Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.558
Filtrar
1.
Sci Rep ; 14(1): 15118, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956171

RESUMEN

The use of novel active ingredients for the functional modification of chitosan nanoformulations has attracted global attention. In this study, chitosan has been functionalized via histidine to craft novel chitosan-histidine nanoformulation (C-H NF) using ionic gelation method. C-H NF exhibited elite physico-biochemical properties, influencing physiological and biochemical dynamics in Tomato. These elite properties include homogenous-sized nanoparticles (314.4 nm), lower PDI (0.218), viscosity (1.43 Cps), higher zeta potential (11.2 mV), nanoparticle concentration/ml (3.53 × 108), conductivity (0.046 mS/cm), encapsulation efficiency (53%), loading capacity (24%) and yield (32.17%). FTIR spectroscopy revealed histidine interaction with C-H NF, while SEM and TEM exposed its porous structure. Application of C-H NF to Tomato seedling and potted plants through seed treatment and foliar spray positively impacts growth parameters, antioxidant-defense enzyme activities, reactive oxygen species (ROS) content, and chlorophyll and nitrogen content. We claim that the histidine-functionalized chitosan nanoformulation enhances physico-biochemical properties, highlighting its potential to elevate biochemical and physiological processes of Tomato plant.


Asunto(s)
Quitosano , Histidina , Nanopartículas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Quitosano/química , Histidina/química , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/química , Antioxidantes/farmacología , Clorofila/metabolismo , Clorofila/química , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
2.
Nat Chem Biol ; 20(7): 906-915, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831036

RESUMEN

Natural photosystems couple light harvesting to charge separation using a 'special pair' of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independently of the complexities of native photosynthetic proteins, and as a first step toward creating synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that hold two chlorophyll molecules in closely juxtaposed arrangements. X-ray crystallography confirmed that one designed protein binds two chlorophylls in the same orientation as native special pairs, whereas a second designed protein positions them in a previously unseen geometry. Spectroscopy revealed that the chlorophylls are excitonically coupled, and fluorescence lifetime imaging demonstrated energy transfer. The cryo-electron microscopy structure of a designed 24-chlorophyll octahedral nanocage with a special pair on each edge closely matched the design model. The results suggest that the de novo design of artificial photosynthetic systems is within reach of current computational methods.


Asunto(s)
Clorofila , Clorofila/química , Clorofila/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Fotosíntesis , Transferencia de Energía , Microscopía por Crioelectrón , Conformación Proteica , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo
3.
Chirality ; 36(6): e23681, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839280

RESUMEN

An N-centered epimeric mixture of chlorophyll-a derivatives methylated at the inner nitrogen atom was separated by reverse-phase high-performance liquid chromatography. Circular dichroism (CD) spectroscopic analyses of the epimerically pure N22-methyl-chlorins revealed that the minor first-eluted and major second-eluted stereoisomers were (22S)- and (22R)-configurations, respectively. Their visible absorption and CD spectra in solution were dependent on the N22-stereochemistry. The epimer-dependent spectral changes were independent of the substituents at the peripheral 3-position of the core chlorin chromophore.


Asunto(s)
Clorofila A , Clorofila , Dicroismo Circular , Estereoisomerismo , Clorofila/química , Metilación , Clorofila A/química , Cromatografía Líquida de Alta Presión/métodos , Nitrógeno/química
4.
J Chem Phys ; 160(18)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38726933

RESUMEN

We investigate how electronic excitations and subsequent dissipative dynamics in the water soluble chlorophyll-binding protein (WSCP) are connected to features in two-dimensional (2D) electronic spectra, thereby comparing results from our theoretical approach with experimental data from the literature. Our calculations rely on third-order response functions, which we derived from a second-order cumulant expansion of the dissipative dynamics involving the partial ordering prescription, assuming a fast vibrational relaxation in the potential energy surfaces of excitons. Depending on whether the WSCP complex containing a tetrameric arrangement of pigments composed of two dimers with weak excitonic coupling between them binds the chlorophyll variant Chl a or Chl b, the resulting linear absorption and circular dichroism spectra and particularly the 2D spectra exhibit substantial differences in line shapes. These differences between Chl a WSCP and Chl b WSCP cannot be explained by the slightly modified excitonic couplings within the two variants. In the case of Chl a WSCP, the assumption of equivalent dimer subunits facilitates a reproduction of substantial features from the experiment by the calculations. In contrast, for Chl b WSCP, we have to assume that the sample, in addition to Chl b dimers, contains a small but distinct fraction of chemically modified Chl b pigments. The existence of such Chl b derivates has been proposed by Pieper et al. [J. Phys. Chem. B 115, 4042 (2011)] based on low-temperature absorption and hole-burning spectroscopy. Here, we provide independent evidence.


Asunto(s)
Proteínas de Unión a Clorofila , Clorofila , Agua , Clorofila/química , Agua/química , Proteínas de Unión a Clorofila/química , Análisis Espectral/métodos , Solubilidad , Dicroismo Circular
5.
J Control Release ; 371: 351-370, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789088

RESUMEN

Ovarian cancer (OC) is one of the most lethal cancers among women. Frequent recurrence in the peritoneum due to the presence of microscopic tumor residues justifies the development of new therapies. Indeed, our main objective is to develop a targeted photodynamic therapy (PDT) treatment of peritoneal carcinomatosis from OC to improve the life expectancy of cancer patients. Herein, we propose a targeted-PDT using a vectorized photosensitizer (PS) coupled with a newly folic acid analog (FAA), named PSFAA, in order to target folate receptor alpha (FRα) overexpressed on peritoneal metastasis. This PSFAA was the result of the coupling of pyropheophorbide-a (Pyro-a), as the PS, to a newly synthesized FAA via a polyethylene glycol (PEG) spacer. The selectivity and the PDT efficacy of PSFAA was evaluated on two human OC cell lines overexpressing FRα compared to fibrosarcoma cells underexpressing FRα. Final PSFAA, including the synthesis of a newly FAA and its conjugation to Pyro-a, was obtained after 10 synthesis steps, with an overall yield of 19%. Photophysical properties of PSFAA in EtOH were performed and showed similarity with those of free Pyro-a, such as the fluorescence and singlet oxygen quantum yields (Φf = 0.39 and ΦΔ = 0.53 for free Pyro-a, and Φf = 0.26 and ΦΔ = 0.41 for PSFAA). Any toxicity of PSFAA was noticed. After light illumination, a dose-dependent effect on PS concentration and light dose was shown. Furthermore, a PDT efficacy of PSFAA on OC cell secretome was detected inducing a decrease of a pro-inflammatory cytokine secretion (IL-6). This new PSFAA has shown promising biological properties highlighting the selectivity of the therapy opening new perspectives in the treatment of a cancer in a therapeutic impasse.


Asunto(s)
Clorofila , Ácido Fólico , Interleucina-6 , Neoplasias Ováricas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Fotoquimioterapia/métodos , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Femenino , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/administración & dosificación , Ácido Fólico/química , Línea Celular Tumoral , Clorofila/análogos & derivados , Clorofila/farmacología , Clorofila/administración & dosificación , Clorofila/uso terapéutico , Clorofila/química , Interleucina-6/metabolismo , Muerte Celular/efectos de los fármacos , Receptor 1 de Folato/metabolismo , Inflamación/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos
6.
J Mater Chem B ; 12(24): 5940-5949, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38804636

RESUMEN

Gambogic acid (GA) as a naturally derived chemotherapeutic agent is of increasing interest for antitumor therapy. However, current research mainly focuses on improving the pharmacological properties to overcome the shortcomings in clinical applications or as a synergistic anticancer agent in combination with chemotherapy and chemophototherapy. Yet, the material properties of GA (e.g., self-assembly) are often neglected. Herein, we validated the self-assembly function of GA and its huge potential as a single-component active carrier for synergistic delivery using pyropheophorbide-a (PPa) as a drug model. The results showed that self-assembled GA drives the formation of nano-GA/PPa mainly through noncovalent interactions such as π-π stacking, hydrophobic interactions, and hydrogen bonding. Additionally, although no significant differences in cytotoxicity were found between the individual in vitro chemotherapy and combined chemophototherapy, the as-prepared nano-GA/PPa exhibits remarkably improved water solubility and multiple favorable therapeutic features, leading to a prominent in vivo photochemotherapy efficiency of 89.3% inhibition rate with reduced hepatotoxicity of GA. This work highlights the potential of self-assembled GA as a drug delivery carrier for synergistic biomedical applications.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Xantonas , Xantonas/química , Xantonas/farmacología , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Ratones , Ensayos de Selección de Medicamentos Antitumorales , Clorofila/química , Clorofila/análogos & derivados , Clorofila/farmacología , Supervivencia Celular/efectos de los fármacos , Nanopartículas/química , Proliferación Celular/efectos de los fármacos , Fotoquimioterapia , Tamaño de la Partícula , Ratones Endogámicos BALB C , Portadores de Fármacos/química , Estructura Molecular
7.
J Phys Chem Lett ; 15(22): 5838-5847, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38788163

RESUMEN

The light-harvesting complexes (LHCs) of diatoms, specifically fucoxanthin-Chl a/c binding proteins (FCPs), exhibit structural and functional diversity, as highlighted by recent structural studies of photosystem II-FCP (PSII-FCPII) supercomplexes from different diatom species. The excitation dynamics of PSII-FCPII supercomplexes isolated from the diatom Thalassiosira pseudonana was explored using time-resolved fluorescence spectroscopy and two-dimensional electronic spectroscopy at room temperature and 77 K. Energy transfer between FCPII and PSII occurred remarkably fast (<5 ps), emphasizing the efficiency of FCPII as a light-harvesting antenna. The presence of long-wavelength chlorophylls may further help concentrate excitations in the core complex and increase the efficiency of light harvesting. Structure-based calculations reveal remarkably strong excitonic couplings between chlorophylls in the FCP antenna and between FCP and the PSII core antenna that are the basis for the rapid energy transfer.


Asunto(s)
Diatomeas , Transferencia de Energía , Complejos de Proteína Captadores de Luz , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Diatomeas/química , Diatomeas/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Espectrometría de Fluorescencia , Clorofila/química
8.
J Phys Chem B ; 128(21): 5201-5217, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38756003

RESUMEN

In this study, the site energy fluctuations, energy transfer dynamics, and some spectroscopic properties of the minor light-harvesting complex CP24 in a membrane environment were determined. For this purpose, a 3 µs-long classical molecular dynamics simulation was performed for the CP24 complex. Furthermore, using the density functional tight binding/molecular mechanics molecular dynamics (DFTB/MM MD) approach, we performed excited state calculations for the chlorophyll a and chlorophyll b molecules in the complex starting from five different positions of the MD trajectory. During the extended simulations, we observed variations in the site energies of the different sets as a result of the fluctuating protein environment. In particular, a water coordination to Chl-b 608 occurred only after about 1 µs in the simulations, demonstrating dynamic changes in the environment of this pigment. From the classical and the DFTB/MM MD simulations, spectral densities and the (time-dependent) Hamiltonian of the complex were determined. Based on these results, three independent strongly coupled chlorophyll clusters were revealed within the complex. In addition, absorption and fluorescence spectra were determined together with the exciton relaxation dynamics, which reasonably well agrees with experimental time scales.


Asunto(s)
Clorofila , Complejos de Proteína Captadores de Luz , Simulación de Dinámica Molecular , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Clorofila/química , Transferencia de Energía , Clorofila A/química , Teoría Funcional de la Densidad , Espectrometría de Fluorescencia
9.
Int J Pharm ; 658: 124186, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38701908

RESUMEN

Because of the difficult challenges of nanopharmaceutics, the development of a variety of nanovectors is still highly desired. Photodynamic therapy, which uses a photosensitizer to locally produce reactive oxygen species to kill the undesired cells, is a typical example for which encapsulation has been shown to be beneficial. The present work describes the use of coumarin-functionalized polymeric nanovectors based on the self-assembly of amphiphilic poly(2-oxazoline)s. Encapsulation of pheophorbide a, a known PDT photosensitizer, is shown to lead to an increased efficiency compared to the un-encapsulated version. Interestingly, the presence of coumarin both enhances the desired photocytotoxicity and enables the crosslinking of the vectors. Various nanovectors are examined, differing by their size, shape and hydrophilicity. Their behaviour in PDT protocols on HCT-116 cells monolayers is described, the influence of their crosslinking commented. Furthermore, the formation of a protein corona is assessed.


Asunto(s)
Cumarinas , Oxazoles , Fotoquimioterapia , Fármacos Fotosensibilizantes , Fotoquimioterapia/métodos , Humanos , Cumarinas/química , Oxazoles/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Células HCT116 , Supervivencia Celular/efectos de los fármacos , Clorofila/análogos & derivados , Clorofila/química , Clorofila/farmacología , Nanopartículas/química , Portadores de Fármacos/química , Polímeros/química
10.
ACS Nano ; 18(20): 12933-12944, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38712906

RESUMEN

Efficient tumor-targeted drug delivery is still a challenging and currently unbreakable bottleneck in chemotherapy for tumors. Nanomedicines based on passive or active targeting strategy have not yet achieved convincing chemotherapeutic benefits in the clinic due to the tumor heterogeneity. Inspired by the efficient inflammatory-cell recruitment to acute clots, we constructed a two-component nanosystem, which is composed of an RGD-modified pyropheophorbide-a (Ppa) micelle (PPRM) that mediates the tumor vascular-targeted photodynamic reaction to activate local coagulation and subsequently transmits the coagulation signals to the circulating clot-targeted CREKA peptide-modified camptothecin (CPT)-loaded nanodiscs (CCNDs) for amplifying tumor targeting. PPRM could effectively bind with the tumor vasculature and induce sufficient local thrombus by a photodynamic reaction. Local photodynamic reaction-induced tumor target amplification greatly increased the tumor accumulation of CCND by 4.2 times, thus significantly enhancing the chemotherapeutic efficacy in the 4T1 breast tumor model. In other words, this study provides a powerful platform to amplify tumor-specific drug delivery by taking advantage of the efficient crosstalk between the PPRM-activated coagulation cascade and clot-targeted CCND.


Asunto(s)
Clorofila , Nanopartículas , Fotoquimioterapia , Animales , Nanopartículas/química , Ratones , Clorofila/análogos & derivados , Clorofila/química , Clorofila/farmacología , Sistemas de Liberación de Medicamentos , Femenino , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Camptotecina/química , Camptotecina/farmacología , Camptotecina/análogos & derivados , Camptotecina/administración & dosificación , Micelas , Ratones Endogámicos BALB C , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Oligopéptidos/química , Oligopéptidos/farmacología
11.
ACS Appl Bio Mater ; 7(6): 3629-3635, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38817210

RESUMEN

We prepared composite electrodes using TiO2 coated with chlorophylls a and b as photoelectric conversion material and MnO2 as energy storage material and investigated their photoelectrochemical capacitor properties. The coating with the combination of chlorophylls a and b improved the photoelectric conversion function of TiO2, compared with the coating with each alone. Na+ adsorption on MnO2 was enhanced with increasing the chlorophyll coating amount. The reason is that more chlorophylls a and b absorb visible light in different wavelengths to promote an easier photoexcited electron transfer to MnO2, just as they improve the efficiency of photosynthesis reactions in nature.


Asunto(s)
Clorofila , Electrodos , Compuestos de Manganeso , Ensayo de Materiales , Óxidos , Tamaño de la Partícula , Titanio , Titanio/química , Compuestos de Manganeso/química , Óxidos/química , Clorofila/química , Técnicas Electroquímicas , Propiedades de Superficie
12.
Food Chem ; 451: 139457, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703726

RESUMEN

Chlorophylls and ß-carotene are fat-soluble phytochemicals in daily diets, while their bioaccessibility interaction remains unknown. Eight dietary chlorophylls and their derivatives (chlorophyll a, chlorophyll b, pheophytin a, pheophytin b, chlorophyllide a, chlorophyllide b, pheophorbide a, pheophorbide b) were combined with ß-carotene in six different oil matrices (corn oil, coconut oil, medium-chain triglycerides, peanut oil, olive oil and fish oil) and were subjected to in vitro digestion. Generally, chlorophylls significantly decreased ß-carotene bioaccessibility by competitive incorporation into micelles. Dephytylated chlorophylls had a greater inhibitory effect on the micellarization and bioaccessibility of ß-carotene compared to phytylated chlorophylls. In their co-digestion system, olive oil group exhibited the smallest particle size and biggest zeta potential in both digesta and micelles. For chlorophylls, the phytol group and their levels are key factors, which was also buttressed by the mice model where additional supplementation of pheophorbide a significantly hindered the accumulation of ß-carotene and retinoids compounds.


Asunto(s)
Clorofila , beta Caroteno , Clorofila/química , Clorofila/metabolismo , beta Caroteno/química , beta Caroteno/metabolismo , Animales , Ratones , Disponibilidad Biológica , Digestión , Humanos , Aceites de Plantas/química , Aceites de Plantas/metabolismo , Modelos Biológicos , Micelas
13.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732034

RESUMEN

Photosystem I (PS I) is a photosynthetic pigment-protein complex that absorbs light and uses the absorbed energy to initiate electron transfer. Electron transfer has been shown to occur concurrently along two (A- and B-) branches of reaction center (RC) cofactors. The electron transfer chain originates from a special pair of chlorophyll a molecules (P700), followed by two chlorophylls and one phylloquinone in each branch (denoted as A-1, A0, A1, respectively), converging in a single iron-sulfur complex Fx. While there is a consensus that the ultimate electron donor-acceptor pair is P700+A0-, the involvement of A-1 in electron transfer, as well as the mechanism of the very first step in the charge separation sequence, has been under debate. To resolve this question, multiple groups have targeted electron transfer cofactors by site-directed mutations. In this work, the peripheral hydrogen bonds to keto groups of A0 chlorophylls have been disrupted by mutagenesis. Four mutants were generated: PsaA-Y692F; PsaB-Y667F; PsaB-Y667A; and a double mutant PsaA-Y692F/PsaB-Y667F. Contrary to expectations, but in agreement with density functional theory modeling, the removal of the hydrogen bond by Tyr → Phe substitution was found to have a negligible effect on redox potentials and optical absorption spectra of respective chlorophylls. In contrast, Tyr → Ala substitution was shown to have a fatal effect on the PS I function. It is thus inferred that PsaA-Y692 and PsaB-Y667 residues have primarily structural significance, and their ability to coordinate respective chlorophylls in electron transfer via hydrogen bond plays a minor role.


Asunto(s)
Clorofila , Enlace de Hidrógeno , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/genética , Clorofila/metabolismo , Clorofila/química , Transporte de Electrón , Electrones , Modelos Moleculares , Mutación
14.
Biochim Biophys Acta Bioenerg ; 1865(3): 149044, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588942

RESUMEN

Primary processes of light energy conversion by Photosystem II (PSII) were studied using femtosecond broadband pump-probe absorption difference spectroscopy. Transient absorption changes of core complexes isolated from the cyanobacterium Synechococcus sp. PCC 7335 grown under far-red light (FRL-PSII) were compared with the canonical Chl a containing spinach PSII core complexes upon excitation into the red edge of the Qy band. Absorption changes of FRL-PSII were monitored at 278 K in the 400-800 nm spectral range on a timescale of 0.1-500 ps upon selective excitation at 740 nm of four chlorophyll (Chl) f molecules in the light harvesting antenna, or of one Chl d molecule at the ChlD1 position in the reaction center (RC) upon pumping at 710 nm. Numerical analysis of absorption changes and assessment of the energy levels of the presumed ion-radical states made it possible to identify PD1+ChlD1- as the predominant primary charge-separated radical pair, the formation of which upon selective excitation of Chl d has an apparent time of ∼1.6 ps. Electron transfer to the secondary acceptor pheophytin PheoD1 has an apparent time of ∼7 ps with a variety of excitation wavelengths. The energy redistribution between Chl a and Chl f in the antenna occurs within 1 ps, whereas the energy migration from Chl f to the RC occurs mostly with lifetimes of 60 and 400 ps. Potentiometric analysis suggests that in canonical PSII, PD1+ChlD1- can be partially formed from the excited (PD1ChlD1)* state.


Asunto(s)
Clorofila , Complejo de Proteína del Fotosistema II , Synechococcus , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/química , Synechococcus/metabolismo , Clorofila/metabolismo , Clorofila/química , Luz , Transporte de Electrón , Spinacia oleracea/metabolismo
15.
Chemistry ; 30(35): e202401288, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38634697

RESUMEN

Breakdown of chlorophyll (Chl), as studied in angiosperms, follows the pheophorbide a oxygenase/phyllobilin (PaO/PB) pathway, furnishing linear tetrapyrroles, named phyllobilins (PBs). In an investigation with fern leaves we have discovered iso-phyllobilanones (iPBs) with an intriguingly rearranged and oxidized carbon skeleton. We report here a key second group of iPBs from the fern and on their structure analysis. Previously, these additional Chl-catabolites escaped their characterization, since they exist in aqueous media as mixtures of equilibrating isomers. However, their chemical dehydration furnished stable iPB-derivatives that allowed the delineation of the enigmatic structures and chemistry of the original natural catabolites. The structures of all fern-iPBs reflect the early core steps of a PaO/PB-type pathway and the PB-to-iPB carbon skeleton rearrangement. A striking further degradative chemical ring-cleavage was observed, proposed to consume singlet molecular oxygen (1O2). Hence, Chl-catabolites may play a novel active role in detoxifying cellular 1O2. The critical deviations from the PaO/PB pathway, found in the fern, reflect evolutionary developments of Chl-breakdown in the green plants in the Paleozoic era.


Asunto(s)
Clorofila , Helechos , Clorofila/química , Helechos/química , Tetrapirroles/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Oxígeno Singlete/química
16.
Molecules ; 29(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675551

RESUMEN

This study aimed to determine the effect of the drying method (freeze-drying, air-drying), storage period (12 months), and storage conditions (2-4 °C, 18-22 °C) applied to two legume species: green beans and green peas. The raw and dried materials were determined for selected physical parameters typical of dried vegetables, contents of bioactive components (vitamin C and E, total chlorophyll, total carotenoids, ß-carotene, and total polyphenols), antioxidative activity against the DPPH radical, and sensory attributes (overall quality and profiles of color, texture, and palatability). Green beans had a significantly higher content of bioactive components compared to peas. Freeze-drying and cold storage conditions facilitated better retention of these compounds, i.e., by 9-39% and 3-11%, respectively. After 12 months of storage, higher retention of bioactive components, except for total chlorophyll, was determined in peas regardless of the drying method, i.e., by 38-75% in the freeze-dried product and 30-77% in the air-dried product, compared to the raw material.


Asunto(s)
Antioxidantes , Clorofila , Fabaceae , Liofilización , Verduras , Antioxidantes/análisis , Antioxidantes/química , Verduras/química , Clorofila/análisis , Clorofila/química , Fabaceae/química , Carotenoides/análisis , Carotenoides/química , Almacenamiento de Alimentos/métodos , Polifenoles/análisis , Polifenoles/química , Ácido Ascórbico/análisis , Ácido Ascórbico/química , Desecación/métodos , beta Caroteno/análisis , beta Caroteno/química , Pisum sativum/química , Fitoquímicos/análisis , Fitoquímicos/química , Vitamina E/análisis , Vitamina E/química
17.
Sci Rep ; 14(1): 9505, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664430

RESUMEN

The effects of low-cost Thai leucoxene mineral (LM) at different concentrations (10, 20, 30, 40, 50, and 60 mg/L) on the growth and antibacterial properties of Chrysanthemum indium L. cuttings under in vitro were evaluated. The primary chemical composition of LM was approximately 86% titanium dioxide (TiO2), as determined by dispersive X-ray spectroscopy. The crystalline structure, shape, and size were investigated by X-ray diffraction and scanning electron microscopy. LM at 40 and 50 mg/L significantly increased plant height, leaf number, node number, and fresh and dry weight. These growth-promoting properties were accompanied by improved chlorophyll and carotenoid contents and antioxidant enzyme activities and reduced malondialdehyde levels. Additionally, LM treatment at 40 and 50 mg/L had positive effects on antibacterial activity, as indicated by the lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. The high levels of phenolic compounds in the plants contributed to the MIC and MBC values. In conclusion, these findings provide evidence for the effectiveness of LM in enhancing the growth of Chrysanthemum plants in in vitro culture and improving their antibacterial abilities.


Asunto(s)
Antibacterianos , Chrysanthemum , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antioxidantes/química , Carotenoides/química , Clorofila/química , Chrysanthemum/química , Hojas de la Planta/química , Tailandia , Titanio/química , Titanio/farmacología
18.
Biochemistry ; 63(9): 1214-1224, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38679935

RESUMEN

A central goal of photoprotective energy dissipation processes is the regulation of singlet oxygen (1O2*) and reactive oxygen species in the photosynthetic apparatus. Despite the involvement of 1O2* in photodamage and cell signaling, few studies directly correlate 1O2* formation to nonphotochemical quenching (NPQ) or lack thereof. Here, we combine spin-trapping electron paramagnetic resonance (EPR) and time-resolved fluorescence spectroscopies to track in real time the involvement of 1O2* during photoprotection in plant thylakoid membranes. The EPR spin-trapping method for detection of 1O2* was first optimized for photosensitization in dye-based chemical systems and then used to establish methods for monitoring the temporal dynamics of 1O2* in chlorophyll-containing photosynthetic membranes. We find that the apparent 1O2* concentration in membranes changes throughout a 1 h period of continuous illumination. During an initial response to high light intensity, the concentration of 1O2* decreased in parallel with a decrease in the chlorophyll fluorescence lifetime via NPQ. Treatment of membranes with nigericin, an uncoupler of the transmembrane proton gradient, delayed the activation of NPQ and the associated quenching of 1O2* during high light. Upon saturation of NPQ, the concentration of 1O2* increased in both untreated and nigericin-treated membranes, reflecting the utility of excess energy dissipation in mitigating photooxidative stress in the short term (i.e., the initial ∼10 min of high light).


Asunto(s)
Fotosíntesis , Oxígeno Singlete , Tilacoides , Espectroscopía de Resonancia por Spin del Electrón/métodos , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química , Tilacoides/metabolismo , Tilacoides/química , Detección de Spin/métodos , Clorofila/metabolismo , Clorofila/química , Spinacia oleracea/metabolismo , Spinacia oleracea/química , Luz
19.
Environ Sci Pollut Res Int ; 31(23): 33651-33662, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38689042

RESUMEN

The present study investigates the usage of a novel natural dye derived from red algae of Morocco in dye-sensitized solar cells (DSSCs) for the first time. The main pigments responsible for sensitizing the semiconductor TiO2 coatings in the red algae were identified as phycoerythrin, carotenoid, and chlorophyll. The efficiency of a DSSC made from red algae was compared to that of a solar cell made from chlorophyll alone. The photovoltaic performance of the DSSC was evaluated through photocurrent density to photovoltage (J-V) characteristic analysis, and the efficiency was found to be 0.93%. To gain insights into its behavior, the absorbance and photoluminescence in a broad range were studied. Both absorbance and photoluminescence exhibited a broad-spectrum range. Additionally, electronic properties, such as HOMO, LUMO, energy gap, and chemical reactivity parameters, were studied using density functional theory (DFT) calculations.


Asunto(s)
Colorantes , Rhodophyta , Energía Solar , Colorantes/química , Rhodophyta/química , Teoría Funcional de la Densidad , Titanio/química , Clorofila/química
20.
J Hazard Mater ; 470: 134198, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608582

RESUMEN

A novel Ag3PO4/ZnWO4-modified graphite felt electrode (AZW@GF) was prepared by drop coating method and applied to photoelectrocatalytic removal of harmful algae. Results showed that approximately 99.21% of chlorophyll a and 91.57% of Microcystin-LR (MCLR) were degraded by the AZW@GF-Pt photoelectrocatalytic system under the optimal operating conditions with a rate constant of 0.02617 min-1 and 0.01416 min-1, respectively. The calculated synergistic coefficient of photoelectrocatalytic algal removal and MC-LR degradation by the AZW@GF-Pt system was both larger than 1.9. In addition, the experiments of quenching experiments and electron spin resonance (ESR) revealed that the photoelectrocatalytic reaction mainly generated •OH and •O2- for algal removal and MC-LR degradation. Furthermore, the potential pathway for photoelectrocatalytic degradation of MC-LR was proposed. Finally, the photoelectrocatalytic cycle algae removal experiments were carried out on AZW@GF electrode, which was found to maintain the algae removal efficiency at about 91% after three cycles of use, indicating that the photoelectrocatalysis of AZW@GF electrode is an effective emergency algae removal technology.


Asunto(s)
Electrodos , Grafito , Toxinas Marinas , Microcistinas , Compuestos de Plata , Grafito/química , Grafito/efectos de la radiación , Microcistinas/química , Microcistinas/aislamiento & purificación , Catálisis , Compuestos de Plata/química , Fosfatos/química , Óxidos/química , Técnicas Electroquímicas , Tungsteno/química , Clorofila A/química , Zinc/química , Purificación del Agua/métodos , Clorofila/química , Procesos Fotoquímicos , Floraciones de Algas Nocivas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...