FPN1 plasmid was administered via tail vein injection to induce the mouse with FPN1 overexpression in the cardiomyocytes. CIH was established by exposing the mice to cycles of 21%-5% FiO2 for 3 min, 8 h per day. Subsequently, the introduction of hepcidin resulted in a reduction in FPN1 expression, and H9C2 cells were used to establish an IH model to further elucidate the role of FPN1. First, FPN1 overexpression ameliorated CIH-induced cardiac dysfunction, myocardial hypertrophy, mitochondrial damage and apoptosis. Second, FPN1 overexpression attenuated ROS levels during CIH. In addition, FPN1 overexpression mitigated CIH-induced cardiac iron accumulation. Moreover, the administration of hepcidin resulted in a reduction in FPN1 levels, further accelerating the CIH-induced levels of ROS, LIP and apoptosis in H9C2 cells. These findings indicate that the overexpression of FPN1 in cardiomyocytes inhibits CIH-induced cardiac iron accumulation, subsequently reducing ROS levels and mitigating mitochondrial damage. Conversely, the administration of hepcidin suppressed FPN1 expression and worsened cardiomyocyte iron toxicity injury.


Asunto(s)
Apoptosis , Cardiomegalia , Proteínas de Transporte de Catión , Hipoxia , Hierro , Miocitos Cardíacos , Especies Reactivas de Oxígeno , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/etiología , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Hipoxia/metabolismo , Hipoxia/complicaciones , Ratones , Especies Reactivas de Oxígeno/metabolismo , Hierro/metabolismo , Masculino , Hepcidinas/metabolismo , Hepcidinas/genética , Línea Celular , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Ratas
4.
PLoS One ; 19(7): e0307467, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39038017

RESUMEN

Heart Failure (HF) continues to be a complex public health issue with increasing world population prevalence. Although overall mortality has decreased for HF and hypertrophic cardiomyopathy (HCM), a precursor for HF, their prevalence continues to increase annually. Because the etiology of HF and HCM is heterogeneous, it has been difficult to identify novel therapies to combat these diseases. Isoproterenol (ISP), a non-selective ß-adrenoreceptor agonist, is commonly used to induce cardiotoxicity and cause acute and chronic HCM and HF in mice. However, the variability in dose and duration of ISP treatment used in studies has made it difficult to determine the optimal combination of ISP dose and delivery method to develop a reliable ISP-induced mouse model for disease. Here we examined cardiac effects induced by ISP via subcutaneous (SQ) and SQ-minipump (SMP) infusions across 3 doses (2, 4, and 10mg/kg/day) over 2 weeks to determine whether SQ and SMP ISP delivery induced comparable disease severity in C57BL/6J mice. To assess disease, we measured body and heart weight, surface electrocardiogram (ECG), and echocardiography recordings. We found all 3 ISP doses comparably increase heart weight, but these increases are more pronounced when ISP was administered via SMP. We also found that the combination of ISP treatment and delivery method induces contrasting heart rate, RR interval, and R and S amplitudes that may place SMP treated mice at higher risk for sustained disease burden. Mice treated via SMP also had increased heart wall thickness and LV Mass, but mice treated via SQ showed greater increase in gene markers for hypertrophy and fibrosis. Overall, these data suggest that at 2 weeks, mice treated with 2, 4, or 10mg/kg/day ISP via SQ and SMP routes cause similar pathological heart phenotypes but highlight the importance of drug delivery method to induce differing disease pathways.


Asunto(s)
Cardiomegalia , Isoproterenol , Ratones Endogámicos C57BL , Animales , Isoproterenol/administración & dosificación , Cardiomegalia/inducido químicamente , Cardiomegalia/patología , Ratones , Masculino , Modelos Animales de Enfermedad , Ecocardiografía , Relación Dosis-Respuesta a Droga , Electrocardiografía
5.
PLoS One ; 19(7): e0307696, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39038022

RESUMEN

It has been reported that Ywhah (14-3-3η) reduces glycolysis. However, it remains unclear about the downstream mechanism by which glycolysis is regulated by 14-3-3η in cardiac hypertrophy. As an important regulator, Yes-associated protein (YAP) interacts with 14-3-3η to participate in the initiation and progression of various diseases in vivo. In this study, the model of H9C2 cardiomyocyte hypertrophy was established by triiodothyronine (T3) or rotenone stimulation to probe into the action mechanism of 14-3-3η. Interestingly, the overexpression of 14-3-3η attenuated T3 or rotenone induced cardiomyocyte hypertrophy and decreased glycolysis in H9C2 cardiomyocytes, whereas the knockdown of 14-3-3η had an opposite effect. Mechanistically, 14-3-3η can reduce the expression level of YAP and bind to it to reduce its nuclear translocation. In addition, changing YAP may affect the expression of lactate dehydrogenase A (LDHA), a glycolysis-related protein. Meanwhile, LDHA is also a possible target for 14-3-3η to mediate glycolysis based on changes in pyruvate, a substrate of LDHA. Collectively, 14-3-3η can suppress cardiomyocyte hypertrophy via decreasing the nucleus translocation of YAP and glycolysis, which indicates that 14-3-3η could be a promising target for inhibiting cardiac hypertrophy.


Asunto(s)
Proteínas 14-3-3 , Cardiomegalia , Glucólisis , L-Lactato Deshidrogenasa , Miocitos Cardíacos , Triyodotironina , Proteínas Señalizadoras YAP , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Animales , Ratas , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Triyodotironina/metabolismo , Triyodotironina/farmacología , L-Lactato Deshidrogenasa/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patología , Proteínas Señalizadoras YAP/metabolismo , Línea Celular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Isoenzimas/metabolismo , Isoenzimas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
6.
Curr Probl Cardiol ; 49(9): 102748, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009253

RESUMEN

Cardiomegaly is among the disorders categorized by a structural enlargement of the heart by any of the situations including pregnancy, resulting in damage to heart muscles and causing trouble in normal heart functioning. Cardiomegaly can be defined in terms of dilatation with an enlarged heart and decreased left or biventricular contraction. The genetic origin of cardiomegaly is becoming more evident due to extensive genomic research opening up new avenues to ensure the use of precision medicine. Cardiomegaly is usually assessed by using an array of radiological modalities, including computed tomography (CT) scans, chest X-rays, and MRIs. These imaging techniques have provided an important opportunity for the physiology and anatomy of the heart. This review aims to highlight the complexity of cardiomegaly, highlighting the contribution of both ecological and genetic variables to its progression. Moreover, we further highlight the worth of precise clinical diagnosis, which comprises blood biomarkers and electrocardiograms (EKG ECG), demonstrating the significance of distinguishing between numerous basic causes. Finally, the analysis highlights the extensive variation of treatment lines, such as lifestyle modifications, prescription drugs, surgery, and implantable devices, although highlighting the critical need for individualized and personalized care.


Asunto(s)
Cardiomegalia , Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/diagnóstico , Cardiomegalia/fisiopatología , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/terapia , Cardiomegalia/diagnóstico , Tomografía Computarizada por Rayos X/métodos , Imagen Multimodal/métodos , Imagen por Resonancia Magnética/métodos , Electrocardiografía
7.
J Cell Mol Med ; 28(14): e18546, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39046458

RESUMEN

Heart failure (HF) prognosis depends on various regulatory factors; microRNA-128 (miR-128) is identified as a regulator of cardiac fibrosis, contributing to HF. MyoD family inhibitor (MDFI), which is reported to be related with Wnt/ß-catenin pathway, is supposed to be regulated by miR-128. This study investigates the interaction between miR-128 and MDFI in cardiomyocyte development and elucidates its role in heart injury. Gene expression profiling assessed miR-128's effect on MDFI expression in HF using qPCR and Western blot analysis. Luciferase assays studied the direct interaction between miR-128 and MDFI. MTT, transwell, and immunohistochemistry evaluated the effects of miR-128 and MDFI on myocardial cells in mice HF. Genescan and luciferase assays validated the interaction between miR-128 and MDFI sequences. miR-128 mimics significantly reduced MDFI expression at mRNA and protein levels with decrease rate of 55%. Overexpression of miR-128 promoted apoptosis with the increase rate 65% and attenuated cardiomyocyte proliferation, while MDFI upregulation significantly enhanced proliferation. Elevated miR-128 levels upregulated Wnt1 and ß-catenin expression, whereas increased MDFI levels inhibited these expressions. Histological analysis with haematoxylin and eosin staining revealed that miR-128 absorption reduced MDFI expression, hindering cell proliferation and cardiac repair, with echocardiography showing corresponding improvements in cardiac function. Our findings suggest miR-128 interacts with MDFI, playing a crucial role in HF management by modulating the Wnt1/ß-catenin pathway. Suppression of miR-128 could promote cardiomyocyte proliferation, highlighting the potential value of the miR-128/MDFI interplay in HF treatment.


Asunto(s)
Apoptosis , Cardiomegalia , Proliferación Celular , Insuficiencia Cardíaca , MicroARNs , Miocitos Cardíacos , MicroARNs/genética , MicroARNs/metabolismo , Animales , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Apoptosis/genética , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Proliferación Celular/genética , Ratones , Masculino , Humanos , Vía de Señalización Wnt/genética , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , beta Catenina/metabolismo , beta Catenina/genética , Proteína Wnt1/metabolismo , Proteína Wnt1/genética
8.
J Cell Mol Med ; 28(13): e18493, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38963241

RESUMEN

Interleukin-5 (IL-5) has been reported to be involved in cardiovascular diseases, such as atherosclerosis and cardiac injury. This study aimed to investigate the effects of IL-5 on cardiac remodelling. Mice were infused with angiotensin II (Ang II), and the expression and source of cardiac IL-5 were analysed. The results showed that cardiac IL-5 expression was time- and dose-dependently decreased after Ang II infusion, and was mainly derived from cardiac macrophages. Additionally, IL-5-knockout (IL-5-/-) mice were used to observe the effects of IL-5 knockout on Ang II-induced cardiac remodelling. We found knockout of IL-5 significantly increased the expression of cardiac hypertrophy markers, elevated myocardial cell cross-sectional areas and worsened cardiac dysfunction in Ang II-infused mice. IL-5 deletion also promoted M2 macrophage differentiation and exacerbated cardiac fibrosis. Furthermore, the effects of IL-5 deletion on cardiac remodelling was detected after the STAT3 pathway was inhibited by S31-201. The effects of IL-5 on cardiac remodelling and M2 macrophage differentiation were reversed by S31-201. Finally, the effects of IL-5 on macrophage differentiation and macrophage-related cardiac hypertrophy and fibrosis were analysed in vitro. IL-5 knockout significantly increased the Ang II-induced mRNA expression of cardiac hypertrophy markers in myocardial cells that were co-cultured with macrophages, and this effect was reversed by S31-201. Similar trends in the mRNA levels of fibrosis markers were observed when cardiac fibroblasts and macrophages were co-cultured. In conclusions, IL-5 deficiency promote the differentiation of M2 macrophages by activating the STAT3 pathway, thereby exacerbating cardiac remodelling in Ang II-infused mice. IL-5 may be a potential target for the clinical prevention of cardiac remodelling.


Asunto(s)
Angiotensina II , Cardiomegalia , Fibrosis , Interleucina-5 , Macrófagos , Ratones Noqueados , Factor de Transcripción STAT3 , Transducción de Señal , Remodelación Ventricular , Animales , Angiotensina II/farmacología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Remodelación Ventricular/efectos de los fármacos , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Interleucina-5/metabolismo , Interleucina-5/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/genética , Cardiomegalia/inducido químicamente , Masculino , Ratones Endogámicos C57BL , Diferenciación Celular , Miocardio/metabolismo , Miocardio/patología
9.
Circ Res ; 135(4): 503-517, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38957990

RESUMEN

BACKGROUND: PANX1 (pannexin 1), a ubiquitously expressed ATP release membrane channel, has been shown to play a role in inflammation, blood pressure regulation, and myocardial infarction. However, the possible role of PANX1 in cardiomyocytes in the progression of heart failure has not yet been investigated. METHOD: We generated a novel mouse line with constitutive deletion of PANX1 in cardiomyocytes (Panx1MyHC6). RESULTS: PANX1 deletion in cardiomyocytes had no effect on unstressed heart function but increased the glycolytic metabolism and resulting glycolytic ATP production, with a concurrent decrease in oxidative phosphorylation, both in vivo and in vitro. In vitro, treatment of H9c2 (H9c2 rat myoblast cell line) cardiomyocytes with isoproterenol led to PANX1-dependent release of ATP and Yo-Pro-1 uptake, as assessed by pharmacological blockade with spironolactone and siRNA-mediated knockdown of PANX1. To investigate nonischemic heart failure and the preceding cardiac hypertrophy, we administered isoproterenol, and we demonstrated that Panx1MyHC6 mice were protected from systolic and diastolic left ventricle volume increases as a result of cardiomyocyte hypertrophy. Moreover, we found that Panx1MyHC6 mice showed decreased isoproterenol-induced recruitment of immune cells (CD45+), particularly neutrophils (CD11b+ [integrin subunit alpha M], Ly6g+ [lymphocyte antigen 6 family member G]), to the myocardium. CONCLUSIONS: Together, these data demonstrate that PANX1 deficiency in cardiomyocytes increases glycolytic metabolism and protects against cardiac hypertrophy in nonischemic heart failure at least in part by reducing immune cell recruitment. Our study implies PANX1 channel inhibition as a therapeutic approach to ameliorate cardiac dysfunction in patients with heart failure.


Asunto(s)
Conexinas , Glucólisis , Miocitos Cardíacos , Proteínas del Tejido Nervioso , Infiltración Neutrófila , Animales , Conexinas/genética , Conexinas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Isoproterenol/farmacología , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/patología , Ratones Endogámicos C57BL , Línea Celular , Masculino , Adenosina Trifosfato/metabolismo , Ratones Noqueados , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología
11.
Med Sci (Paris) ; 40(6-7): 534-543, 2024.
Artículo en Francés | MEDLINE | ID: mdl-38986098

RESUMEN

Cyclic nucleotide phosphodiesterases (PDEs) modulate neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple isoforms of PDEs with different enzymatic properties and subcellular locally regulate cyclic nucleotide levels and associated cellular functions. This organisation is severely disrupted during hypertrophy and heart failure (HF), which may contribute to disease progression. Clinically, PDE inhibition has been seen as a promising approach to compensate for the catecholamine desensitisation that accompanies heart failure. Although PDE3 inhibitors such as milrinone or enoximone can be used clinically to improve systolic function and relieve the symptoms of acute CHF, their chronic use has proved detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as potential new targets for the treatment of HF, each with a unique role in local cyclic nucleotide signalling pathways. In this review, we describe cAMP and cGMP signalling in cardiomyocytes and present the different families of PDEs expressed in the heart and their modifications in pathological cardiac hypertrophy and HF. We also review results from preclinical models and clinical data indicating the use of specific PDE inhibitors or activators that may have therapeutic potential in CI.


Title: Les phosphodiestérases des nucléotides cycliques - Cibles thérapeutiques dans l'hypertrophie et l'insuffisance cardiaques. Abstract: Les phosphodiestérases des nucléotides cycliques (PDE) modulent la régulation neuro-hormonale de la fonction cardiaque en dégradant l'AMPc et le GMPc. Dans les cardiomyocytes, de multiples isoformes de PDE, aux propriétés enzymatiques et aux localisations subcellulaires différentes, régulent localement les niveaux de nucléotides cycliques et les fonctions cellulaires associées. Cette organisation est fortement perturbée au cours de l'hypertrophie et de l'insuffisance cardiaque à fraction d'éjection réduite (IC), ce qui peut contribuer à la progression de la maladie. Sur le plan clinique, l'inhibition des PDE a été considérée comme une approche prometteuse pour compenser la désensibilisation aux catécholamines qui accompagne l'IC. Bien que des inhibiteurs de la PDE3, tels que la milrinone ou l'énoximone, puissent être utilisés cliniquement pour améliorer la fonction systolique et soulager les symptômes de l'IC aiguë, leur utilisation chronique s'est avérée préjudiciable. D'autres PDE, telles que les PDE1, PDE2, PDE4, PDE5, PDE9 et PDE10, sont apparues comme de nouvelles cibles potentielles pour le traitement de l'IC, chacune ayant un rôle unique dans les voies de signalisation locales des nucléotides cycliques. Dans cette revue, nous décrivons la signalisation de l'AMPc et du GMPc dans les cardiomyocytes et présentons les différentes familles de PDE exprimées dans le cœur ainsi que leurs modifications dans l'hypertrophie cardiaque pathologique et dans l'IC. Nous évaluons également les résultats issus de modèles précliniques ainsi que les données cliniques indiquant l'utilisation d'inhibiteurs ou d'activateurs de PDE spécifiques qui pourraient avoir un potentiel thérapeutique dans l'IC.


Asunto(s)
Cardiomegalia , Insuficiencia Cardíaca , Inhibidores de Fosfodiesterasa , Humanos , Cardiomegalia/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Animales , Inhibidores de Fosfodiesterasa/uso terapéutico , Inhibidores de Fosfodiesterasa/farmacología , 3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/fisiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Terapia Molecular Dirigida/métodos , GMP Cíclico/metabolismo , GMP Cíclico/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , AMP Cíclico/metabolismo , AMP Cíclico/fisiología , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/fisiología
13.
Biochem Pharmacol ; 226: 116387, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944397

RESUMEN

Gestational diabetes mellitus (GDM) is associated with cardiovascular disease in postnatal life. The current study tested the hypothesis that GDM caused the cardiac hypertrophy in fetal (ED18.5), postnatal day 7 (PD7), postnatal day 21 (PD21) and postnatal day 90 (PD90) offspring by upregulation of BRD4 and mitochondrial dysfunction. Pregnant mice were divided into control and GDM groups. Hearts were isolated from ED18.5, PD7, PD21 and PD90. GDM increased the body weight (BW) and heart weight (HW) in ED18.5 and PD7, but not PD21 and PD90 offspring. However, HW/BW ratio was increased in all ages of GDM offspring compared to control group. Electron microscopy showed disorganized myofibrils, mitochondrial swelling, vacuolization, and cristae disorder in GDM offspring. GDM resulted in myocardial hypertrophy in offspring, which persisted from fetus to adult in a sex-independent manner. Echocardiography analysis revealed that GDM caused diastolic dysfunction, but had no effect on systolic function. Meanwhile, myocardial BRD4 was significantly upregulated in GDM offspring and BRD4 inhibition by JQ1 alleviated GDM-induced myocardial hypertrophy in offspring. Co-immunoprecipitation showed that BRD4 interacted with DRP1 and there was an increase of BRD4 and DRP1 interaction in GDM offspring. Furthermore, GDM caused the accumulation of damaged mitochondria in hearts from all ages of offspring, including mitochondrial fusion fission imbalance (upregulation of DRP1, and downregulation of MFN1, MFN2 and OPA1) and myocardial mitochondrial ROS accumulation, which was reversed by JQ1. These results suggested that the upregulation of BRD4 is involved in GDM-induced myocardial hypertrophy in the offspring through promoting mitochondrial damage in a gender-independent manner.


Asunto(s)
Cardiomegalia , Diabetes Gestacional , Mitocondrias Cardíacas , Factores de Transcripción , Regulación hacia Arriba , Animales , Femenino , Diabetes Gestacional/metabolismo , Embarazo , Cardiomegalia/metabolismo , Cardiomegalia/etiología , Cardiomegalia/patología , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Masculino , Mitocondrias Cardíacas/metabolismo , Ratones Endogámicos C57BL , Efectos Tardíos de la Exposición Prenatal/metabolismo , Caracteres Sexuales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas que Contienen Bromodominio
14.
Eur J Pharmacol ; 978: 176767, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38909934

RESUMEN

Fenofibrate, a PPAR-α agonist clinically used to lower serum lipid levels, reduces cardiac remodeling and improves cardiac function. However, its mechanism of action is not completely elucidated. In this study we examined the effect of fenofibrate on mitochondria in a rat model of renovascular hypertension, focusing on mediators controlling mitochondrial dynamics and autophagy. Rats with two-kidney one-clip (2K1C) hypertension were treated with fenofibrate 150 mg/kg/day (2K1C-FFB) or vehicle (2K1C-VEH) for 8 weeks. Systolic blood pressure and cardiac functional were in-vivo assessed, while cardiomyocyte size and protein expression of mediators of cardiac hypertrophy and mitochondrial dynamics were ex-vivo examined by histological and Western blot analyses. Fenofibrate treatment counteracted the development of hypertension and the increase of left ventricular mass, relative wall thickness and cross-sectional area of cardiomyocytes. Furthermore, fenofibrate re-balanced the expression Mfn2, Drp1 and Parkin, regulators of fusion, fission, mitophagy respectively. Regarding autophagy, the LC3-II/LC3-I ratio was increased in 2K1C-VEH and 2K1C-FFB, whereas the autophagy was increased only in 2K1C-FFB. In cultured H9C2 cardiomyoblasts, fenofibrate reversed the Ang II-induced mRNA up-regulation of hypertrophy markers Nppa and Myh7, accumulation of reactive oxygen species and depolarization of the mitochondrial membrane exerting protection mediated by up-regulation of the Uncoupling protein 2. Our results indicate that fenofibrate acts directly on cardiomyocytes and counteracts the pressure overload-induced cardiac maladaptive remodeling. This study reveals a so far hidden mechanism involving mitochondrial dynamics in the beneficial effects of fenofibrate, support its repurposing for the treatment of cardiac hypertrophy and provide new potential targets for its pharmacological function.


Asunto(s)
Cardiomegalia , Modelos Animales de Enfermedad , Fenofibrato , Dinámicas Mitocondriales , Miocitos Cardíacos , Remodelación Ventricular , Animales , Fenofibrato/farmacología , Fenofibrato/uso terapéutico , Dinámicas Mitocondriales/efectos de los fármacos , Masculino , Ratas , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Cardiomegalia/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Remodelación Ventricular/efectos de los fármacos , Autofagia/efectos de los fármacos , Hipertensión Renovascular/tratamiento farmacológico , Hipertensión Renovascular/metabolismo , Hipertensión Renovascular/patología , Hipertensión Renovascular/fisiopatología , Ratas Wistar , Presión Sanguínea/efectos de los fármacos
15.
Cell Death Dis ; 15(6): 450, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926347

RESUMEN

Pathological cardiac hypertrophy is one of the major risk factors of heart failure and other cardiovascular diseases. However, the mechanisms underlying pathological cardiac hypertrophy remain largely unknown. Here, we identified the first evidence that TNFAIP3 interacting protein 3 (TNIP3) was a negative regulator of pathological cardiac hypertrophy. We observed a significant upregulation of TNIP3 in mouse hearts subjected to transverse aortic constriction (TAC) surgery and in primary neonatal rat cardiomyocytes stimulated by phenylephrine (PE). In Tnip3-deficient mice, cardiac hypertrophy was aggravated after TAC surgery. Conversely, cardiac-specific Tnip3 transgenic (TG) mice showed a notable reversal of the same phenotype. Accordingly, TNIP3 alleviated PE-induced cardiomyocyte enlargement in vitro. Mechanistically, RNA-sequencing and interactome analysis were combined to identify the signal transducer and activator of transcription 1 (STAT1) as a potential target to clarify the molecular mechanism of TNIP3 in pathological cardiac hypertrophy. Via immunoprecipitation and Glutathione S-transferase assay, we found that TNIP3 could interact with STAT1 directly and suppress its degradation by suppressing K48-type ubiquitination in response to hypertrophic stimulation. Remarkably, preservation effect of TNIP3 on cardiac hypertrophy was blocked by STAT1 inhibitor Fludaradbine or STAT1 knockdown. Our study found that TNIP3 serves as a novel suppressor of pathological cardiac hypertrophy by promoting STAT1 stability, which suggests that TNIP3 could be a promising therapeutic target of pathological cardiac hypertrophy and heart failure.


Asunto(s)
Cardiomegalia , Miocitos Cardíacos , Factor de Transcripción STAT1 , Animales , Humanos , Masculino , Ratones , Ratas , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Fenilefrina/farmacología , Estabilidad Proteica/efectos de los fármacos , Factor de Transcripción STAT1/metabolismo , Ubiquitinación , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
16.
Int Immunopharmacol ; 137: 112526, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908088

RESUMEN

In this study, we identified FOXP3 as a transcription factor for lncRNA SNHG1, which exerts a significant protective role against cardiomyocyte hypertrophy. Through DNA-pull down experiments and ChIP analysis, we confirmed that FOXP3 could bind to the promoter of SNHG1. Luciferase reporter and RT-qPCR experiments validated that FOXP3 overexpression promoted SNHG1 expression in cardiomyocytes. Furthermore, in a model of cardiomyocyte hypertrophy, FOXP3 expression was upregulated, particularly in cardiomyocytes. Functional assays demonstrated that FOXP3 overexpression inhibited cardiomyocyte hypertrophy, while FOXP3 knockdown held the opposite effect. Additionally, we revealed that lncRNA SNHG1 acted as a sponge for miR-182, miR-326, and miR-3918, thereby stabilizing FOXP3 mRNA in cardiomyocytes. The protective role of SNHG1 against cardiomyocyte hypertrophy was found to depend on the presence of FOXP3, forming a positive FOXP3/SNHG1 feedback axis. Moreover, we unveiled this positive FOXP3/SNHG1 feedback axis suppressed cardiomyocyte hypertrophy by negatively regulating Parkin-mediated mitophagy. These findings provide novel insights into the molecular mechanisms underlying cardiomyocyte hypertrophy and offer potential therapeutic targets for related interventions.


Asunto(s)
Factores de Transcripción Forkhead , MicroARNs , Mitofagia , Miocitos Cardíacos , ARN Largo no Codificante , Ubiquitina-Proteína Ligasas , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , MicroARNs/genética , MicroARNs/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/genética , Ratas , Humanos , Ratas Sprague-Dawley , Células Cultivadas
17.
Eur J Pharmacol ; 977: 176709, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38843948

RESUMEN

Cardiac Hypertrophy is an adaptive response of the body to physiological and pathological stimuli, which increases cardiomyocyte size, thickening of cardiac muscles and progresses to heart failure. Downregulation of SIRT1 in cardiomyocytes has been linked with the pathogenesis of cardiac hypertrophy. The present study aimed to investigate the effect of Artesunate against isoprenaline induced cardiac hypertrophy in rats via SIRT1 inhibiting NF-κB activation. Experimental cardiac hypertrophy was induced in rats by subcutaneous administration of isoprenaline (5 mg/kg) for 14 days. Artesunate was administered simultaneously for 14 days at a dose of 25 mg/kg and 50 mg/kg. Artesunate administration showed significant dose dependent attenuation in mean arterial pressure, electrocardiogram, hypertrophy index and left ventricular wall thickness compared to the disease control group. It also alleviated cardiac injury biomarkers and oxidative stress. Histological observation showed amelioration of tissue injury in the artesunate treated groups compared to the disease control group. Further, artesunate treatment increased SIRT1 expression and decreased NF-kB expression in the heart. The results of the study show the cardioprotective effect of artesunate via SIRT1 inhibiting NF-κB activation in cardiomyocytes.


Asunto(s)
Artesunato , Cardiomegalia , Isoproterenol , FN-kappa B , Sirtuina 1 , Animales , Artesunato/farmacología , Artesunato/uso terapéutico , Sirtuina 1/metabolismo , Isoproterenol/toxicidad , FN-kappa B/metabolismo , Masculino , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Cardiomegalia/prevención & control , Ratas , Estrés Oxidativo/efectos de los fármacos , Artemisininas/farmacología , Artemisininas/uso terapéutico , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Ratas Sprague-Dawley
18.
Life Sci ; 351: 122837, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879156

RESUMEN

AIM: Chronic sympathetic stimulation has been identified as a primary factor in the pathogenesis of cardiac hypertrophy (CH). However, there is no appropriate treatment available for the management of CH. Recently, it has been revealed that pyruvate kinase M2 (PKM2) plays a significant role in cardiac remodeling, fibrosis, and hypertrophy. However, the therapeutic potential of selective PKM2 inhibitor has not yet been explored in cardiac hypertrophy. Thus, in the current study, we have studied the cardioprotective potential of Compound 3K, a selective PKM2 inhibitor in isoproterenol-induced CH model. METHODS: To induce cardiac hypertrophy, male Wistar rats were subcutaneously administered isoproterenol (ISO, 5 mg/kg/day) for 14 days. Compound 3K at dosages of 2 and 4 mg/kg orally was administered to ISO-treated rats for 14 days to explore its effects on various parameters like ECG, ventricular functions, hypertrophic markers, histology, inflammation, and protein expression were performed. RESULTS: Fourteen days administration of ISO resulted in the induction of CH, which was evidenced by alterations in ECG, ventricular dysfunctions, increase in hypertrophy markers, and fibrosis. The immunoblotting of hypertrophy heart revealed the significant rise in PKM2 and reduction in PKM1 protein expression. Treatment with Compound 3K led to downregulation of PKM2 and upregulation of PKM1 protein expression. Compound 3K showed cardioprotective effects by improving ECG, cardiac functions, hypertrophy markers, inflammation, and fibrosis. Further, it also reduced cardiac expression of PKM2-associated splicing protein, HIF-1α, and caspase-3. CONCLUSION: Our findings suggest that Compound 3K has a potential cardioprotective effect via PKM2 inhibition in isoproterenol-induced CH.


Asunto(s)
Cardiomegalia , Isoproterenol , Piruvato Quinasa , Animales , Masculino , Ratas , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/prevención & control , Cardiomegalia/metabolismo , Cardiotónicos/farmacología , Fibrosis , Isoproterenol/toxicidad , Piruvato Quinasa/metabolismo , Piruvato Quinasa/antagonistas & inhibidores , Ratas Wistar , Transducción de Señal/efectos de los fármacos
19.
J Cell Mol Med ; 28(12): e18413, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38894694

RESUMEN

Cardiac hypertrophy, worldwide known as an adaptive functional compensatory state of myocardial stress, is mainly believed to proceed to severe heart diseases, even to sudden death. Emerging studies have explored the microRNA alteration during hypertrophy. However, the mechanisms of microRNAs involved in cardiac hypertrophy are still uncertain. We studied young rats to establish abdominal aorta coarctation (AAC) for 4 weeks. With the significant downregulated cardiac function and upregulated hypertrophic biomarkers, AAC-induced rats showed enlarged myocardiocytes and alterations in microRNAs, especially downregulated miR-31-5p. miR-31-5p targets the 3'UTR of Nfatc2ip and inhibits myocardial hypertrophy in vitro and in vivo. Furthermore, we verified that Nfatc2ip is necessary and sufficient for cardiac hypertrophy in neonatal rat cardiomyocytes. Moreover, we found miR-31-5p inhibited the colocalization of Nfatc2ip and hypertrophic gene ß-Mhc. Luciferase assay and ChiP-qPCR test demonstrated that Nfatc2ip binded to the core-promoter of ß-Mhc and enhanced its transcriptional activity. Above all, our study found a new pathway, mir-31-5p/Nfatc2ip/ß-Mhc, which is involved in cardiac hypertrophy, suggesting a potential target for intervention of cardiac hypertrophy.


Asunto(s)
Cardiomegalia , MicroARNs , Miocitos Cardíacos , Factores de Transcripción NFATC , MicroARNs/genética , MicroARNs/metabolismo , Animales , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Masculino , Ratas Sprague-Dawley , Regulación de la Expresión Génica , Regiones no Traducidas 3' , Modelos Animales de Enfermedad
20.
Pharmacol Res ; 205: 107263, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876442

RESUMEN

Pressure overload-induced pathological cardiac hypertrophy eventually leads to heart failure (HF). Unfortunately, lack of effective targeted therapies for HF remains a challenge in clinical management. Mixed-lineage leukemia 4 (MLL4) is a member of the SET family of histone methyltransferase enzymes, which possesses histone H3 lysine 4 (H3K4)-specific methyltransferase activity. However, whether and how MLL4 regulates cardiac function is not reported in adult HF. Here we report that MLL4 is required for endoplasmic reticulum (ER) stress homeostasis of cardiomyocytes and protective against pressure overload-induced cardiac hypertrophy and HF. We observed that MLL4 is increased in the heart tissue of HF mouse model and HF patients. The cardiomyocyte-specific deletion of Mll4 (Mll4-cKO) in mice leads to aggravated ER stress and cardiac dysfunction following pressure overloading. MLL4 knockdown neonatal rat cardiomyocytes (NRCMs) also display accelerated decompensated ER stress and hypertrophy induced by phenylephrine (PE). The combined analysis of Cleavage Under Targets and Tagmentation sequencing (CUT&Tag-seq) and RNA sequencing (RNA-seq) data reveals that, silencing of Mll4 alters the chromatin landscape for H3K4me1 modification and gene expression patterns in NRCMs. Interestingly, the deficiency of MLL4 results in a marked reduction of H3K4me1 and H3K27ac occupations on Thrombospondin-4 (Thbs4) gene loci, as well as Thbs4 gene expression. Mechanistically, MLL4 acts as a transcriptional activator of Thbs4 through mono-methylation of H3K4 and further regulates THBS4-dependent ER stress response, ultimately plays a role in HF. Our study indicates that pharmacologically targeting MLL4 and ER stress might be a valid therapeutic approach to protect against cardiac hypertrophy and HF.


Asunto(s)
Estrés del Retículo Endoplásmico , Insuficiencia Cardíaca , N-Metiltransferasa de Histona-Lisina , Ratones Endogámicos C57BL , Miocitos Cardíacos , Animales , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/etiología , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Masculino , Humanos , Ratones Noqueados , Ratas , Ratones , Células Cultivadas , Cardiomegalia/metabolismo , Cardiomegalia/genética , Ratas Sprague-Dawley , Trombospondinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA