Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.995
Filtrar
1.
Nat Commun ; 15(1): 8658, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370422

RESUMEN

The intensive nutrient requirements needed to sustain T cell activation and proliferation, combined with competition for nutrients within the tumor microenvironment, raise the prospect that glucose availability may limit CAR-T cell function. Here, we seek to test the hypothesis that stable overexpression (OE) of the glucose transporter GLUT1 in primary human CAR-T cells would improve their function and antitumor potency. We observe that GLUT1OE in CAR-T cells increases glucose consumption, glycolysis, glycolytic reserve, and oxidative phosphorylation, and these effects are associated with decreased T cell exhaustion and increased Th17 differentiation. GLUT1OE also induces broad metabolic reprogramming associated with increased glutathione-mediated resistance to reactive oxygen species, and increased inosine accumulation. When challenged with tumors, GLUT1OE CAR-T cells secrete more proinflammatory cytokines and show enhanced cytotoxicity in vitro, and demonstrate superior tumor control and persistence in mouse models. Our collective findings support a paradigm wherein glucose availability is rate limiting for effector CAR-T cell function and demonstrate that enhancing glucose availability via GLUT1OE could augment antitumor immune function.


Asunto(s)
Transportador de Glucosa de Tipo 1 , Glucosa , Glucólisis , Linfocitos T , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Humanos , Animales , Ratones , Glucosa/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microambiente Tumoral/inmunología , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Activación de Linfocitos/inmunología , Células Th17/inmunología , Células Th17/metabolismo , Citocinas/metabolismo , Reprogramación Celular/genética , Reprogramación Metabólica
2.
Nat Commun ; 15(1): 8660, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370485

RESUMEN

Force-driven cellular interactions are crucial for cancer cell invasion but remain underexplored in vascular abnormalities. Cerebral cavernous malformations (CCM), a vascular abnormality characterized by leaky vessels, involves CCM mutant cells recruiting wild-type endothelial cells to form and expand mosaic lesions. The mechanisms behind this recruitment remain poorly understood. Here, we use an in-vitro model of angiogenic invasion with traction force microscopy to reveal that hyper-angiogenic Ccm2-silenced endothelial cells enhance angiogenic invasion of neighboring wild-type cells through force and extracellular matrix-guided mechanisms. We demonstrate that mechanically hyperactive CCM2-silenced tips guide wild-type cells by transmitting pulling forces and by creating paths in the matrix, in a ROCKs-dependent manner. This is associated with reinforcement of ß1 integrin and actin cytoskeleton in wild-type cells. Further, wild-type cells are reprogrammed into stalk cells and activate matrisome and DNA replication programs, thereby initiating proliferation. Our findings reveal how CCM2 mutants hijack wild-type cell functions to fuel lesion growth, providing insight into the etiology of vascular malformations. By integrating biophysical and molecular techniques, we offer tools for studying cell mechanics in tissue heterogeneity and disease progression.


Asunto(s)
Células Endoteliales , Hemangioma Cavernoso del Sistema Nervioso Central , Neovascularización Patológica , Humanos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neovascularización Patológica/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Matriz Extracelular/metabolismo , Integrina beta1/metabolismo , Integrina beta1/genética , Citoesqueleto de Actina/metabolismo , Reprogramación Celular/genética , Proliferación Celular , Mutación , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Animales
3.
Mol Med ; 30(1): 169, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39390356

RESUMEN

External constraints, such as development, disease, and environment, can induce changes in epigenomic patterns that may profoundly impact the health trajectory of fetuses and neonates into adulthood, influencing conditions like obesity. Epigenetic modifications encompass processes including DNA methylation, covalent histone modifications, and RNA-mediated regulation. Beyond forward cellular differentiation (cell programming), terminally differentiated cells are reverted to a pluripotent or even totipotent state, that is, cellular reprogramming. Epigenetic modulators facilitate or erase histone and DNA modifications both in vivo and in vitro during programming and reprogramming. Noticeably, obesity is a complex metabolic disorder driven by both genetic and environmental factors. Increasing evidence suggests that epigenetic modifications play a critical role in the regulation of gene expression involved in adipogenesis, energy homeostasis, and metabolic pathways. Hence, we discuss the mechanisms by which epigenetic interventions influence obesity, focusing on DNA methylation, histone modifications, and non-coding RNAs. We also analyze the methodologies that have been pivotal in uncovering these epigenetic regulations, i.e., Large-scale screening has been instrumental in identifying genes and pathways susceptible to epigenetic control, particularly in the context of adipogenesis and metabolic homeostasis; Single-cell RNA sequencing (scRNA-seq) provides a high-resolution view of gene expression patterns at the individual cell level, revealing the heterogeneity and dynamics of epigenetic regulation during cellular differentiation and reprogramming; Chromatin immunoprecipitation (ChIP) assays, focused on candidate genes, have been crucial for characterizing histone modifications and transcription factor binding at specific genomic loci, thereby elucidating the epigenetic mechanisms that govern cellular programming; Somatic cell nuclear transfer (SCNT) and cell fusion techniques have been employed to study the epigenetic reprogramming accompanying cloning and the generation of hybrid cells with pluripotent characteristics, etc. These approaches have been instrumental in identifying specific epigenetic marks and pathways implicated in obesity, providing a foundation for developing targeted therapeutic interventions. Understanding the dynamic interplay between epigenetic regulation and cellular programming is crucial for advancing mechanism and clinical management of obesity.


Asunto(s)
Reprogramación Celular , Metilación de ADN , Epigénesis Genética , Obesidad , Humanos , Obesidad/genética , Obesidad/metabolismo , Animales , Reprogramación Celular/genética , Diferenciación Celular/genética , Adipogénesis/genética , Histonas/metabolismo , Código de Histonas , Epigenómica/métodos
4.
Nat Commun ; 15(1): 8405, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333531

RESUMEN

Stem cells preferentially use glycolysis instead of oxidative phosphorylation and this metabolic rewiring plays an instructive role in their fate; however, the underlying molecular mechanisms remain largely unexplored. PIWI-interacting RNAs (piRNAs) and PIWI proteins have essential functions in a range of adult stem cells across species. Here, we show that piRNAs and the PIWI protein Aubergine (Aub) are instrumental in activating glycolysis in Drosophila female germline stem cells (GSCs). Higher glycolysis is required for GSC self-renewal and aub loss-of-function induces a metabolic switch in GSCs leading to their differentiation. Aub directly binds glycolytic mRNAs and Enolase mRNA regulation by Aub depends on its 5'UTR. Furthermore, mutations of a piRNA target site in Enolase 5'UTR lead to GSC loss. These data reveal an Aub/piRNA function in translational activation of glycolytic mRNAs in GSCs, and pinpoint a mechanism of regulation of metabolic reprogramming in stem cells based on small RNAs.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Glucólisis , Factores de Iniciación de Péptidos , ARN Interferente Pequeño , Animales , Glucólisis/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Femenino , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Diferenciación Celular , Reprogramación Celular/genética , Regiones no Traducidas 5' , Células Madre Oogoniales/metabolismo , Células Madre Oogoniales/citología , Células Madre/metabolismo , Células Madre/citología , Reprogramación Metabólica , ARN de Interacción con Piwi
5.
Cells ; 13(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39272980

RESUMEN

Direct neuronal reprogramming is a promising approach to replace neurons lost due to disease via the conversion of endogenous glia reacting to brain injury into neurons. However, it is essential to demonstrate that the newly generated neurons originate from glial cells and/or show that they are not pre-existing endogenous neurons. Here, we use controls for both requirements while comparing two viral vector systems (Mo-MLVs and AAVs) for the expression of the same neurogenic factor, the phosphorylation-resistant form of Neurogenin2. Our results show that Mo-MLVs targeting proliferating glial cells after traumatic brain injury reliably convert astrocytes into neurons, as assessed by genetic fate mapping of astrocytes. Conversely, expressing the same neurogenic factor in a flexed AAV system results in artefactual labelling of endogenous neurons fatemapped by birthdating in development that are negative for the genetic fate mapping marker induced in astrocytes. These results are further corroborated by chronic live in vivo imaging. Taken together, the phosphorylation-resistant form of Neurogenin2 is more efficient in reprogramming reactive glia into neurons than its wildtype counterpart in vivo using retroviral vectors (Mo-MLVs) targeting proliferating glia. Conversely, AAV-mediated expression generates artefacts and is not sufficient to achieve fate conversion.


Asunto(s)
Astrocitos , Reprogramación Celular , Corteza Cerebral , Dependovirus , Vectores Genéticos , Neuronas , Animales , Astrocitos/metabolismo , Neuronas/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Ratones , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Dependovirus/genética , Reprogramación Celular/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ratones Endogámicos C57BL , Masculino , Retroviridae/genética
6.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273379

RESUMEN

Yak is an excellent germplasm resource on the Tibetan Plateau and is able to live in high-altitude areas with hypoxic, cold, and harsh environments. Studies on induced pluripotent stem cells (iPSCs) in large ruminants commonly involve a combination strategy involving six transcription factors, Oct4, Sox2, Klf4, c-Myc, Nanog, and Lin28 (OSKMNL). This strategy tends to utilize genes from the same species to optimize pluripotency maintenance. In this study, we cloned the six pluripotency genes (OSKMNL) from yak and constructed a multi-cistronic lentiviral vector carrying these genes. This vector efficiently delivered the genes into yak fibroblasts, aiming to promote the reprogramming process. We verified that the treated cells had several pluripotency characteristics, marking the first successful construction of a lentiviral system carrying yak pluripotency genes. This achievement lays the foundation for subsequent establishment of yak iPSCs and holds significant implications for yak-breed improvement and germplasm-resource conservation.


Asunto(s)
Vectores Genéticos , Células Madre Pluripotentes Inducidas , Factor 4 Similar a Kruppel , Lentivirus , Lentivirus/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Bovinos , Animales , Vectores Genéticos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Reprogramación Celular/genética , Fibroblastos/metabolismo , Fibroblastos/citología
7.
Cells ; 13(18)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39329750

RESUMEN

An essential aspect of harnessing the potential of pluripotent stem cells (PSCs) and their derivatives for regenerative medicine is the development of animal-free and chemically defined conditions for ex vivo cultivation. PSCs, including embryonic and induced PSCs (iPSCs), are in the early stages of clinical trials for various indications, including degenerative diseases and traumatic injury. A key step in the workflows generating these cells for more widespread clinical use is their safe and robust ex vivo cultivation. This entails optimization of cell culture media and substrates that are safe and consistent while maintaining robust functionality. Here, we describe the design of a human vitronectin (hVTN) variant with improved manufacturability in a bacterial expression system along with improved function in comparison to wild-type VTN and other previously characterized polypeptide fragments. In conjunction with an animal component-free media formulation, our hVTN fragment provides animal-free conditions for the enhanced expansion of iPSCs. This hVTN variant also supports the reprogramming of PBMCs into iPSCs. Furthermore, we show that these iPSCs can be efficiently differentiated into the three major germ layers and cortical neurons, thereby closing the loop on a completely defined animal-free workflow for cell types relevant for regenerative medicine.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Proteínas Recombinantes , Vitronectina , Vitronectina/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Recombinantes/farmacología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Proliferación Celular , Reprogramación Celular/genética , Flujo de Trabajo , Ratones
8.
Am J Physiol Cell Physiol ; 327(4): C1125-C1142, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219440

RESUMEN

Immune escape and metabolic reprogramming are two essential hallmarks of cancer. Mucin-16 (MUC16) has been linked to glycolysis and immune response in different cancers. However, its involvement in nasopharyngeal carcinoma (NPC) has not been well described. We seek to dissect the functions and detailed mechanisms of MUC16 in NPC. Bioinformatics prediction was performed to identify NPC-related molecules. MUC16 was significantly enhanced in NPC tissues, which was correlated with the advanced tumor stage of patients. Lentiviral plasmids-mediated MUC16 deletion inhibited the malignant behavior of NPC cells, and glycolysis inhibition by MUC16 deletion blocked immune escape in NPC cells. E74-like factor 3 (ELF3) bound to the MUC16 promoter promotes the transcription of MUC16. MUC16 overexpression reversed the repressive effect of ELF3 silencing on glycolysis and immune escape in NPC and accelerated tumor growth in vivo. Overexpression of ELF3 in NPC was associated with reduced DNA methylation in its promoter. Our findings revealed the role of the ELF3/MUC16 axis in the immune escape and metabolic reprogramming of NPC, providing potential therapeutic targets for NPC.NEW & NOTEWORTHY We identified the functions of E74-like factor 3 (ELF3) in glycolysis and immune escape of nasopharyngeal carcinoma cells for the first time. As a transcription factor, ELF3 promoted mucin-16 (MUC16) expression by binding to its promoter, leading to the glycolysis-mediated immune escape of nasopharyngeal carcinoma (NPC) cells. Targeting the ELF3/MUC16 axis generates a superior antitumor immune response, which will help establish a novel approach to restore protective antitumor immunity for NPC immunotherapy.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN , Regulación Neoplásica de la Expresión Génica , Glucólisis , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Factores de Transcripción , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/inmunología , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/inmunología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Escape del Tumor/genética , Ratones , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Ratones Desnudos , Masculino , Femenino , Regiones Promotoras Genéticas , Reprogramación Celular/genética , Ratones Endogámicos BALB C , Reprogramación Metabólica
9.
Proc Natl Acad Sci U S A ; 121(39): e2411352121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39292740

RESUMEN

A number of studies have demonstrated that it is possible to directly convert one cell type to another by factor-mediated transdifferentiation, but in the vast majority of cases, the resulting reprogrammed cells are unable to maintain their new cell identity for prolonged culture times and have a phenotype only partially similar to their endogenous counterparts. To better understand this phenomenon, we developed an analytical approach for better characterizing trans-differentiation-associated changes in DNA methylation, a major determinant of long-term cell identity. By examining various models of transdifferentiation both in vitro and in vivo, our studies indicate that despite convincing expression changes, transdifferentiated cells seem unable to alter their original developmentally mandated methylation patterns. We propose that this blockage is due to basic developmental limitations built into the regulatory sequences that govern epigenetic programming of cell identity. These results shed light on the molecular rules necessary to achieve complete somatic cell reprogramming.


Asunto(s)
Transdiferenciación Celular , Metilación de ADN , Animales , Transdiferenciación Celular/genética , Ratones , Epigénesis Genética , Reprogramación Celular/genética , Diferenciación Celular
10.
Immunity ; 57(10): 2344-2361.e7, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39321806

RESUMEN

As the most frequent genetic alteration in cancer, more than half of human cancers have p53 mutations that cause transcriptional inactivation. However, how p53 modulates the immune landscape to create a niche for immune escape remains elusive. We found that cancer stem cells (CSCs) established an interleukin-34 (IL-34)-orchestrated niche to promote tumorigenesis in p53-inactivated liver cancer. Mechanistically, we discovered that Il34 is a gene transcriptionally repressed by p53, and p53 loss resulted in IL-34 secretion by CSCs. IL-34 induced CD36-mediated elevations in fatty acid oxidative metabolism to drive M2-like polarization of foam-like tumor-associated macrophages (TAMs). These IL-34-orchestrated TAMs suppressed CD8+ T cell-mediated antitumor immunity to promote immune escape. Blockade of the IL-34-CD36 axis elicited antitumor immunity and synergized with anti-PD-1 immunotherapy, leading to a complete response. Our findings reveal the underlying mechanism of p53 modulation of the tumor immune microenvironment and provide a potential target for immunotherapy of cancer with p53 inactivation.


Asunto(s)
Interleucinas , Escape del Tumor , Microambiente Tumoral , Proteína p53 Supresora de Tumor , Macrófagos Asociados a Tumores , Proteína p53 Supresora de Tumor/metabolismo , Animales , Ratones , Interleucinas/metabolismo , Interleucinas/inmunología , Microambiente Tumoral/inmunología , Humanos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Escape del Tumor/inmunología , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Ratones Endogámicos C57BL , Línea Celular Tumoral , Reprogramación Celular/inmunología , Reprogramación Celular/genética , Neoplasias Hepáticas/inmunología , Linfocitos T CD8-positivos/inmunología , Antígenos CD36/metabolismo , Antígenos CD36/genética , Inmunoterapia/métodos
11.
Nature ; 634(8033): 415-423, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232166

RESUMEN

Astrocytes are the most abundant cell type in the mammalian brain and provide structural and metabolic support to neurons, regulate synapses and become reactive after injury and disease. However, a small subset of astrocytes settles in specialized areas of the adult brain where these astrocytes instead actively generate differentiated neuronal and glial progeny and are therefore referred to as neural stem cells1-3. Common parenchymal astrocytes and quiescent neural stem cells share similar transcriptomes despite their very distinct functions4-6. Thus, how stem cell activity is molecularly encoded remains unknown. Here we examine the transcriptome, chromatin accessibility and methylome of neural stem cells and their progeny, and of astrocytes from the striatum and cortex in the healthy and ischaemic adult mouse brain. We identify distinct methylation profiles associated with either astrocyte or stem cell function. Stem cell function is mediated by methylation of astrocyte genes and demethylation of stem cell genes that are expressed later. Ischaemic injury to the brain induces gain of stemness in striatal astrocytes7. We show that this response involves reprogramming the astrocyte methylome to a stem cell methylome and is absent if the de novo methyltransferase DNMT3A is missing. Overall, we unveil DNA methylation as a promising target for regenerative medicine.


Asunto(s)
Astrocitos , Isquemia Encefálica , Metilación de ADN , ADN Metiltransferasa 3A , Células-Madre Neurales , Astrocitos/metabolismo , Astrocitos/citología , Animales , Metilación de ADN/genética , Ratones , ADN Metiltransferasa 3A/metabolismo , Isquemia Encefálica/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Masculino , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Transcriptoma , Epigenoma , Femenino , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Cromatina/metabolismo , Cromatina/genética , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Ratones Endogámicos C57BL , Reprogramación Celular/genética , Medicina Regenerativa
12.
Stem Cell Reports ; 19(10): 1389-1398, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39241770

RESUMEN

Overexpression of cardiac reprogramming factors, including GATA4, HAND2, TBX5, and MEF2C (GHT/M), can directly reprogram cardiac fibroblasts (CFs) into induced cardiomyocytes (iCMs). Adeno-associated virus (AAV) vectors are widely used clinically, and vectors targeting cardiomyocytes (CMs) have been extensively studied. However, safe and efficient AAV vectors targeting CFs for in vivo cardiac reprogramming remain elusive. Therefore, we screened multiple AAV capsids and promoters to develop efficient and safe CF-targeting AAV vectors for in vivo cardiac reprogramming. AAV-DJ capsids containing periostin promoter (AAV-DJ-Postn) strongly and specifically expressed transgenes in resident CFs in mice after myocardial infarction (MI). Lineage tracing revealed that AAV-DJ-Postn vectors expressing GHT/M reprogrammed CFs into iCMs, which was further increased 2-fold using activated MEF2C via the fusion of the powerful MYOD transactivation domain (M-TAD) with GHT (AAV-DJ-Postn-GHT/M-TAD). AAV-DJ-Postn-GHT/M-TAD injection improved cardiac function and reduced fibrosis after MI. Overall, we developed new AAV vectors that target CFs for cardiac reprogramming.


Asunto(s)
Reprogramación Celular , Dependovirus , Fibroblastos , Vectores Genéticos , Factores de Transcripción MEF2 , Infarto del Miocardio , Miocitos Cardíacos , Animales , Dependovirus/genética , Fibroblastos/metabolismo , Fibroblastos/citología , Vectores Genéticos/genética , Reprogramación Celular/genética , Ratones , Infarto del Miocardio/terapia , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Factores de Transcripción MEF2/metabolismo , Factores de Transcripción MEF2/genética , Factor de Transcripción GATA4/metabolismo , Factor de Transcripción GATA4/genética , Regiones Promotoras Genéticas , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Humanos , Miocardio/metabolismo , Miocardio/citología , Transgenes , Ratones Endogámicos C57BL
13.
Commun Biol ; 7(1): 1223, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349670

RESUMEN

Metabolism has been implicated in cell fate determination, particularly through epigenetic modifications. Similarly, lipid remodeling also plays a role in regulating cell fate. Here, we present comprehensive lipidomics analysis during BMP4-driven primed to naive pluripotency transition or BiPNT and demonstrate that lipid remodeling plays an essential role. We further identify Cpt1a as a rate-limiting factor in BiPNT, driving lipid remodeling and metabolic reprogramming while simultaneously increasing intracellular acetyl-CoA levels and enhancing H3K27ac at chromatin open sites. Perturbation of BiPNT by histone acetylation inhibitors suppresses lipid remodeling and pluripotency transition. Together, our study suggests that lipid remodeling promotes pluripotency transitions and further regulates cell fate decisions, implicating Cpt1a as a critical regulator between primed-naive cell fate control.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Metabolismo de los Lípidos , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Animales , Ratones , Diferenciación Celular , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Lipidómica , Reprogramación Celular/genética
14.
BMC Biol ; 22(1): 195, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256730

RESUMEN

BACKGROUND: iPSC reprogramming technology exhibits significant promise in the realms of clinical therapeutics, disease modeling, pharmaceutical drug discovery, and various other applications. However, the extensive utilization of this technology has encountered impediments in the form of inefficiency, prolonged procedures, and ambiguous biological processes. Consequently, in order to improve this technology, it is of great significance to delve into the underlying mechanisms involved in iPSC reprogramming. The BET protein BRD4 plays a crucial role in the late stage of reprogramming; however, its precise function in the early stage remains unclear. RESULTS: Our study aims to investigate BRD4's role in the early stages of iPSC reprogramming. Our investigation reveals that early inhibition of BRD4 substantially enhances iPSC reprogramming, whereas its implementation during the middle-late stage impedes the process. During the reprogramming, ribosome DNA expression initially increases before decreasing and then gradually recovers. Early inhibition of BRD4 improved the decline and restoration of rDNA expression in the early and middle-late stages, respectively. Additionally, we uncovered the mechanism of BRD4's regulation of rDNA transcription throughout reprogramming. Specifically, BRD4 interacts with UBF and co-localizes to both the rDNA promoter and enhancer regions. Ultimately, BRD4 facilitates rDNA transcription by promoting the enrichment of histone H3 lysine 27 acetylation in the surrounding chromatin. Moreover, we also discovered that early inhibition of BRD4 facilitates cells' transition out of the somatic cell state and activate pluripotent genes. CONCLUSIONS: In conclusion, our results demonstrate that early inhibition of BRD4 promotes sequential dynamic expression of rDNA, which improves iPSC reprogramming efficiency.


Asunto(s)
Reprogramación Celular , ADN Ribosómico , Células Madre Pluripotentes Inducidas , Factores de Transcripción , Células Madre Pluripotentes Inducidas/metabolismo , Reprogramación Celular/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , ADN Ribosómico/genética , Animales , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ratones , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas que Contienen Bromodominio
15.
Proc Natl Acad Sci U S A ; 121(34): e2401540121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39150785

RESUMEN

Recent advances in single-cell sequencing technology have revolutionized our ability to acquire whole transcriptome data. However, uncovering the underlying transcriptional drivers and nonequilibrium driving forces of cell function directly from these data remains challenging. We address this by learning cell state vector fields from discrete single-cell RNA velocity to quantify the single-cell global nonequilibrium driving forces as landscape and flux. From single-cell data, we quantified the Waddington landscape, showing that optimal paths for differentiation and reprogramming deviate from the naively expected landscape gradient paths and may not pass through landscape saddles at finite fluctuations, challenging conventional transition state estimation of kinetic rate for cell fate decisions due to the presence of the flux. A key insight from our study is that stem/progenitor cells necessitate greater energy dissipation for rapid cell cycles and self-renewal, maintaining pluripotency. We predict optimal developmental pathways and elucidate the nucleation mechanism of cell fate decisions, with transition states as nucleation sites and pioneer genes as nucleation seeds. The concept of loop flux quantifies the contributions of each cycle flux to cell state transitions, facilitating the understanding of cell dynamics and thermodynamic cost, and providing insights into optimizing biological functions. We also infer cell-cell interactions and cell-type-specific gene regulatory networks, encompassing feedback mechanisms and interaction intensities, predicting genetic perturbation effects on cell fate decisions from single-cell omics data. Essentially, our methodology validates the landscape and flux theory, along with its associated quantifications, offering a framework for exploring the physical principles underlying cellular differentiation and reprogramming and broader biological processes through high-throughput single-cell sequencing experiments.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Análisis de la Célula Individual , Transcriptoma , Análisis de la Célula Individual/métodos , Reprogramación Celular/genética , Animales , Humanos , Perfilación de la Expresión Génica/métodos
16.
Science ; 385(6708): adl2992, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39088624

RESUMEN

Late-onset Alzheimer's disease (LOAD) is the most common form of Alzheimer's disease (AD). However, modeling sporadic LOAD that endogenously captures hallmark neuronal pathologies such as amyloid-ß (Aß) deposition, tau tangles, and neuronal loss remains an unmet need. We demonstrate that neurons generated by microRNA (miRNA)-based direct reprogramming of fibroblasts from individuals affected by autosomal dominant AD (ADAD) and LOAD in a three-dimensional environment effectively recapitulate key neuropathological features of AD. Reprogrammed LOAD neurons exhibit Aß-dependent neurodegeneration, and treatment with ß- or γ-secretase inhibitors before (but not subsequent to) Aß deposit formation mitigated neuronal death. Moreover inhibiting age-associated retrotransposable elements in LOAD neurons reduced both Aß deposition and neurodegeneration. Our study underscores the efficacy of modeling late-onset neuropathology of LOAD through high-efficiency miRNA-based neuronal reprogramming.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Reprogramación Celular , Fibroblastos , MicroARNs , Neuronas , Esferoides Celulares , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Reprogramación Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patología , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Neuronas/patología
17.
Methods Mol Biol ; 2835: 99-110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105909

RESUMEN

Induced pluripotent stem cells (iPSCs) are generated through the reprogramming of somatic cells to an embryonic-like state by activating specific genes. They closely resemble embryonic stem cells (ESCs), in various aspects, including the expression of key stem cell genes, potency, and differentiation capabilities. iPSCs can be derived from various cell types such as fibroblasts, keratinocytes, and peripheral blood mononuclear cells (PBMCs). The ease of obtaining origin cells through non-invasive methods simplifies the generation of human iPSCs. Therefore, PBMCs are commonly preferred, with erythroid progenitor cells (EPCs) obtained through EPC enrichment being used as origin cells in this protocol. The EPC enrichment performed in this protocol not only reduces costs but also increases efficiency by enhancing the percentage of reprogrammable cells with progenitor characteristics. Human iPSCs are incredibly valuable for in vitro research, cell therapy, drug discovery, and tissue engineering. The outlined procedures below provide a general framework for inducing iPSCs from erythroid progenitor cells, pluripotency confirmation experiments, and cultivating them for downstream experiments.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Células Precursoras Eritroides , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/metabolismo , Técnicas de Cultivo de Célula/métodos , Reprogramación Celular/genética , Células Cultivadas , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo
18.
Sci Adv ; 10(32): eado2849, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39110788

RESUMEN

Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition, we generated a single-nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single-nucleus transcriptomes and epigenomes. We reveal cell-specific dynamic alterations in gene regulatory landscapes reflecting, especially, activation of proinflammatory pathways. We further generated single-nucleus multiomic data from four human AKI samples including validation by genome-wide identification of nuclear factor κB binding sites. A regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also drives proximal tubular cell proliferation after injury. Our interspecies multiomic approach provides a foundation to comprehensively understand cell states in AKI.


Asunto(s)
Lesión Renal Aguda , Epigénesis Genética , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Ratones , Humanos , Transcriptoma , FN-kappa B/metabolismo , FN-kappa B/genética , Modelos Animales de Enfermedad , Reprogramación Celular/genética , Proliferación Celular/genética , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo
19.
Sci Adv ; 10(32): eadj8862, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39110794

RESUMEN

Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) requires activation of the pluripotency network and resetting of the epigenome by erasing the epigenetic memory of the somatic state. In female mouse cells, a critical epigenetic reprogramming step is the reactivation of the inactive X chromosome. Despite its importance, a systematic understanding of the regulatory networks linking pluripotency and X-reactivation is missing. Here, we reveal important pathways for pluripotency acquisition and X-reactivation using a genome-wide CRISPR screen during neural precursor to iPSC reprogramming. In particular, we discover that activation of the interferon γ (IFNγ) pathway early during reprogramming accelerates pluripotency acquisition and X-reactivation. IFNγ stimulates STAT3 signaling and the pluripotency network and leads to enhanced TET-mediated DNA demethylation, which consequently boosts X-reactivation. We therefore gain a mechanistic understanding of the role of IFNγ in reprogramming and X-reactivation and provide a comprehensive resource of the molecular networks involved in these processes.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Interferón gamma , Transducción de Señal , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Animales , Interferón gamma/metabolismo , Reprogramación Celular/genética , Ratones , Femenino , Cromosoma X/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Epigénesis Genética , Metilación de ADN
20.
Nat Cell Biol ; 26(8): 1309-1321, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969762

RESUMEN

Transcription factors (TFs) control specificity and activity of gene transcription, but whether a relationship between these two features exists is unclear. Here we provide evidence for an evolutionary trade-off between the activity and specificity in human TFs encoded as submaximal dispersion of aromatic residues in their intrinsically disordered protein regions. We identified approximately 500 human TFs that encode short periodic blocks of aromatic residues in their intrinsically disordered regions, resembling imperfect prion-like sequences. Mutation of periodic aromatic residues reduced transcriptional activity, whereas increasing the aromatic dispersion of multiple human TFs enhanced transcriptional activity and reprogramming efficiency, promoted liquid-liquid phase separation in vitro and more promiscuous DNA binding in cells. Together with recent work on enhancer elements, these results suggest an important evolutionary role of suboptimal features in transcriptional control. We propose that rational engineering of amino acid features that alter phase separation may be a strategy to optimize TF-dependent processes, including cellular reprogramming.


Asunto(s)
Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/química , Mutación , Unión Proteica , Transcripción Genética , ADN/metabolismo , ADN/genética , Células HEK293 , Reprogramación Celular/genética , Regulación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA