Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.318
Filtrar
1.
Mikrochim Acta ; 191(8): 443, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955844

RESUMEN

CoFe@C was first prepared by calcining the precursor of CoFe-metal-organic framework-74 (CoFe-MOF-74), then an electrochemical sensor for the determination of neohesperidin dihydrochalcone (NHDC) was constructed, which was stemmed from the novel CoFe@C/Nafion composite film modified glassy carbon electrode (GCE). The CoFe@C/Nafion composite was verified by field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Electrochemical impedance spectroscopy (EIS) was used to evaluate its electrical properties as a modified material for an electrochemical sensor. Compared with CoFe-MOF-74 precursor modified electrode, CoFe@C/Nafion electrode exhibited a great synergic catalytic effect and extremely increased the oxidation peak signal of NHDC. The effects of various experimental conditions on the oxidation of NHDC were investigated and the calibration plot was tested. The results bespoken that CoFe@C/Nafion GCE has good reproducibility and anti-interference under the optimal experimental conditions. In addition, the differential pulse current response of NHDC was linear with its concentration within the range 0.08 ~ 20 µmol/L, and the linear regression coefficient was 0.9957. The detection limit was as low as 14.2 nmol/L (S/N = 3). In order to further verify the feasibility of the method, it was successfully used to determine the content of NHDC in Chinese medicine, with a satisfactory result, good in accordance with that of high performance liquid chromatography (HPLC).


Asunto(s)
Chalconas , Cobalto , Técnicas Electroquímicas , Electrodos , Límite de Detección , Estructuras Metalorgánicas , Cobalto/química , Estructuras Metalorgánicas/química , Chalconas/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Hesperidina/análogos & derivados , Hesperidina/análisis , Hesperidina/química , Polímeros de Fluorocarbono/química , Oxidación-Reducción , Carbono/química , Reproducibilidad de los Resultados , Hierro/química
2.
J Nanobiotechnology ; 22(1): 377, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937768

RESUMEN

BACKGROUND: Efficient monitoring of glucose concentration in the human body necessitates the utilization of electrochemically active sensing materials in nonenzymatic glucose sensors. However, prevailing limitations such as intricate fabrication processes, lower sensitivity, and instability impede their practical application. Herein, ternary Cu-Co-Ni-S sulfides nanoporous network structure was synthesized on carbon fiber paper (CP) by an ultrafast, facile, and controllable technique through on-step cyclic voltammetry, serving as a superior self-supporting catalytic electrode for the high-performance glucose sensor. RESULTS: The direct growth of free-standing Cu-Co-Ni-S on the interconnected three-dimensional (3D) network of CP boosted the active site of the composites, improved ion diffusion kinetics, and significantly promoted the electron transfer rate. The multiple oxidation states and synergistic effects among Co, Ni, Cu, and S further promoted glucose electrooxidation. The well-architected Cu-Co-Ni-S/CP presented exceptional electrocatalytic properties for glucose with satisfied linearity of a broad range from 0.3 to 16,000 µM and high sensitivity of 6829 µA mM- 1 cm- 2. Furthermore, the novel sensor demonstrated excellent selectivity and storage stability, which could successfully evaluate the glucose levels in human serum. Notably, the novel Cu-Co-Ni-S/CP showed favorable biocompatibility, proving its potential for in vivo glucose monitoring. CONCLUSION: The proposed 3D hierarchical morphology self-supported electrode sensor, which demonstrates appealing analysis behavior for glucose electrooxidation, holds great promise for the next generation of high-performance glucose sensors.


Asunto(s)
Técnicas Biosensibles , Fibra de Carbono , Cobalto , Cobre , Técnicas Electroquímicas , Electrodos , Níquel , Sulfuros , Cobre/química , Níquel/química , Catálisis , Humanos , Cobalto/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Sulfuros/química , Fibra de Carbono/química , Glucosa/análisis , Glucosa/química , Nanoporos , Oxidación-Reducción , Glucemia/análisis
3.
Int J Mol Sci ; 25(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38928099

RESUMEN

Cobalt-aluminum-layered double hydroxides containing carboxymethyl ß-cyclodextrin (CMßCD) were synthesized by coprecipitation and evaluated as a cobalt source for the 4-nitrophenol reduction in an aqueous medium. Several physicochemical techniques (XRD, FTIR, TGA) indicated the intercalation of the anionic cyclodextrin without damages to the hydrotalcite-type structure. These lamellar cobalt-aluminum hybrid materials (CoAl_CMßCD) were evaluated in the 4-nitrophenol reduction and showed higher activities in comparison with the CMßCD-free standard material (CoAl_CO3). To rationalize these results, a set of experimental controls going from physical mixtures of CoAl_CO3 with different cyclodextrins to other cobalt-based materials were investigated, highlighting the beneficial effects of both the layered double hydroxide and CMßCD-based hybrid structures. CMßCD also showed a beneficial effect as an additive during the 4-nitrophenol reduction. CoAl_CO3, dispersed in a fresh CMßCD solution could be re-used for five successive cycles without the loss of activity.


Asunto(s)
Cobalto , Hidróxidos , Nitrofenoles , Oxidación-Reducción , beta-Ciclodextrinas , Nitrofenoles/química , Cobalto/química , beta-Ciclodextrinas/química , Hidróxidos/química , Catálisis , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier
4.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928184

RESUMEN

Simple and efficient sample pretreatment methods are important for analysis and detection of chemical warfare agents (CWAs) in environmental and biological samples. Despite many commercial materials or reagents that have been already applied in sample preparation, such as SPE columns, few materials with specificity have been utilized for purification or enrichment. In this study, ionic magnetic mesoporous nanomaterials such as poly(4-VB)@M-MSNs (magnetic mesoporous silicon nanoparticles modified by 4-vinyl benzene sulfonic acid) and Co2+@M-MSNs (magnetic mesoporous silicon nanoparticles modified by cobalt ions) with high absorptivity for ethanol amines (EAs, nitrogen mustard degradation products) and cyanide were successfully synthesized. The special nanomaterials were obtained by modification of magnetic mesoporous particles prepared based on co-precipitation using -SO3H and Co2+. The materials were fully characterized in terms of their composition and structure. The results indicated that poly(4-VB)@M-MSNs or Co2+@M-MSNs had an unambiguous core-shell structure with a BET of 341.7 m2·g-1 and a saturation magnetization intensity of 60.66 emu·g-1 which indicated the good thermal stability. Poly(4-VB)@M-MSNs showed selective adsorption for EAs while the Co2+@M-MSNs were for cyanide, respectively. The adsorption capacity quickly reached the adsorption equilibrium within the 90 s. The saturated adsorption amounts were MDEA = 35.83 mg·g-1, EDEA = 35.00 mg·g-1, TEA = 17.90 mg·g-1 and CN-= 31.48 mg·g-1, respectively. Meanwhile, the adsorption capacities could be maintained at 50-70% after three adsorption-desorption cycles. The adsorption isotherms were confirmed as the Langmuir equation and the Freundlich equation, respectively, and the adsorption mechanism was determined by DFT calculation. The adsorbents were applied for enrichment of targets in actual samples, which showed great potential for the verification of chemical weapons and the destruction of toxic chemicals.


Asunto(s)
Aminas , Cianuros , Etanol , Cianuros/química , Cianuros/aislamiento & purificación , Adsorción , Aminas/química , Etanol/química , Porosidad , Cobalto/química , Nanopartículas de Magnetita/química , Nanoestructuras/química
5.
Biosensors (Basel) ; 14(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38920580

RESUMEN

Metal-organic frameworks (MOFs) are frequently utilized as sensing materials. Unfortunately, the low conductivity of MOFs hinder their further application in electrochemical determination. To overcome this limitation, a novel modification strategy for MOFs was proposed, establishing an electrochemical determination method for cyanides in Baijiu. Co and Ni were synergistically used as the metal active centers, with meso-Tetra(4-carboxyphenyl)porphine (TCPP) and Ferrocenecarboxylic acid (Fc-COOH) serving as the main ligands, synthesizing Ni/Co-MOF-TCPP-Fc through a hydrothermal method. The prepared MOF exhibited improved conductivity and stable ratio signals, enabling rapid and sensitive determination of cyanides. The screen-printed carbon electrodes (SPCE) were suitable for in situ and real-time determination of cyanide by electrochemical sensors due to their portability, low cost, and ease of mass production. A logarithmic linear response in the range of 0.196~44 ng/mL was demonstrated by this method, and the limit of detection (LOD) was 0.052 ng/mL. Compared with other methods, the sensor was constructed by a one-step synthesis method, which greatly simplifies the analysis process, and the determination time required was only 4 min. During natural cyanide determinations, recommended readouts match well with GC-MS with less than 5.9% relative error. Moreover, this electrochemical sensor presented a promising method for assessing the safety of cyanides in Baijiu.


Asunto(s)
Cianuros , Técnicas Electroquímicas , Límite de Detección , Estructuras Metalorgánicas , Cianuros/análisis , Estructuras Metalorgánicas/química , Electrodos , Técnicas Biosensibles , Níquel/química , Compuestos Ferrosos/química , Metalocenos/química , Cobalto/química
6.
J Am Chem Soc ; 146(25): 17201-17210, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38874405

RESUMEN

As one of the most lethal cardiovascular diseases, aortic dissection (AD) is initiated by overexpression of reactive oxygen species (ROS) in the aorta that damages the vascular structure and finally leads to massive hemorrhage and sudden death. Current drugs used in clinics for AD treatment fail to efficiently scavenge ROS to a large extent, presenting undesirable therapeutic effect. In this work, a nanocatalytic antioxidation concept has been proposed to elevate the therapeutic efficacy of AD by constructing a cobalt nanocatalyst with a biomimetic structure that can scavenge pathological ROS in an efficient and sustainable manner. Theoretical calculations demonstrate that the antioxidation reaction is catalyzed by the redox transition between hydroxocobalt(III) and oxo-hydroxocobalt(V) accompanied by inner-sphere proton-coupled two-electron transfer, forming a nonassociated activation catalytic cycle. The efficient antioxidation action of the biomimetic nanocatalyst in the AD region effectively alleviates oxidative stress, which further modulates the aortic inflammatory microenvironment by promoting phenotype transition of macrophages. Consequently, vascular smooth muscle cells are also protected from inflammation in the meantime, suppressing AD progression. This study provides a nanocatalytic antioxidation approach for the efficient treatment of AD and other cardiovascular diseases.


Asunto(s)
Antioxidantes , Disección Aórtica , Cobalto , Catálisis , Cobalto/química , Cobalto/farmacología , Disección Aórtica/tratamiento farmacológico , Disección Aórtica/patología , Antioxidantes/química , Antioxidantes/farmacología , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Materiales Biomiméticos/síntesis química , Ratones , Especies Reactivas de Oxígeno/metabolismo , Humanos , Estrés Oxidativo/efectos de los fármacos , Nanopartículas del Metal/química
7.
J Hazard Mater ; 475: 134835, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878429

RESUMEN

Developing efficient and eco-friendly technologies for treating the antibiotic wastewaters is crucial. At present, the catalysts with metal-nitrogen (M-Nx) coordination showed excellent Fenton-like performance but were always difficult to realize practical antibiotics degradation because of their complicated preparation methods and inferior stability. In this work, the Co-Nx configuration was facilely reconstructed on the surface of Co3O4 (Co-Nx/Co3O4), which exhibited superior catalytic activity and stability towards various antibiotics. DFT results indicated that stronger ETP oxidation will be triggered by the electron-donating pollutants since more electrons can be easily migrated from these pollutants to the Co-Nx/Co3O4/PMS complex. The Co-Nx/Co3O4/PMS system could maintain superior oxidation capacity, high catalytic stability and anti-interference due to (i) the strong nonradical ETP oxidation with superior degradation selectivity in Co-Nx/Co3O4/PMS system, and (ii) the synchronously enhanced radical oxidation with high populations of non-selective radicals generated via activating PMS by the Co-Nx/Co3O4. As a result, the synergies of synchronously enhanced dual oxidation pathways guaranteed the self-cleaning properties, maintaining 98 % of activity after eight cycles and stability across a wide pH range. Basically, these findings have significant implications for developing technologies for purifying antibiotic wastewater.


Asunto(s)
Antibacterianos , Cobalto , Oxidación-Reducción , Óxidos , Contaminantes Químicos del Agua , Antibacterianos/química , Cobalto/química , Contaminantes Químicos del Agua/química , Óxidos/química , Catálisis , Nitrógeno/química , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos
8.
ACS Sens ; 9(6): 3444-3454, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38847105

RESUMEN

Programmed death ligand-1 (PD-L1)-expressing exosomes are considered a potential marker for diagnosis and classification of lung adenocarcinoma (LUAD). There is an urgent need to develop highly sensitive and accurate chemiluminescence (CL) immunosensors for the detection of PD-L1-expressing exosomes. Herein, N-(4-aminobutyl)-N-ethylisopropanol-functionalized nickel-cobalt hydroxide (NiCo-DH-AA) with a hollow nanoflower structure as a highly efficient CL nanoprobe was synthesized using gold nanoparticles as a "bridge". The resulting NiCo-DH-AA exhibited a strong and stable CL emission, which was ascribed to the exceptional catalytic capability and large specific surface area of NiCo-DH, along with the capacity of AuNPs to facilitate free radical generation. On this basis, an ultrasensitive sandwich CL immunosensor for the detection of PD-L1-expressing exosomes was constructed by using PD-L1 antibody-modified NiCo-DH-AA as an effective signal probe and rabbit anti-CD63 protein polyclonal antibody-modified carboxylated magnetic bead as a capture platform. The immunosensor demonstrated outstanding analytical performance with a wide detection range of 4.75 × 103-4.75 × 108 particles/mL and a low detection limit of 7.76 × 102 particles/mL, which was over 2 orders of magnitude lower than the reported CL method for detecting PD-L1-expressing exosomes. Importantly, it was able to differentiate well not only between healthy persons and LUAD patients (100% specificity and 87.5% sensitivity) but also between patients with minimally invasive adenocarcinoma and invasive adenocarcinoma (92.3% specificity and 52.6% sensitivity). Therefore, this study not only presents an ultrasensitive and accurate diagnostic method for LUAD but also offers a novel, simple, and noninvasive approach for the classification of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Antígeno B7-H1 , Cobalto , Exosomas , Neoplasias Pulmonares , Níquel , Humanos , Níquel/química , Cobalto/química , Antígeno B7-H1/análisis , Adenocarcinoma del Pulmón/diagnóstico , Adenocarcinoma del Pulmón/inmunología , Neoplasias Pulmonares/diagnóstico , Exosomas/química , Inmunoensayo/métodos , Hidróxidos/química , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , Oro/química , Mediciones Luminiscentes/métodos , Límite de Detección
9.
Environ Geochem Health ; 46(8): 261, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916678

RESUMEN

A simple sol-gel combustion process was employed for the creation of MFe2O4 (M=Ni, Co) nanoparticles. The synthesized nanoparticles, acting as both photocatalysts and gas sensors, were analyzed using various analytical techniques. MFe2O4 (M=Ni, Co) material improved the degradation of methylene blue (MB) under UV-light irradiation, serving as an enhanced electron transport medium. UV-vis studies demonstrated that NiFe2O4 achieved a 60% degradation, while CoFe2O4 nanostructure exhibited a 76% degradation efficacy in the MB dye removal process. Furthermore, MFe2O4 (M=Ni, Co) demonstrated chemosensitive-type sensor capabilities at ambient temperature. The sensor response and recovery times for CoFe2O4 at a concentration of 100 ppm were 15 and 20, respectively. Overall, the synthesis of MFe2O4 (M=Ni, Co) holds the potential to significantly improve the photocatalytic and gas sensing properties, particularly enhancing the performance of CoFe2O4. The observed enhancements make honey MFe2O4 (M=Ni, Co) a preferable choice for environmental remediation applications.


Asunto(s)
Cobalto , Compuestos Férricos , Azul de Metileno , Níquel , Cobalto/química , Cobalto/análisis , Níquel/química , Níquel/análisis , Compuestos Férricos/química , Azul de Metileno/química , Nanopartículas del Metal/química , Gases , Catálisis , Rayos Ultravioleta , Restauración y Remediación Ambiental/métodos , Nanopartículas/química , Óxido de Aluminio , Óxido de Magnesio
10.
Drug Dev Ind Pharm ; 50(6): 561-575, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38832870

RESUMEN

INTRODUCTION: Breast cancer (BC) is the most common malignancy in women globally. Significant progress has been made in developing structural nanoparticles (NPs) and formulations for targeted smart drug delivery (SDD) of pharmaceuticals, improving the precision of tumor cell targeting in therapy. SIGNIFICANCE: Magnetic hyperthermia (MHT) treatment using magneto-liposomes (MLs) has emerged as a promising adjuvant cancer therapy. METHODS: CoFe2O4 magnetic NPs (MNPs) were conjugated with nanoliposomes to form MLs, and the anticancer drug quercetin (Que) was loaded into MLs, forming Que-MLs composites for antitumor approach. The aim was to prepare Que-MLs for DD systems (DDS) under an alternating magnetic field (AMF), termed chemotherapy/hyperthermia (chemo-HT) techniques. The encapsulation efficiency (EE), drug loading capacity (DL), and drug release (DR) of Que and Que-MLs were evaluated. RESULTS: The results confirmed successful Que-loading on the surface of MLs, with an average diameter of 38 nm and efficient encapsulation into MLs (69%). In vitro, experimental results on MCF-7 breast cells using MHT showed high cytotoxic effects of novel Que-MLs on MCF-7 cells. Various analyses, including cytotoxicity, apoptosis, cell migration, western blotting, fluorescence imaging, and cell membrane internalization, were conducted. The Acridine Orange-ethidium bromide double fluorescence test identified 35% early and 55% late apoptosis resulting from Que-MLs under the chemo-HT group. TEM results indicated MCF-7 cell membrane internalization and digestion of Que-MLs, suggesting the presence of early endosome-like vesicles on the cytoplasmic periphery. CONCLUSIONS: Que-MLs exhibited multi-modal chemo-HT effects, displaying high toxicity against MCF-7 BC cells and showing promise as a potent cytotoxic agent for BC chemotherapy.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Daño del ADN , Hipertermia Inducida , Liposomas , Quercetina , Humanos , Quercetina/farmacología , Quercetina/administración & dosificación , Quercetina/química , Células MCF-7 , Apoptosis/efectos de los fármacos , Hipertermia Inducida/métodos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Daño del ADN/efectos de los fármacos , Cobalto/química , Cobalto/administración & dosificación , Cobalto/farmacología , Femenino , Compuestos Férricos/química , Liberación de Fármacos , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas de Magnetita/química , Supervivencia Celular/efectos de los fármacos , Campos Magnéticos
11.
Dalton Trans ; 53(26): 10890-10900, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38874585

RESUMEN

Herein, we describe the synthesis and characterisation of four new supramolecular cobalt conjugates of antimicrobial peptides functionalised with terpyridine ligands (L). Peptides were chosen based on the well-established arginine-tryptophan (RW)3 motif, with terpyridine-derivatized lysine (Lys(tpy)) added to the sequence, or replacing tryptophan residues. Self-assembly of the antimicrobial peptides with Co(BF4)2·6H2O formed exclusively CoL2 dimers (for peptides with one tpy ligand each) and Co2L4 metallo-macrocycles (for peptides with two tpy ligands for each peptide), which could be 'locked' by oxidation of Co(+II) to Co(+III) with ammonium ceric nitrate. The Co-peptide complexes were characterised by mass spectrometry and in solution by NMR spectroscopy, including 2D diffusion ordered NMR spectroscopy (DOSY) which confirmed the proposed stoichiometries. The antimicrobial activity of the novel peptides and their metallo-supramolecular assemblies was investigated by determination of their minimal inhibitory concentration (MIC) against a panel of Gram-positive and Gram-negative bacteria. Complexation with cobalt increases the activity of the peptides in almost every case. Most of the new metal-peptide conjugates showed good activity against Gram-positive bacteria, including a multi-resistant S. aureus strain and the opportunistic pathogenic yeast C. albicans (down to 7 µmol l-1 for the most active Co2L4 derivate), a value that is increased five-fold compared to the lysine-derivatized peptide ligand alone. Interestingly, conjugates of the CoL2 type also showed decent activity against Gram-negative bacteria including the WHO-flagged problematic A. baumannii strain (down to 18 µmol l-1 for the most active derivative).


Asunto(s)
Antibacterianos , Cobalto , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Cobalto/química , Cobalto/farmacología , Bacterias Grampositivas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Bacterias Gramnegativas/efectos de los fármacos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/síntesis química , Ligandos
12.
Phys Chem Chem Phys ; 26(26): 18449-18458, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38916072

RESUMEN

In this study, we developed a high-performance non-enzymatic electrochemical sensor based on urchin-like CoP3/Cu3P heterostructured nanorods supported on a three-dimensional porous copper foam, namely, CoP3/Cu3P NRs/CF, for the detection of dopamine. Benefiting from the promising intrinsic catalytic activities of CoP3 and Cu3P, urchin-like microsphere structures, and a large electrochemically active surface area for exposing numerous accessible catalytic active sites, the proposed CoP3/Cu3P NRs/CF shows extraordinary electrochemical response towards the electrocatalytic oxidation of dopamine. As a result, the CoP3/Cu3P NRs/CF sensing electrode has a broad detection window (from 0.2 to 2000 µM), low detection limit (0.51 µM), high electrochemical sensitivity (0.0105 mA µM-1 cm-2), excellent selectivity towards dopamine in the coexistence of some interfering species, and good stability for dopamine determination. More importantly, the CoP3/Cu3P NRs/CF catalyst also exhibits excellent catalytic activity, sensitivity, and selectivity for dopamine detection under simulated human body conditions at a physiological pH of 7.25 (0.1 M PBS) at 36.6 °C.


Asunto(s)
Cobre , Dopamina , Técnicas Electroquímicas , Nanotubos , Dopamina/análisis , Dopamina/química , Cobre/química , Técnicas Electroquímicas/métodos , Nanotubos/química , Porosidad , Catálisis , Cobalto/química , Electrodos , Límite de Detección , Oxidación-Reducción
13.
ACS Biomater Sci Eng ; 10(7): 4510-4524, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38826128

RESUMEN

Eggshell membrane-based biomedical applications have recently received great attention for their wound-healing properties. However, there are limited studies on diabetic wound healing. In this regard, we devised four types of composite eggshell membrane mats with nanoscale coatings of bioactive glass/Zn/Co-doped bioactive glass (ESM + BAG, ESM + ZnBAG, ESM + CoBAG, and ESM + ZnCoBAG) as wound-dressing materials for chronic nonhealing diabetic wounds. A detailed study of the physicochemical properties of the mats was conducted. In vitro studies demonstrated cytocompatibility and viability of human dermal fibroblasts on all four types of mats. The cells also attached finely on the mats with the help of cellular extensions, as evident from scanning electron microscopy (SEM) and rhodamine-phalloidin and Hoechst 33342 staining of cellular components. Endowed with bioactive properties, these mats influenced all aspects of full-thickness skin wound healing in diabetic animal model studies. All of the mats, especially the ESM + ZnCoBAG mat, showed the earliest wound closure, effective renewal, and restructuring of the extracellular matrix in terms of an accurate and timely accumulation of collagen, elastin, and reticulin fibers. Hydroxyproline and sulfated glycosaminoglycans were significantly (p < 0.01, p < 0.05) higher in ESM-ZnCoBAG-treated wounds in comparison to ESM-BAG-treated wounds, which suggests that these newly developed mats have potential as an affordable diabetic wound care solution in biomedical research.


Asunto(s)
Vendajes , Cobalto , Diabetes Mellitus Experimental , Cáscara de Huevo , Vidrio , Cicatrización de Heridas , Zinc , Animales , Cicatrización de Heridas/efectos de los fármacos , Zinc/química , Zinc/farmacología , Cáscara de Huevo/química , Diabetes Mellitus Experimental/patología , Vidrio/química , Conejos , Cobalto/química , Cobalto/farmacología , Humanos , Piel/patología , Piel/efectos de los fármacos , Piel/lesiones , Fibroblastos/efectos de los fármacos
14.
Int J Biol Macromol ; 273(Pt 2): 132961, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38848846

RESUMEN

Zn-air batteries are a highly promising clean energy sustainable conversion technology, and the design of dual-function electrocatalysts with excellent activity and stability is crucial for their development. In this work, FeCo alloy loaded biomass-based N and S co-doped carbon aerogels (FeCo@NS-LCA) were fabricated from chitosan and lignosulfonate-metal chelates via liquid nitrogen pre-frozen synergistic high-temperature carbonization with application in electrocatalytic reactions. The abundant oxygen-containing functional groups on lignosulfonates have a chelating effect on metal ions, which can avoid the aggregation of metal nanoparticles during carbonation and catalysis, facilitating the construction of a nanoconfinement catalytic system with biomass carbon as the domain-limiting body and FeCo nanoparticles as the active sites. FeCo@NS-LCA exhibited catalytic activity (E1/2 = 0.87 V, JL = 5.7 mA cm-2) comparable to the commercial Pt/C in the oxygen reduction reaction (ORR), excellent resistance to methanol toxicity and stability. Meanwhile, the overpotential of oxygen evolution reaction (OER) was 324 mV, close to that of commercial RuO2 catalysts (351 mV). This study utilizes the coordination action of lignosulfonate to provide a novel and environmentally friendly method for the preparation of confined nano-catalysts and provides a new perspective for the high-value utilization of biomass resources.


Asunto(s)
Aleaciones , Carbono , Suministros de Energía Eléctrica , Lignina , Nitrógeno , Oxígeno , Zinc , Lignina/química , Lignina/análogos & derivados , Aleaciones/química , Carbono/química , Oxígeno/química , Catálisis , Zinc/química , Porosidad , Nitrógeno/química , Geles/química , Oxidación-Reducción , Azufre/química , Cobalto/química , Biomasa
15.
Int J Biol Macromol ; 273(Pt 2): 133140, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878931

RESUMEN

The emergence of sustainable polymers and technologies has led to the development of innovative materials with minimal carbon emissions which find extensive applications in wearable electronics, biomedical sensors, and Internet of Things (IoT)-based monitoring systems. Nanocellulose which can be generated from abundant biomass materials has been widely recognized as a sustainable alternative for a diverse range of applications due to its remarkable properties and eco-friendly nature. By making use of the unique and easily accessible coordination transformation property of Co(II) ions and associated visible light absorption changes, we report a novel Co(II) cation-incorporated nanocellulose/malonic acid hybrid aerogel material that exhibits reversible thermochromism induced by thermal stimulus in the presence of atmospheric moisture. This effect is accentuated by the highly porous nature of the nanocellulose aerogel material we have developed. Besides the reversible thermochromic property which Co(II) ions exhibit, the metal ions act as very efficient reinforcing units contributing significantly to the structural stability and rigidity of the hierarchical aerogels by coordinative cross-linking through carboxylate moieties present in the TEMPO-oxidized cellulose nanofibers (TCNF) and additionally adding malonic acid to provide sufficient COO- for cross-linking. Thorough characterization and detailed investigation of as-prepared hybrid aerogels was conducted to evaluate their overall properties including reversible thermochromism and moisture sensor behaviour. Further, an Android mobile-based application was developed to demonstrate the real-world application of the aerogels for atmospheric humidity sensing.


Asunto(s)
Celulosa , Cobalto , Geles , Malonatos , Cobalto/química , Celulosa/química , Geles/química , Malonatos/química , Temperatura , Nanofibras/química
16.
Sci Rep ; 14(1): 13840, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879660

RESUMEN

In this research, an upgraded and environmentally friendly process involving WO3/Co-ZIF nanocomposite was used for the removal of Cefixime from the aqueous solutions. Intelligent decision-making was employed using various models including Support Vector Regression (SVR), Genetic Algorithm (GA), Artificial Neural Network (ANN), Simulation Optimization Language for Visualized Excel Results (SOLVER), and Response Surface Methodology (RSM). SVR, ANN, and RSM models were used for modeling and predicting results, while GA and SOLVER models were employed to achieve the optimal conditions for Cefixime degradation. The primary goal of applying different models was to achieve the best conditions with high accuracy in Cefixime degradation. Based on R analysis, the quadratic factorial model in RSM was selected as the best model, and the regression coefficients obtained from it were used to evaluate the performance of artificial intelligence models. According to the quadratic factorial model, interactions between pH and time, pH and catalyst amount, as well as reaction time and catalyst amount were identified as the most significant factors in predicting results. In a comparison between the different models based on Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination (R2 Score) indices, the SVR model was selected as the best model for the prediction of the results, with a higher R2 Score (0.98), and lower MAE (1.54) and RMSE (3.91) compared to the ANN model. Both ANN and SVR models identified pH as the most important parameter in the prediction of the results. According to the Genetic Algorithm, interactions between the initial concentration of Cefixime with reaction time, as well as between the initial concentration of Cefixime and catalyst amount, had the greatest impact on selecting the optimal values. Using the Genetic Algorithm and SOLVER models, the optimum values for the initial concentration of Cefixime, pH, time, and catalyst amount were determined to be (6.14 mg L-1, 3.13, 117.65 min, and 0.19 g L-1) and (5 mg L-1, 3, 120 min, and 0.19 g L-1), respectively. Given the presented results, this research can contribute significantly to advancements in intelligent decision-making and optimization of the pollutant removal processes from the environment.


Asunto(s)
Cefixima , Aprendizaje Automático , Nanocompuestos , Óxidos , Tungsteno , Nanocompuestos/química , Óxidos/química , Tungsteno/química , Cefixima/química , Redes Neurales de la Computación , Cobalto/química , Algoritmos , Contaminantes Químicos del Agua/química , Antibacterianos/química , Purificación del Agua/métodos
17.
Mikrochim Acta ; 191(7): 365, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831060

RESUMEN

Copper-cobalt bimetallic nitrogen-doped carbon-based nanoenzymatic materials (CuCo@NC) were synthesized using a one-step pyrolysis process. A three-channel colorimetric sensor array was constructed for the detection of seven antioxidants, including cysteine (Cys), uric acid (UA), tea polyphenols (TP), lysine (Lys), ascorbic acid (AA), glutathione (GSH), and dopamine (DA). CuCo@NC with peroxidase activity was used to catalyze the oxidation of TMB by H2O2 at three different ratios of metal sites. The ability of various antioxidants to reduce the oxidation products of TMB (ox TMB) varied, leading to distinct absorbance changes. Linear discriminant analysis (LDA) results showed that the sensor array was capable of detecting seven antioxidants in buffer and serum samples. It could successfully discriminate antioxidants with a minimum concentration of 10 nM. Thus, multifunctional sensor arrays based on CuCo@NC bimetallic nanoenzymes not only offer a promising strategy for identifying various antioxidants but also expand their applications in medical diagnostics and environmental analysis of food.


Asunto(s)
Antioxidantes , Carbono , Colorimetría , Cobre , Nitrógeno , Nitrógeno/química , Colorimetría/métodos , Carbono/química , Antioxidantes/química , Antioxidantes/análisis , Cobre/química , Cobalto/química , Peróxido de Hidrógeno/química , Humanos , Catálisis , Límite de Detección , Glutatión/química , Glutatión/sangre , Dopamina/sangre , Dopamina/análisis , Dopamina/química , Bencidinas/química , Polifenoles/química , Polifenoles/análisis , Ácido Ascórbico/química , Ácido Ascórbico/sangre , Ácido Ascórbico/análisis , Oxidación-Reducción , Ácido Úrico/sangre , Ácido Úrico/química , Ácido Úrico/análisis , Cisteína/química , Cisteína/sangre
18.
Mikrochim Acta ; 191(7): 370, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837084

RESUMEN

The development of an ultrasensitive and precise measurement of a breast cancer biomarker (cancer antigen 15-3; CA15-3) in complex human serum is essential for the early diagnosis of cancer in groups of healthy populations and the treatment of patients. However, currently available testing technologies suffer from insufficient sensitivity toward CA15-3, which severely limits early large-scale screening of breast cancer patients. We report a versatile electrochemical immunoassay method based on atomically cobalt-dispersed nitrogen-doped carbon (Co-NC)-modified disposable screen-printed carbon electrode (SPCE) with alkaline phosphatase (ALP) and its metabolite, ascorbic acid 2-phosphate (AAP), as the electrochemical labeling and redox signaling unit for sensitive detection of low-abundance CA15-3. During electrochemical detection by differential pulse voltammetry (DPV), it was found that the Co-NC-SPCE electrode did not have a current signal response to the AAP substrate; however, it had an extremely favorable response current to ascorbic acid (AA). Based on the above principle, the target CA15-3-triggered immunoassay enriched ALP-catalyzed AAP produces a large amount of AA, resulting in a significant change in the system current signal, thereby realizing the highly sensitive detection of CA15-3. Under the optimal AAP substrate concentration and ALP catalysis time, the Co-NC-SPCE-based electrochemical immunoassay demonstrated a good DPV current for CA15-3 in the assay interval of 1.0 mU/mL to 10,000 mU/mL, with a calculated limit of detection of 0.38 mU/mL. Since Co-NC-SPCE has an excellent DPV current response to AA and employs split-type scheme, the constructed electrochemical immunoassay has the merits of high preciseness and anti-interference, and its clinical diagnostic results are comparable to those of commercial kits.


Asunto(s)
Ácido Ascórbico , Biomarcadores de Tumor , Neoplasias de la Mama , Carbono , Cobalto , Técnicas Electroquímicas , Mucina-1 , Nitrógeno , Humanos , Inmunoensayo/métodos , Neoplasias de la Mama/sangre , Mucina-1/sangre , Biomarcadores de Tumor/sangre , Técnicas Electroquímicas/métodos , Carbono/química , Nitrógeno/química , Cobalto/química , Ácido Ascórbico/química , Ácido Ascórbico/sangre , Ácido Ascórbico/análogos & derivados , Femenino , Límite de Detección , Fosfatasa Alcalina/sangre , Fosfatasa Alcalina/química , Electrodos , Técnicas Biosensibles/métodos
19.
J Nanobiotechnology ; 22(1): 317, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849886

RESUMEN

Sonodynamic therapy (SDT), a promising strategy for cancer treatment with the ability for deep tissue penetration, has received widespread attention in recent years. Sonosensitizers with intrinsic characteristics for tumor-specific curative effects, tumor microenvironment (TME) regulation and tumor diagnosis are in high demand. Herein, amorphous CoBiMn-layered double hydroxide (a-CoBiMn-LDH) nanoparticles are presented as multifunctional sonosensitizers to trigger reactive oxygen species (ROS) generation for ultrasound (US) imaging-guided SDT. Hydrothermal-synthesized CoBiMn-LDH nanoparticles are etched via a simple acid treatment to obtain a-CoBiMn-LDH nanoparticles with abundant defects. The a-CoBiMn-LDH nanoparticles give greater ROS generation upon US irradiation, reaching levels ~ 3.3 times and ~ 8.2 times those of the crystalline CoBiMn-LDH nanoparticles and commercial TiO2 sonosensitizer, respectively. This excellent US-triggered ROS generation performance can be attributed to the defect-induced narrow band gap and promoted electrons and holes (e-/h+) separation. More importantly, the presence of Mn4+ enables the a-CoBiMn-LDH nanoparticles to regulate the TME by decomposing H2O2 into O2 for hypoxia relief and US imaging, and consuming glutathione (GSH) for protection against ROS clearance. Biological mechanism analysis shows that a-CoBiMn-LDH nanoparticles modified with polyethylene glycol can serve as a multifunctional sonosensitizer to effectively kill cancer cells in vitro and eliminate tumors in vivo under US irradiation by activating p53, apoptosis, and oxidative phosphorylation-related signaling pathways.


Asunto(s)
Hidróxidos , Nanopartículas , Especies Reactivas de Oxígeno , Microambiente Tumoral , Terapia por Ultrasonido , Microambiente Tumoral/efectos de los fármacos , Animales , Especies Reactivas de Oxígeno/metabolismo , Humanos , Terapia por Ultrasonido/métodos , Hidróxidos/química , Hidróxidos/farmacología , Ratones , Nanopartículas/química , Línea Celular Tumoral , Cobalto/química , Ultrasonografía/métodos , Ratones Endogámicos BALB C , Neoplasias/terapia , Neoplasias/diagnóstico por imagen , Apoptosis/efectos de los fármacos , Femenino , Ratones Desnudos
20.
J Hazard Mater ; 474: 134764, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38824773

RESUMEN

Metal ions stress will inhibit the oxidation capacity of iron and sulfur of an acidophilic microbial consortium (AMC), which leads to reduced bioleaching efficiency. This work explored the impacts of Li+ and Co2+ on the composition and function of AMC biofilms with a multi-scale approach. At the reactor scale, the results indicated that the oxidative activity, the adsorption capacity, and the biofilm formation ability of AMC on pyrite surfaces decreased under 500 mM Li+ and 500 mM Co2+. At the biofilm scale, the electrochemical measurements showed that Li+ and Co2+ inhibited the charge transfer between the pyrite working electrode and the biofilm, and decreased the corrosion current density of the pyrite working electrode. At the cell scale, the content of proteins in extracellular polymers substrate (EPS) increased as the concentrations of metal ions increased. Moreover, the adsorption capacity of EPS for Li+ and Co2+ increased. At the microbial consortium scale, a BugBase phenotype analysis showed that under 500 mM Li+ and 500 mM Co2+, the antioxidant stress capacity and the content of mobile gene elements in AMC increased. The results in this work can provide useful data and theoretical support for the regulation strategy of the bioleaching of spent lithium-ion batteries to recover valuable metals.


Asunto(s)
Biopelículas , Cobalto , Litio , Consorcios Microbianos , Biopelículas/efectos de los fármacos , Cobalto/química , Cobalto/toxicidad , Consorcios Microbianos/efectos de los fármacos , Hierro/química , Hierro/metabolismo , Adsorción , Sulfuros/química , Electrodos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...