Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.875
Filtrar
1.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39221968

RESUMEN

The lymphatic system is formed during embryonic development by the commitment of specialized lymphatic endothelial cells (LECs) and their subsequent assembly in primary lymphatic vessels. Although lymphatic cells are in continuous contact with mesenchymal cells during development and in adult tissues, the role of mesenchymal cells in lymphatic vasculature development remains poorly characterized. Here, we show that a subpopulation of mesenchymal cells expressing the transcription factor Osr1 are in close association with migrating LECs and established lymphatic vessels in mice. Lineage tracing experiments revealed that Osr1+ cells precede LEC arrival during lymphatic vasculature assembly in the back of the embryo. Using Osr1-deficient embryos and functional in vitro assays, we show that Osr1 acts in a non-cell-autonomous manner controlling proliferation and early migration of LECs to peripheral tissues. Thereby, mesenchymal Osr1+ cells control, in a bimodal manner, the production of extracellular matrix scaffold components and signal ligands crucial for lymphatic vessel formation.


Asunto(s)
Células Endoteliales , Linfangiogénesis , Vasos Linfáticos , Factores de Transcripción , Animales , Vasos Linfáticos/embriología , Vasos Linfáticos/metabolismo , Vasos Linfáticos/citología , Ratones , Linfangiogénesis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células Endoteliales/metabolismo , Células Endoteliales/citología , Movimiento Celular/genética , Proliferación Celular , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Mesodermo/metabolismo , Mesodermo/citología , Regulación del Desarrollo de la Expresión Génica , Linaje de la Célula
2.
Stem Cell Res Ther ; 15(1): 274, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218930

RESUMEN

BACKGROUND: Understanding the lineage differentiation of human prostate not only is crucial for basic research on human developmental biology but also significantly contributes to the management of prostate-related disorders. Current knowledge mainly relies on studies on rodent models, lacking human-derived alternatives despite clinical samples may provide a snapshot at certain stage. Human embryonic stem cells can generate all the embryonic lineages including the prostate, and indeed a few studies demonstrate such possibility based on co-culture or co-transplantation with urogenital mesenchyme into mouse renal capsule. METHODS: To establish a stepwise protocol to obtain prostatic organoids in vitro from human embryonic stem cells, we apply chemicals and growth factors by mimicking the regulation network of transcription factors and signal transduction pathways, and construct cell lines carrying an inducible NKX3-1 expressing cassette, together with three-dimensional culture system. Unpaired t test was applied for statistical analyses. RESULTS: We first successfully generate the definitive endoderm, hindgut, and urogenital sinus cells. The embryonic stem cell-derived urogenital sinus cells express prostatic key transcription factors AR and FOXA1, but fail to express NKX3-1. Therefore, we construct NKX3-1-inducible cell line by homologous recombination, which is eventually able to yield AR, FOXA1, and NKX3-1 triple-positive urogenital prostatic lineage cells through stepwise differentiation. Finally, combined with 3D culture we successfully derive prostate-like organoids with certain structures and prostatic cell populations. CONCLUSIONS: This study reveals the crucial role of NKX3-1 in prostatic differentiation and offers the inducible NKX3-1 cell line, as well as provides a stepwise differentiation protocol to generate human prostate-like organoids, which should facilitate the studies on prostate development and disease pathogenesis.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Proteínas de Homeodominio , Células Madre Embrionarias Humanas , Próstata , Factores de Transcripción , Humanos , Próstata/citología , Próstata/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Masculino , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Organoides/metabolismo , Organoides/citología , Ratones , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Animales , Línea Celular
3.
J Clin Invest ; 134(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225088

RESUMEN

The periosteum contains skeletal stem/progenitor cells that contribute to bone fracture healing. However, the in vivo identity of periosteal skeletal stem cells (P-SSCs) remains unclear, and membrane protein markers of P-SSCs that facilitate tissue engineering are needed. Here, we identified integral membrane protein 2A (Itm2a) enriched in SSCs using single-cell transcriptomics. Itm2a+ P-SSCs displayed clonal multipotency and self-renewal and sat at the apex of their differentiation hierarchy. Lineage-tracing experiments showed that Itm2a selectively labeled the periosteum and that Itm2a+ cells were preferentially located in the outer fibrous layer of the periosteum. The Itm2a+ cells rarely expressed CD34 or Osx, but expressed periosteal markers such as Ctsk, CD51, PDGFRA, Sca1, and Gli1. Itm2a+ P-SSCs contributed to osteoblasts, chondrocytes, and marrow stromal cells upon injury. Genetic lineage tracing using dual recombinases showed that Itm2a and Prrx1 lineage cells generated spatially separated subsets of chondrocytes and osteoblasts during fracture healing. Bone morphogenetic protein 2 (Bmp2) deficiency or ablation of Itm2a+ P-SSCs resulted in defects in fracture healing. ITM2A+ P-SSCs were also present in the human periosteum. Thus, our study identified a membrane protein marker that labels P-SSCs, providing an attractive target for drug and cellular therapy for skeletal disorders.


Asunto(s)
Curación de Fractura , Proteínas de la Membrana , Periostio , Animales , Periostio/metabolismo , Periostio/citología , Ratones , Curación de Fractura/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Humanos , Células Madre/metabolismo , Células Madre/citología , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética , Fracturas Óseas/patología , Fracturas Óseas/metabolismo , Fracturas Óseas/terapia , Fracturas Óseas/genética , Osteoblastos/metabolismo , Osteoblastos/citología , Diferenciación Celular , Condrocitos/metabolismo , Condrocitos/citología , Masculino , Linaje de la Célula
4.
Nat Commun ; 15(1): 7698, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227582

RESUMEN

Arterial endothelial cells (AECs) are the founder cells for intraembryonic haematopoiesis. Here, we report a method for the efficient generation of human haemogenic DLL4+ AECs from pluripotent stem cells (PSC). Time-series single-cell RNA-sequencing reveals the dynamic evolution of haematopoiesis and lymphopoiesis, generating cell types with counterparts present in early human embryos, including stages marked by the pre-haematopoietic stem cell genes MECOM/EVI1, MLLT3 and SPINK2. DLL4+ AECs robustly support lymphoid differentiation, without the requirement for exogenous NOTCH ligands. Using this system, we find IL7 acts as a morphogenic factor determining the fate choice between the T and innate lymphoid lineages and also plays a role in regulating the relative expression level of RAG1. Moreover, we document a developmental pathway by which human RAG1+ lymphoid precursors give rise to the natural killer cell lineage. Our study describes an efficient method for producing lymphoid progenitors, providing insights into their endothelial and haematopoietic ontogeny, and establishing a platform to investigate the development of the human blood system.


Asunto(s)
Hematopoyesis , Linfopoyesis , Humanos , Hematopoyesis/genética , Linfopoyesis/genética , Células Endoteliales/metabolismo , Células Endoteliales/citología , Diferenciación Celular , Linaje de la Célula/genética , Interleucina-7/metabolismo , Interleucina-7/genética , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/citología , Hemangioblastos/metabolismo , Hemangioblastos/citología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Análisis de la Célula Individual/métodos , Receptores Notch/metabolismo , Receptores Notch/genética
5.
Nat Commun ; 15(1): 7626, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227584

RESUMEN

Lymphocyte receptors independently evolved in both jawed and jawless vertebrates with similar adaptive immune responses. However, the diversity of functional subtypes and molecular architecture in jawless vertebrate lymphocytes, comparable to jawed species, is not well defined. Here, we profile the gills, intestines, and blood of the lamprey, Lampetra morii, with single-cell RNA sequencing, using a full-length transcriptome as a reference. Our findings reveal higher tissue-specific heterogeneity among T-like cells in contrast to B-like cells. Notably, we identify a unique T-like cell subtype expressing a homolog of the nonlymphoid hematopoietic growth factor receptor, MPL-like (MPL-L). These MPL-L+ T-like cells exhibit features distinct from T cells of jawed vertebrates, particularly in their elevated expression of hematopoietic genes. We further discovered that MPL-L+ VLRA+ T-like cells are widely present in the typhlosole, gill, liver, kidney, and skin of lamprey and they proliferate in response to both a T cell mitogen and recombinant human thrombopoietin. These findings provide new insights into the adaptive immune response in jawless vertebrates, shedding new light on the evolution of adaptive immunity.


Asunto(s)
Inmunidad Adaptativa , Linaje de la Célula , Lampreas , Animales , Lampreas/inmunología , Lampreas/genética , Inmunidad Adaptativa/genética , Linaje de la Célula/genética , Evolución Biológica , Transcriptoma , Linfocitos T/inmunología , Branquias/inmunología , Branquias/metabolismo , Linfocitos/inmunología , Análisis de la Célula Individual , Humanos
6.
Nature ; 633(8028): 198-206, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39232148

RESUMEN

Oncogenic mutations are abundant in the tissues of healthy individuals, but rarely form tumours1-3. Yet, the underlying protection mechanisms are largely unknown. To resolve these mechanisms in mouse mammary tissue, we use lineage tracing to map the fate of wild-type and Brca1-/-;Trp53-/- cells, and find that both follow a similar pattern of loss and spread within ducts. Clonal analysis reveals that ducts consist of small repetitive units of self-renewing cells that give rise to short-lived descendants. This offers a first layer of protection as any descendants, including oncogenic mutant cells, are constantly lost, thereby limiting the spread of mutations to a single stem cell-descendant unit. Local tissue remodelling during consecutive oestrous cycles leads to the cooperative and stochastic loss and replacement of self-renewing cells. This process provides a second layer of protection, leading to the elimination of most mutant clones while enabling the minority that by chance survive to expand beyond the stem cell-descendant unit. This leads to fields of mutant cells spanning large parts of the epithelial network, predisposing it for transformation. Eventually, clone expansion becomes restrained by the geometry of the ducts, providing a third layer of protection. Together, these mechanisms act to eliminate most cells that acquire somatic mutations at the expense of driving the accelerated expansion of a minority of cells, which can colonize large areas, leading to field cancerization.


Asunto(s)
Proteína BRCA1 , Linaje de la Célula , Transformación Celular Neoplásica , Glándulas Mamarias Animales , Mutación , Proteína p53 Supresora de Tumor , Animales , Ratones , Femenino , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/patología , Glándulas Mamarias Animales/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linaje de la Célula/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Transformación Celular Neoplásica/genética , Células Clonales/metabolismo , Células Clonales/citología , Carcinogénesis/genética , Carcinogénesis/patología , Autorrenovación de las Células/genética
7.
Nat Commun ; 15(1): 7609, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39218912

RESUMEN

Cancer is a highly heterogeneous disease, where phenotypically distinct subpopulations coexist and can be primed to different fates. Both genetic and epigenetic factors may drive cancer evolution, however little is known about whether and how such a process is pre-encoded in cancer clones. Using single-cell multi-omic lineage tracing and phenotypic assays, we investigate the predictive features of either tumour initiation or drug tolerance within the same cancer population. Clones primed to tumour initiation in vivo display two distinct transcriptional states at baseline. Remarkably, these states share a distinctive DNA accessibility profile, highlighting an epigenetic basis for tumour initiation. The drug tolerant niche is also largely pre-encoded, but only partially overlaps the tumour-initiating one and evolves following two genetically and transcriptionally distinct trajectories. Our study highlights coexisting genetic, epigenetic and transcriptional determinants of cancer evolution, unravelling the molecular complexity of pre-encoded tumour phenotypes.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias , Humanos , Neoplasias/genética , Animales , Análisis de la Célula Individual/métodos , Ratones , Linaje de la Célula/genética , Línea Celular Tumoral , Transcripción Genética , Fenotipo , Multiómica
8.
Proc Natl Acad Sci U S A ; 121(32): e2406842121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39093947

RESUMEN

Exploring the complexity of the epithelial-to-mesenchymal transition (EMT) unveils a diversity of potential cell fates; however, the exact timing and mechanisms by which early cell states diverge into distinct EMT trajectories remain unclear. Studying these EMT trajectories through single-cell RNA sequencing is challenging due to the necessity of sacrificing cells for each measurement. In this study, we employed optimal-transport analysis to reconstruct the past trajectories of different cell fates during TGF-beta-induced EMT in the MCF10A cell line. Our analysis revealed three distinct trajectories leading to low EMT, partial EMT, and high EMT states. Cells along the partial EMT trajectory showed substantial variations in the EMT signature and exhibited pronounced stemness. Throughout this EMT trajectory, we observed a consistent downregulation of the EED and EZH2 genes. This finding was validated by recent inhibitor screens of EMT regulators and CRISPR screen studies. Moreover, we applied our analysis of early-phase differential gene expression to gene sets associated with stemness and proliferation, pinpointing ITGB4, LAMA3, and LAMB3 as genes differentially expressed in the initial stages of the partial versus high EMT trajectories. We also found that CENPF, CKS1B, and MKI67 showed significant upregulation in the high EMT trajectory. While the first group of genes aligns with findings from previous studies, our work uniquely pinpoints the precise timing of these upregulations. Finally, the identification of the latter group of genes sheds light on potential cell cycle targets for modulating EMT trajectories.


Asunto(s)
Transición Epitelial-Mesenquimal , Análisis de la Célula Individual , Transición Epitelial-Mesenquimal/genética , Humanos , Análisis de la Célula Individual/métodos , Linaje de la Célula/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética
9.
Development ; 151(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39092608

RESUMEN

Melanocytes evolved to produce the melanin that gives colour to our hair, eyes and skin. The melanocyte lineage also gives rise to melanoma, the most lethal form of skin cancer. The melanocyte lineage differentiates from neural crest cells during development, and most melanocytes reside in the skin and hair, where they are replenished by melanocyte stem cells. Because the molecular mechanisms necessary for melanocyte specification, migration, proliferation and differentiation are co-opted during melanoma initiation and progression, studying melanocyte development is directly relevant to human disease. Here, through the lens of advances in cellular omic and genomic technologies, we review the latest findings in melanocyte development and differentiation, and how these developmental pathways become dysregulated in disease.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Melanocitos , Melanoma , Melanocitos/metabolismo , Melanocitos/citología , Humanos , Animales , Melanoma/patología , Melanoma/metabolismo , Melanoma/genética , Cresta Neural/metabolismo , Proliferación Celular , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética
10.
Nat Commun ; 15(1): 6779, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117665

RESUMEN

Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and emerging therapeutic target that is overexpressed in most castration-resistant prostate cancers and implicated as a driver of disease progression and resistance to hormonal therapies. Here we define the lineage-specific action and differential activity of EZH2 in both prostate adenocarcinoma and neuroendocrine prostate cancer (NEPC) subtypes of advanced prostate cancer to better understand the role of EZH2 in modulating differentiation, lineage plasticity, and to identify mediators of response and resistance to EZH2 inhibitor therapy. Mechanistically, EZH2 modulates bivalent genes that results in upregulation of NEPC-associated transcriptional drivers (e.g., ASCL1) and neuronal gene programs in NEPC, and leads to forward differentiation after targeting EZH2 in NEPC. Subtype-specific downstream effects of EZH2 inhibition on cell cycle genes support the potential rationale for co-targeting cyclin/CDK to overcome resistance to EZH2 inhibition.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Masculino , Humanos , Línea Celular Tumoral , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Animales , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Resistencia a Antineoplásicos/genética , Diferenciación Celular , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Ratones , Linaje de la Célula
11.
Dev Cell ; 59(16): 2171-2188.e7, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39106860

RESUMEN

Proneural transcription factors establish molecular cascades to orchestrate neuronal diversity. One such transcription factor, Atonal homolog 1 (Atoh1), gives rise to cerebellar excitatory neurons and over 30 distinct nuclei in the brainstem critical for hearing, breathing, and balance. Although Atoh1 lineage neurons have been qualitatively described, the transcriptional programs that drive their fate decisions and the full extent of their diversity remain unknown. Here, we analyzed single-cell RNA sequencing and ATOH1 DNA binding in Atoh1 lineage neurons of the developing mouse hindbrain. This high-resolution dataset identified markers for specific brainstem nuclei and demonstrated that transcriptionally heterogeneous progenitors require ATOH1 for proper migration. Moreover, we identified a sizable population of proliferating unipolar brush cell progenitors in the mouse Atoh1 lineage, previously described in humans as the origin of one medulloblastoma subtype. Collectively, our data provide insights into the developing mouse hindbrain and markers for functional assessment of understudied neuronal populations.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Linaje de la Célula , Neuronas , Rombencéfalo , Análisis de la Célula Individual , Transcriptoma , Animales , Rombencéfalo/metabolismo , Rombencéfalo/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ratones , Neuronas/metabolismo , Neuronas/citología , Linaje de la Célula/genética , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Neurogénesis/genética , Movimiento Celular
12.
Sci Rep ; 14(1): 19213, 2024 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160220

RESUMEN

We designed a simulation program that mimics the CRISPR-Cas9 editing on evolving barcode and double strand break repair procedure along with cell divisions. Emerging barcode mutations tend to build upon previously existing mutations, occurring sequentially with each generation. This process results in a unique mutation profile in each cell. We sample the barcodes in leaf cells and reconstruct the lineage, comparing it to the original lineage tree to test algorithm accuracy under different parameter settings. Our computational simulations validate the reasonable assumptions deduced from experimental observations, emphasizing that factors such as sampling size, barcode length, multiple barcodes, indel probabilities, and Cas9 activity are critical for accurate and successful lineage tracing. Among the many factors we found that sampling size and indel probabilities are two major ones that affect lineage tracing accuracy. Large segment deletions in early generations could greatly impact lineage accuracy. These simulation results offer insightful recommendations for enhancing the design and analysis of Cas9-mediated molecular barcodes in actual experiments.


Asunto(s)
Sistemas CRISPR-Cas , Simulación por Computador , Edición Génica , Edición Génica/métodos , Algoritmos , Código de Barras del ADN Taxonómico/métodos , Linaje de la Célula/genética , Mutación INDEL , Mutación
13.
Dev Cell ; 59(16): 2118-2133.e8, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39106861

RESUMEN

Pluripotent embryonic stem cells (ESCs) can develop into any cell type in the body. Yet, the regulatory mechanisms that govern cell fate decisions during embryogenesis remain largely unknown. We now demonstrate that mouse ESCs (mESCs) display large natural variations in mitochondrial reactive oxygen species (mitoROS) levels that individualize their nuclear redox state, H3K4me3 landscape, and cell fate. While mESCs with high mitoROS levels (mitoROSHIGH) differentiate toward mesendoderm and form the primitive streak during gastrulation, mESCs, which generate less ROS, choose the alternative neuroectodermal fate. Temporal studies demonstrated that mesendodermal (ME) specification of mitoROSHIGH mESCs is mediated by a Nrf2-controlled switch in the nuclear redox state, triggered by the accumulation of redox-sensitive H3K4me3 marks, and executed by a hitherto unknown ROS-dependent activation process of the Wnt signaling pathway. In summary, our study explains how ESC heterogeneity is generated and used by individual cells to decide between distinct cellular fates.


Asunto(s)
Diferenciación Celular , Mitocondrias , Células Madre Embrionarias de Ratones , Oxidación-Reducción , Especies Reactivas de Oxígeno , Vía de Señalización Wnt , Animales , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Diferenciación Celular/fisiología , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Histonas/metabolismo , Linaje de la Célula , Mesodermo/citología , Mesodermo/metabolismo
14.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39171985

RESUMEN

The tendency for cell fate to be robust to most perturbations, yet sensitive to certain perturbations raises intriguing questions about the existence of a key path within the underlying molecular network that critically determines distinct cell fates. Reprogramming and trans-differentiation clearly show examples of cell fate change by regulating only a few or even a single molecular switch. However, it is still unknown how to identify such a switch, called a master regulator, and how cell fate is determined by its regulation. Here, we present CAESAR, a computational framework that can systematically identify master regulators and unravel the resulting canalizing kernel, a key substructure of interconnected feedbacks that is critical for cell fate determination. We demonstrate that CAESAR can successfully predict reprogramming factors for de-differentiation into mouse embryonic stem cells and trans-differentiation of hematopoietic stem cells, while unveiling the underlying essential mechanism through the canalizing kernel. CAESAR provides a system-level understanding of how complex molecular networks determine cell fates.


Asunto(s)
Diferenciación Celular , Animales , Ratones , Reprogramación Celular , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Biología Computacional/métodos , Redes Reguladoras de Genes , Linaje de la Célula , Transdiferenciación Celular
15.
Sci Immunol ; 9(98): eadk3469, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39178276

RESUMEN

Hematopoietic stem cells (HSCs) reconstitute multilineage human hematopoiesis after clinical bone marrow (BM) transplantation and are the cells of origin of some hematological malignancies. Although HSCs provide multilineage engraftment, individual murine HSCs are lineage biased and contribute unequally to blood cell lineages. Here, we performed high-throughput single-cell RNA sequencing in mice after xenograft with molecularly barcoded adult human BM HSCs. We demonstrated that human individual BM HSCs are also functionally and transcriptionally lineage biased. Specifically, we identified platelet-biased and multilineage human HSCs. Quantitative comparison of transcriptomes from single HSCs from young and aged BM showed that both the proportion of platelet-biased HSCs and their level of transcriptional platelet priming increase with age. Therefore, platelet-biased HSCs and their increased prevalence and transcriptional platelet priming during aging are conserved features of mammalian evolution.


Asunto(s)
Plaquetas , Células Madre Hematopoyéticas , Animales , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/citología , Humanos , Ratones , Plaquetas/inmunología , Envejecimiento/inmunología , Linaje de la Célula/inmunología , Evolución Biológica , Análisis de la Célula Individual
16.
Sci Adv ; 10(33): eado0424, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39151009

RESUMEN

In animals, stem cell populations of varying potency facilitate regeneration and tissue homeostasis. Notably, germline stem cells in both vertebrates and invertebrates express highly conserved RNA binding proteins, such as nanos, vasa, and piwi. In highly regenerative animals, these genes are also expressed in somatic stem cells, which led to the proposal that they had an ancestral role in all stem cells. In cnidarians, multi- and pluripotent interstitial stem cells have only been identified in hydrozoans. Therefore, it is currently unclear if cnidarian stem cell systems share a common evolutionary origin. We, therefore, aimed to characterize conserved stem cell marker genes in the sea anemone Nematostella vectensis. Through transgenic reporter genes and single-cell transcriptomics, we identify cell populations expressing the germline-associated markers piwi1 and nanos2 in the soma and germline, and gene knockout shows that Nanos2 is indispensable for germline formation. This suggests that nanos and piwi genes have a conserved role in somatic and germline stem cells in cnidarians.


Asunto(s)
Células Germinativas , Proteínas de Unión al ARN , Anémonas de Mar , Animales , Anémonas de Mar/genética , Anémonas de Mar/metabolismo , Células Germinativas/metabolismo , Células Germinativas/citología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Linaje de la Célula/genética , Células Madre/metabolismo , Células Madre/citología , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética
17.
Bioinformatics ; 40(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39102821

RESUMEN

MOTIVATION: Lineage tracing and trajectory inference from single-cell RNA-sequencing data hold tremendous potential for uncovering the genetic programs driving development and disease. Single cell datasets are thought to provide an unbiased view on the diverse cellular architecture of tissues. Sampling bias, however, can skew single cell datasets away from the cellular composition they are meant to represent. RESULTS: We demonstrate a novel form of sampling bias, caused by a statistical phenomenon related to repeated sampling from a growing, heterogeneous population. Relative growth rates of cells influence the probability that they will be sampled in clones observed across multiple time points. We support our probabilistic derivations with a simulation study and an analysis of a real time-course of T-cell development. We find that this bias can impact fate probability predictions, and we explore how to develop trajectory inference methods which are robust to this bias. AVAILABILITY AND IMPLEMENTATION: Source code for the simulated datasets and to create the figures in this manuscript is freely available in python at https://github.com/rbonhamcarter/simulate-clones. A python implementation of the extension of the LineageOT method is freely available at https://github.com/rbonhamcarter/LineageOT/tree/multi-time-clones.


Asunto(s)
Linaje de la Célula , Proliferación Celular , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Programas Informáticos , Humanos , Análisis de Secuencia de ARN/métodos , Linfocitos T/citología , Linfocitos T/metabolismo , Animales
18.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39201410

RESUMEN

Alveolar type 2 epithelial (AT2) cells synthesize surfactant protein C (SPC) and repair an injured alveolar epithelium. A mutated surfactant protein C gene (SftpcL184Q, Gene ID: 6440) in newborns has been associated with respiratory distress syndrome and pulmonary fibrosis. However, the underlying mechanisms causing Sftpc gene mutations to regulate AT2 lineage remain unclear. We utilized three-dimensional (3D) feeder-free AT2 organoids in vitro to simulate the alveolar epithelium and compared AT2 lineage characteristics between WT (C57BL/6) and SftpcL184Q mutant mice using colony formation assays, immunofluorescence, flow cytometry, qRT-PCR, and Western blot assays. The AT2 numbers were reduced significantly in SftpcL184Q mice. Organoid numbers and colony-forming efficiency were significantly attenuated in the 3D cultures of primary SftpcL184Q AT2 cells compared to those of WT mice. Podoplanin (PDPN, Alveolar type 1 cell (AT1) marker) expression and transient cell count was significantly increased in SftpcL184Q organoids compared to in the WT mice. The expression levels of CD74, heat shock protein 90 (HSP90), and ribosomal protein S3A1 (RPS3A1) were not significantly different between WT and SftpcL184Q AT2 cells. This study demonstrated that humanized SftpcL184Q mutation regulates AT2 lineage intrinsically. This regulation is independent of CD74, HSP90, and RPS3A1 pathways.


Asunto(s)
Células Epiteliales Alveolares , Proteína C Asociada a Surfactante Pulmonar , Proteína C Asociada a Surfactante Pulmonar/genética , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Animales , Ratones , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/citología , Humanos , Ratones Endogámicos C57BL , Organoides/metabolismo , Organoides/citología , Diferenciación Celular/genética , Mutación , Linaje de la Célula/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
19.
Nat Commun ; 15(1): 7589, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217144

RESUMEN

The contribution of endocardial cells (EdCs) to the hematopoietic lineages has been strongly debated. Here, we provide evidence that in zebrafish, the endocardium gives rise to and maintains a stable population of hematopoietic cells. Using single-cell sequencing, we identify an endocardial subpopulation expressing enriched levels of hematopoietic-promoting genes. High-resolution microscopy and photoconversion tracing experiments uncover hematopoietic cells, mainly hematopoietic stem and progenitor cells (HSPCs)/megakaryocyte-erythroid precursors (MEPs), derived from EdCs as well as the dorsal aorta stably attached to the endocardium. Emergence of HSPCs/MEPs in hearts cultured ex vivo without external hematopoietic sources, as well as longitudinal imaging of the beating heart using light sheet microscopy, support endocardial contribution to hematopoiesis. Maintenance of these hematopoietic cells depends on the adhesion factors Integrin α4 and Vcam1 but is at least partly independent of cardiac trabeculation or shear stress. Finally, blocking primitive erythropoiesis increases cardiac-residing hematopoietic cells, suggesting that the endocardium is a hematopoietic reservoir. Altogether, these studies uncover the endocardium as a resident tissue for HSPCs/MEPs and a de novo source of hematopoietic cells.


Asunto(s)
Endocardio , Células Madre Hematopoyéticas , Pez Cebra , Animales , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Endocardio/citología , Endocardio/metabolismo , Hematopoyesis/fisiología , Corazón/fisiología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Análisis de la Célula Individual , Linaje de la Célula , Eritropoyesis/fisiología , Animales Modificados Genéticamente
20.
Nat Cardiovasc Res ; 3(3): 317-331, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39196112

RESUMEN

Human induced pluripotent stem cell (hiPSC) to cardiomyocyte (CM) differentiation has reshaped approaches to studying cardiac development and disease. In this study, we employed a genome-wide CRISPR screen in a hiPSC to CM differentiation system and reveal here that BRD4, a member of the bromodomain and extraterminal (BET) family, regulates CM differentiation. Chemical inhibition of BET proteins in mouse embryonic stem cell (mESC)-derived or hiPSC-derived cardiac progenitor cells (CPCs) results in decreased CM differentiation and persistence of cells expressing progenitor markers. In vivo, BRD4 deletion in second heart field (SHF) CPCs results in embryonic or early postnatal lethality, with mutants demonstrating myocardial hypoplasia and an increase in CPCs. Single-cell transcriptomics identified a subpopulation of SHF CPCs that is sensitive to BRD4 loss and associated with attenuated CM lineage-specific gene programs. These results highlight a previously unrecognized role for BRD4 in CM fate determination during development and a heterogenous requirement for BRD4 among SHF CPCs.


Asunto(s)
Sistemas CRISPR-Cas , Diferenciación Celular , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Factores de Transcripción , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Humanos , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regulación del Desarrollo de la Expresión Génica , Linaje de la Célula/genética , Células Cultivadas , Análisis de la Célula Individual , Proteínas que Contienen Bromodominio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA