Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.526
Filtrar
1.
PLoS One ; 19(6): e0298254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843201

RESUMEN

BACKGROUND: In randomized controlled trials, Nirmatrelvir/ritonavir (NMV/r) and Molnupiravir (MPV) reduced the risk of severe/fatal COVID-19 disease. Real-world data are limited, particularly studies directly comparing the two agents. METHODS: Using the VA National COVID-19 database, we identified previously uninfected, non-hospitalized individuals with COVID-19 with ≥1 risk factor for disease progression who were prescribed either NMV/r or MPV within 3 days of a positive test. We used inverse probability of treatment weights (IPTW) to account for providers' preferences for a specific treatment. Absolute risk difference (ARD) with 95% confidence intervals were determined for those treated with NMV/r vs. MPV. The primary outcome was hospitalization or death within 30 days of treatment prescription using the IPTW approach. Analyses were repeated using propensity-score matched groups. RESULTS: Between January 1 and November 30, 2022, 9,180 individuals were eligible for inclusion (6,592 prescribed NMV/r; 2,454 prescribed MPV). The ARD for hospitalization/death for NMV/r vs MPV was -0.25 (95% CI -0.79 to 0.28). There was no statistically significant difference in ARD among strata by age, race, comorbidities, or symptoms at baseline. Kaplan-Meier curves did not demonstrate a difference between the two groups (p-value = 0.6). Analysis of the propensity-score matched cohort yielded similar results (ARD for NMV/r vs. MPV -0.9, 95% CI -2.02 to 0.23). Additional analyses showed no difference for development of severe/critical/fatal disease by treatment group. CONCLUSION: We found no significant difference in short term risk of hospitalization or death among at-risk individuals with COVID-19 treated with either NMV/r or MPV.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Citidina , Progresión de la Enfermedad , Hospitalización , Hidroxilaminas , Leucina , Ritonavir , SARS-CoV-2 , Humanos , Masculino , Femenino , Ritonavir/uso terapéutico , Persona de Mediana Edad , Hidroxilaminas/uso terapéutico , Citidina/análogos & derivados , Citidina/uso terapéutico , COVID-19/mortalidad , COVID-19/epidemiología , Antivirales/uso terapéutico , Leucina/análogos & derivados , Leucina/uso terapéutico , Anciano , SARS-CoV-2/aislamiento & purificación , Prolina/análogos & derivados , Prolina/uso terapéutico , Indoles/uso terapéutico , Adulto , Pandemias , Factores de Riesgo , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/mortalidad , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/mortalidad , Neumonía Viral/virología , Betacoronavirus , Lactamas , Nitrilos
2.
J Investig Med High Impact Case Rep ; 12: 23247096241260959, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38869108

RESUMEN

Patients infected with COVID-19 can develop coinfections or acute respiratory disorder that result in ventilation. Dexmedetomidine is a common medication used to sedate ventilated patients in the intensive care unit and for nonintubated patients prior to a surgical procedure. As a highly selective alpha-2 agonist, dexmedetomidine provides sedation while reducing the need for anxiolytics or opioids. However, previous case reports suggest dexmedetomidine can induce fever in a variety of conditions. The purpose of this case report is to describe a patient who acquired a fever of 42.6°C in the setting of COVID-19 after administration of dexmedetomidine.


Asunto(s)
COVID-19 , Dexmedetomidina , Fiebre , Hipnóticos y Sedantes , SARS-CoV-2 , Humanos , Dexmedetomidina/efectos adversos , COVID-19/complicaciones , Fiebre/inducido químicamente , Hipnóticos y Sedantes/efectos adversos , Masculino , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/complicaciones , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/complicaciones , Betacoronavirus , Persona de Mediana Edad , Agonistas de Receptores Adrenérgicos alfa 2/efectos adversos , Fiebre por Medicamento
3.
J Nanobiotechnology ; 22(1): 304, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822339

RESUMEN

Nanobodies, single-domain antibodies derived from variable domain of camelid or shark heavy-chain antibodies, have unique properties with small size, strong binding affinity, easy construction in versatile formats, high neutralizing activity, protective efficacy, and manufactural capacity on a large-scale. Nanobodies have been arisen as an effective research tool for development of nanobiotechnologies with a variety of applications. Three highly pathogenic coronaviruses (CoVs), SARS-CoV-2, SARS-CoV, and MERS-CoV, have caused serious outbreaks or a global pandemic, and continue to post a threat to public health worldwide. The viral spike (S) protein and its cognate receptor-binding domain (RBD), which initiate viral entry and play a critical role in virus pathogenesis, are important therapeutic targets. This review describes pathogenic human CoVs, including viral structures and proteins, and S protein-mediated viral entry process. It also summarizes recent advances in development of nanobodies targeting these CoVs, focusing on those targeting the S protein and RBD. Finally, we discuss potential strategies to improve the efficacy of nanobodies against emerging SARS-CoV-2 variants and other CoVs with pandemic potential. It will provide important information for rational design and evaluation of therapeutic agents against emerging and reemerging pathogens.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos de Dominio Único , Glicoproteína de la Espiga del Coronavirus , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/uso terapéutico , Anticuerpos de Dominio Único/química , Humanos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , COVID-19/virología , COVID-19/inmunología , COVID-19/terapia , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Internalización del Virus/efectos de los fármacos , Pandemias , Betacoronavirus/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Neumonía Viral/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico
4.
Microbiol Res ; 285: 127750, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38761489

RESUMEN

The progress of viral infection involves numerous transcriptional regulatory events. The identification of the newly synthesized transcripts helps us to understand the replication mechanisms and pathogenesis of the virus. Here, we utilized a time-resolved technique called metabolic RNA labeling approach called thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) to differentially elucidate the levels of steady-state and newly synthesized RNAs of BHK21 cell line in response to human coronavirus OC43 (HCoV-OC43) infection. Our results showed that the Wnt/ß-catenin signaling pathway was significantly enriched with the newly synthesized transcripts of BHK21 cell line in response to HCoV-OC43 infection. Moreover, inhibition of the Wnt pathway promoted viral replication in the early stage of infection, but inhibited it in the later stage of infection. Furthermore, remdesivir inhibits the upregulation of the Wnt/ß-catenin signaling pathway induced by early infection with HCoV-OC43. Collectively, our study showed the diverse roles of Wnt/ß-catenin pathway at different stages of HCoV-OC43 infection, suggesting a potential target for the antiviral treatment. In addition, although infection with HCoV-OC43 induces cytopathic effects in BHK21 cells, inhibiting apoptosis does not affect the intracellular replication of the virus. Monitoring newly synthesized RNA based on such time-resolved approach is a highly promising method for studying the mechanism of viral infections.


Asunto(s)
Adenosina Monofosfato , Alanina , Antivirales , Coronavirus Humano OC43 , Transcriptoma , Replicación Viral , Vía de Señalización Wnt , Coronavirus Humano OC43/genética , Coronavirus Humano OC43/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Línea Celular , Humanos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/metabolismo , Antivirales/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Alanina/metabolismo , Animales , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/tratamiento farmacológico
5.
Zhonghua Yi Xue Za Zhi ; 104(20): 1812-1824, 2024 May 28.
Artículo en Chino | MEDLINE | ID: mdl-38782749

RESUMEN

Although COVID-19 no longer constitutes a "public health emergency of international concern", which still has being spreading around the world at a low level. Small molecule drugs are the main antiviral treatment for novel coronavirus recommended in China. Although a variety of small-molecule antiviral drugs against COVID-19 have been listed in China, there is no specific drug recommendation for special populations. Society of Bacterial Infection and Resistance of Chinese Medical Association, together with the National Clinical Research Center for Respiratory Disease, and the National Center for Respiratory Medicine, organized domestic experts in various fields such as respiratory, virology, infection, critical care, emergency medicine and pharmacy to release Expert Consensus on the Clinical Application of Oral Small-Molecule Antiviral Drugs against COVID-19. The main content of this consensus includes the introduction of seven small-molecule antiviral drugs against COVID-19, focusing on the drug recommendations for 14 special groups such as the elderly, patients with complicated chronic diseases, tumor patients, pregnant women, and children, and providing suggestions for clinicians to standardize drug use.


Asunto(s)
Antivirales , COVID-19 , Pandemias , SARS-CoV-2 , Antivirales/uso terapéutico , Humanos , Neumonía Viral/tratamiento farmacológico , Tratamiento Farmacológico de COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Consenso , Betacoronavirus , Administración Oral , China , Embarazo
6.
Lancet Microbe ; 5(6): e559-e569, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38815595

RESUMEN

BACKGROUND: Serial measurement of virological and immunological biomarkers in patients admitted to hospital with COVID-19 can give valuable insight into the pathogenic roles of viral replication and immune dysregulation. We aimed to characterise biomarker trajectories and their associations with clinical outcomes. METHODS: In this international, prospective cohort study, patients admitted to hospital with COVID-19 and enrolled in the Therapeutics for Inpatients with COVID-19 platform trial within the Accelerating COVID-19 Therapeutic Interventions and Vaccines programme between Aug 5, 2020 and Sept 30, 2021 were included. Participants were included from 108 sites in Denmark, Greece, Poland, Singapore, Spain, Switzerland, Uganda, the UK, and the USA, and randomised to placebo or one of four neutralising monoclonal antibodies: bamlanivimab (Aug 5 to Oct 13, 2020), sotrovimab (Dec 16, 2020, to March 1, 2021), amubarvimab-romlusevimab (Dec 16, 2020, to March 1, 2021), and tixagevimab-cilgavimab (Feb 10 to Sept 30, 2021). This trial included an analysis of 2149 participants with plasma nucleocapsid antigen, anti-nucleocapsid antibody, C-reactive protein (CRP), IL-6, and D-dimer measured at baseline and day 1, day 3, and day 5 of enrolment. Day-90 follow-up status was available for 1790 participants. Biomarker trajectories were evaluated for associations with baseline characteristics, a 7-day pulmonary ordinal outcome, 90-day mortality, and 90-day rate of sustained recovery. FINDINGS: The study included 2149 participants. Participant median age was 57 years (IQR 46-68), 1246 (58·0%) of 2149 participants were male and 903 (42·0%) were female; 1792 (83·4%) had at least one comorbidity, and 1764 (82·1%) were unvaccinated. Mortality to day 90 was 172 (8·0%) of 2149 and 189 (8·8%) participants had sustained recovery. A pattern of less favourable trajectories of low anti-nucleocapsid antibody, high plasma nucleocapsid antigen, and high inflammatory markers over the first 5 days was observed for high-risk baseline clinical characteristics or factors related to SARS-CoV-2 infection. For example, participants with chronic kidney disease demonstrated plasma nucleocapsid antigen 424% higher (95% CI 319-559), CRP 174% higher (150-202), IL-6 173% higher (144-208), D-dimer 149% higher (134-165), and anti-nucleocapsid antibody 39% lower (60-18) to day 5 than those without chronic kidney disease. Participants in the highest quartile for plasma nucleocapsid antigen, CRP, and IL-6 at baseline and day 5 had worse clinical outcomes, including 90-day all-cause mortality (plasma nucleocapsid antigen hazard ratio (HR) 4·50 (95% CI 3·29-6·15), CRP HR 3·37 (2·30-4·94), and IL-6 HR 5·67 (4·12-7·80). This risk persisted for plasma nucleocapsid antigen and CRP after adjustment for baseline biomarker values and other baseline factors. INTERPRETATION: Patients admitted to hospital with less favourable 5-day biomarker trajectories had worse prognosis, suggesting that persistent viral burden might drive inflammation in the pathogenesis of COVID-19, identifying patients that might benefit from escalation of antiviral or anti-inflammatory treatment. FUNDING: US National Institutes of Health.


Asunto(s)
Biomarcadores , COVID-19 , Hospitalización , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/sangre , Estudios Prospectivos , Masculino , Femenino , Biomarcadores/sangre , Persona de Mediana Edad , SARS-CoV-2/inmunología , Anciano , Hospitalización/estadística & datos numéricos , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Anticuerpos Monoclonales Humanizados/uso terapéutico , Interleucina-6/sangre , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Pandemias , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Neumonía Viral/inmunología , Neumonía Viral/sangre , Neumonía Viral/mortalidad , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Resultado del Tratamiento
7.
Biol Pharm Bull ; 47(5): 930-940, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692871

RESUMEN

The coronavirus disease 2019 (COVID-19) is caused by the etiological agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19, with the recurrent epidemics of new variants of SARS-CoV-2, remains a global public health problem, and new antivirals are still required. Some cholesterol derivatives, such as 25-hydroxycholesterol, are known to have antiviral activity against a wide range of enveloped and non-enveloped viruses, including SARS-CoV-2. At the entry step of SARS-CoV-2 infection, the viral envelope fuses with the host membrane dependent of viral spike (S) glycoproteins. From the screening of cholesterol derivatives, we found a new compound 26,27-dinorcholest-5-en-24-yne-3ß,20-diol (Nat-20(S)-yne) that inhibited the SARS-CoV-2 S protein-dependent membrane fusion in a syncytium formation assay. Nat-20(S)-yne exhibited the inhibitory activities of SARS-CoV-2 pseudovirus entry and intact SARS-CoV-2 infection in a dose-dependent manner. Among the variants of SARS-CoV-2, inhibition of infection by Nat-20(S)-yne was stronger in delta and Wuhan strains, which predominantly invade into cells via fusion at the plasma membrane, than in omicron strains. The interaction between receptor-binding domain of S proteins and host receptor ACE2 was not affected by Nat-20(S)-yne. Unlike 25-hydroxycholesterol, which regulates various steps of cholesterol metabolism, Nat-20(S)-yne inhibited only de novo cholesterol biosynthesis. As a result, plasma membrane cholesterol content was substantially decreased in Nat-20(S)-yne-treated cells, leading to inhibition of SARS-CoV-2 infection. Nat-20(S)-yne having a new mechanism of action may be a potential therapeutic candidate for COVID-19.


Asunto(s)
Antivirales , COVID-19 , Colesterol , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Humanos , COVID-19/virología , Colesterol/metabolismo , Células Vero , Chlorocebus aethiops , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Internalización del Virus/efectos de los fármacos , Betacoronavirus/efectos de los fármacos , Pandemias , Tratamiento Farmacológico de COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Enzima Convertidora de Angiotensina 2/metabolismo , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología
8.
RMD Open ; 10(2)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38796180

RESUMEN

OBJECTIVE: Obesity and age are strongly linked to severe COVID-19 pneumonia where immunomodulatory agents including Janus kinase inhibitors have shown benefits but the efficacy of such therapy in viral pneumonia is not well understood. We evaluated the impact of obesity and age on survival following baricitinib therapy for severe COVID-19. METHODS: A post hoc analysis of the COV-BARRIER multicentre double-blind randomised study of baricitinib versus placebo (PBO) with an assessment of 28-day mortality was performed. All-cause mortality by day 28 was evaluated in a Cox regression analysis (adjusted to age) in three different groups according to body mass index (BMI) (<25 kg/m2, 25-30 kg/m2 and >30 kg/m2) and age <65 years and ≥65 years. RESULTS: In the high BMI group (>25 kg/m2), baricitinib therapy showed a significant survival advantage compared with PBO (incidence rate ratio (IRR) for mortality by day 28 0.53 (95% CI 0.32 to 0.87)) and 0.66 (95% CI 0.46 to 0.94) for the respective <65 years and ≥65 years, respectively. The 28-day all-cause-mortality rates for BMI over 30 were 5.62% for baricitinib and 9.22% for PBO (HR=0.6, p<0.05). For BMI under 25 kg/m2, irrespective of age, baricitinib therapy conferred no survival advantage (IRR of 1.89 (95% CI 0.49 to 7.28) and 0.95 (95% CI 0.46 to 1.99) for <65 years and ≥65 years, respectively) ((mortality 6.6% baricitinib vs 8.1 in PBO), p>0.05). CONCLUSION: The efficacy of baricitinib in COVID-19 pneumonia is linked to obesity suggesting that immunomodulatory therapy benefit is associated with obesity-associated inflammation.


Asunto(s)
Azetidinas , Índice de Masa Corporal , COVID-19 , Obesidad , Purinas , Pirazoles , SARS-CoV-2 , Sulfonamidas , Humanos , Purinas/uso terapéutico , Purinas/administración & dosificación , Sulfonamidas/uso terapéutico , Azetidinas/uso terapéutico , Azetidinas/administración & dosificación , Obesidad/complicaciones , Masculino , Persona de Mediana Edad , COVID-19/mortalidad , COVID-19/complicaciones , COVID-19/epidemiología , Pirazoles/uso terapéutico , Femenino , Anciano , Método Doble Ciego , Inhibidores de las Cinasas Janus/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/complicaciones , Neumonía Viral/mortalidad , Resultado del Tratamiento , Betacoronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/mortalidad , Pandemias
9.
BMC Vet Res ; 20(1): 187, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730463

RESUMEN

BACKGROUND: Porcine epidemic diarrhea virus (PEDV), a type of coronavirus, is one of the main pathogens that can infect pigs of all ages. It causes diarrhea and acute death of newborn piglets, resulting in massive economic losses to the worldwide swine industry. While vaccination remains the primary approach in combating PEDV, it often fails to address all the challenges posed by the infection, particularly in light of the emergence of evolving mutant strains. Therefore, there is a critical need to identify potent antiviral drugs that can effectively safeguard pigs against PEDV infection. RESULTS: In this study, the antiviral efficacy of SP2509, a specific antagonist of Lysine-specific demethylase 1(LSD1), was evaluated in vitro. The RT-qPCR, Western blot, TCID50, and IFA showed that at a concentration of 1µmol/L, SP2509 significantly inhibited PEDV infection. Additionally, viral life cycle assays showed that SP2509 operates by impeding PEDV internalization and replication rather than attachment and release. Regarding mechanism, in Huh-7 cells, knockdowns LSD1 can suppress PEDV replication. This indicated that the inhibition effect of SP2509 on PEDV largely depends on the activity of its target protein, LSD1. CONCLUSION: Our results in vitro show that SP2509 can inhibit PEDV infection during the internalization and replication stage and revealed a role of LSD1 as a restriction factor for PEDV. These imply that LSD1 might be a target for interfering with the viral infection, and SP2509 could be developed as an effective anti-PEDV agent.


Asunto(s)
Antivirales , Histona Demetilasas , Virus de la Diarrea Epidémica Porcina , Replicación Viral , Virus de la Diarrea Epidémica Porcina/efectos de los fármacos , Animales , Antivirales/farmacología , Replicación Viral/efectos de los fármacos , Histona Demetilasas/antagonistas & inhibidores , Porcinos , Chlorocebus aethiops , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/tratamiento farmacológico , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Células Vero
10.
Trials ; 25(1): 328, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760804

RESUMEN

BACKGROUND: The SARS CoV-2 pandemic has resulted in more than 1.1 million deaths in the USA alone. Therapeutic options for critically ill patients with COVID-19 are limited. Prior studies showed that post-infection treatment of influenza A virus-infected mice with the liponucleotide CDP-choline, which is an essential precursor for de novo phosphatidylcholine synthesis, improved gas exchange and reduced pulmonary inflammation without altering viral replication. In unpublished studies, we found that treatment of SARS CoV-2-infected K18-hACE2-transgenic mice with CDP-choline prevented development of hypoxemia. We hypothesize that administration of citicoline (the pharmaceutical form of CDP-choline) will be safe in hospitalized SARS CoV-2-infected patients with hypoxemic acute respiratory failure (HARF) and that we will obtain preliminary evidence of clinical benefit to support a larger Phase 3 trial using one or more citicoline doses. METHODS: We will conduct a single-site, double-blinded, placebo-controlled, and randomized Phase 1/2 dose-ranging and safety study of Somazina® citicoline solution for injection in consented adults of any sex, gender, age, or ethnicity hospitalized for SARS CoV-2-associated HARF. The trial is named "SCARLET" (Supplemental Citicoline Administration to Reduce Lung injury Efficacy Trial). We hypothesize that SCARLET will show that i.v. citicoline is safe at one or more of three doses (0.5, 2.5, or 5 mg/kg, every 12 h for 5 days) in hospitalized SARS CoV-2-infected patients with HARF (20 per dose) and provide preliminary evidence that i.v. citicoline improves pulmonary outcomes in this population. The primary efficacy outcome will be the SpO2:FiO2 ratio on study day 3. Exploratory outcomes include Sequential Organ Failure Assessment (SOFA) scores, dead space ventilation index, and lung compliance. Citicoline effects on a panel of COVID-relevant lung and blood biomarkers will also be determined. DISCUSSION: Citicoline has many characteristics that would be advantageous to any candidate COVID-19 therapeutic, including safety, low-cost, favorable chemical characteristics, and potentially pathogen-agnostic efficacy. Successful demonstration that citicoline is beneficial in severely ill patients with SARS CoV-2-induced HARF could transform management of severely ill COVID patients. TRIAL REGISTRATION: The trial was registered at www. CLINICALTRIALS: gov on 5/31/2023 (NCT05881135). TRIAL STATUS: Currently enrolling.


Asunto(s)
COVID-19 , Citidina Difosfato Colina , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2 , Humanos , Citidina Difosfato Colina/uso terapéutico , Método Doble Ciego , SARS-CoV-2/efectos de los fármacos , COVID-19/complicaciones , Tratamiento Farmacológico de COVID-19 , Ensayos Clínicos Fase II como Asunto , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Neumonía Viral/complicaciones , Resultado del Tratamiento , Hipoxia/tratamiento farmacológico , Masculino , Pandemias , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/complicaciones , Hospitalización , Femenino , Betacoronavirus , Ensayos Clínicos Fase I como Asunto , Insuficiencia Respiratoria/tratamiento farmacológico , Insuficiencia Respiratoria/virología , Administración Intravenosa , Adulto
11.
Sci Transl Med ; 16(748): eadj4504, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776389

RESUMEN

Despite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp). We show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, SARS-CoV, SARS-CoV-related bat-CoV RsSHC014, Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant. Moreover, in mouse models of SARS-CoV, SARS-CoV-2 (WA/1 and Omicron B1.1.529), MERS-CoV, and bat-CoV RsSHC014 pathogenesis, we observed a dose-dependent reduction in viral replication, body weight loss, acute lung injury, and pulmonary function with GS-5245 therapy. Last, we demonstrate that a combination of GS-5245 and main protease (Mpro) inhibitor nirmatrelvir improved outcomes in vivo against SARS-CoV-2 compared with the single agents. Together, our data support the clinical evaluation of GS-5245 against coronaviruses that cause or have the potential to cause human disease.


Asunto(s)
Antivirales , Profármacos , SARS-CoV-2 , Animales , SARS-CoV-2/efectos de los fármacos , Profármacos/farmacología , Profármacos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Ratones , Administración Oral , Chlorocebus aethiops , Células Vero , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Replicación Viral/efectos de los fármacos , Nucleósidos/farmacología , Nucleósidos/uso terapéutico , Nucleósidos/química , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Femenino , Modelos Animales de Enfermedad
12.
Obstet Gynecol ; 143(6): e149-e152, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574363

RESUMEN

BACKGROUND: Since the onset of the coronavirus disease (COVID-19) pandemic, a variety of long-COVID-19 symptoms and autoimmune complications have been recognized. CASES: We report three cases of autoimmune premature poor ovarian response in patients aged 30-37 years after mild to asymptomatic COVID-19 before vaccination, with nucleotide antibody confirmation. Two patients failed to respond to maximum-dose gonadotropins for more than 4 weeks, despite a recent history of response before having COVID-19. After a month of prednisone 30 mg, these two patients had normal follicle-stimulating hormone (FSH) levels, high oocyte yield, and blastocyst formation in successful in vitro fertilization cycles. All three patients have above-average anti-müllerian hormone levels that persisted throughout their clinical ovarian insufficiency. Two patients had elevated FSH levels, perhaps resulting from FSH receptor blockade. One patient, with a history of high response to gonadotropins 75 international units per day and below-normal FSH levels, had no ovarian response to more than a month of gonadotropins (525 international units daily), suggesting autoimmune block of the FSH glycoprotein and possible FSH receptor blockade. CONCLUSION: Auto-antibody production in response to COVID-19 before vaccination may be a rare cause of autoimmune poor ovarian response. Although vaccination is likely protective, further study will be required to evaluate the effect of vaccination and duration of autoimmune FSH or FSH receptor blockade.


Asunto(s)
COVID-19 , Insuficiencia Ovárica Primaria , Receptores de HFE , SARS-CoV-2 , Adulto , Femenino , Humanos , Betacoronavirus , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/tratamiento farmacológico , COVID-19/inmunología , COVID-19/complicaciones , Hormona Folículo Estimulante/sangre , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/complicaciones , Neumonía Viral/tratamiento farmacológico , Insuficiencia Ovárica Primaria/inmunología , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Receptores de HFE/antagonistas & inhibidores , SARS-CoV-2/inmunología
13.
Bioorg Chem ; 147: 107379, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643567

RESUMEN

Coronaviruses are a group of enveloped viruses with non-segmented, single-stranded, and positive-sense RNA genomes. It belongs to the 'Coronaviridae family', responsible for various diseases, including the common cold, SARS, and MERS. The COVID-19 pandemic, which began in March 2020, has affected 209 countries, infected over a million people, and claimed over 50,000 lives. Significant efforts have been made by repurposing several approved drugs including antiviral, to combat the COVID-19 pandemic. Molnupiravir is found to be the first orally acting efficacious drug to treat COVID-19 cases. It was approved for medical use in the UK in November 2021 and other countries, including USFDA, which granted approval an emergency use authorization (EUA) for treating adults with mild to moderate COVID-19 patients. Considering the importance of molnupiravir, the present review deals with its various synthetic strategies, pharmacokinetics, bio-efficacy, toxicity, and safety profiles. The comprehensive information along with critical analysis will be very handy for a wide range of audience including medicinal chemists in the arena of antiviral drug discovery especially anti-viral drugs against any variant of COVID-19.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Citidina , Hidroxilaminas , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/química , Antivirales/uso terapéutico , Antivirales/síntesis química , Hidroxilaminas/uso terapéutico , Hidroxilaminas/química , Hidroxilaminas/farmacología , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , Citidina/análogos & derivados , Citidina/uso terapéutico , Citidina/farmacología , Citidina/química , Citidina/síntesis química , Uridina/farmacología , Uridina/análogos & derivados , Uridina/síntesis química , Uridina/química , Uridina/uso terapéutico , Pandemias , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico
14.
EBioMedicine ; 103: 105132, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677182

RESUMEN

BACKGROUND: SARS-CoV-2 infection is considered as a relapsing inflammatory process with a dysregulation of IL-6 signalling. Classic IL-6 signalling is thought to represent a defence mechanism against pathogens. In contrast, IL-6 trans-signalling has pro-inflammatory effects. In severe COVID-19, therapeutic strategies have focused on global inhibition of IL-6, with controversial results. We hypothesized that specific blockade of IL-6 trans-signalling could inhibit inflammatory response preserving the host defence activity inherent to IL-6 classic signalling. METHODS: To test the role of the specific IL-6 trans-signalling inhibition by sgp130Fc in short- and long-term consequences of COVID-19, we used the established K18-hACE2 transgenic mouse model. Histological as well as immunohistochemical analysis, and pro-inflammatory marker profiling were performed. To investigate IL-6 trans-signalling in human cells we used primary lung microvascular endothelial cells and fibroblasts in the presence/absence of sgp130Fc. FINDINGS: We report that targeting IL-6 trans-signalling by sgp130Fc attenuated SARS-CoV-2-related clinical symptoms and mortality. In surviving mice, the treatment caused a significant decrease in lung damage. In vitro, IL-6 trans-signalling induced strong and persisting JAK1/STAT3 activation in endothelial cells and lung fibroblasts with proinflammatory effects, which were attenuated by sgp130Fc. Our data also suggest that in those cells with scant amounts of IL-6R, the induction of gp130 and IL-6 by IL-6:sIL-6R complex sustains IL-6 trans-signalling. INTERPRETATION: IL-6 trans-signalling fosters progression of COVID-19, and suggests that specific blockade of this signalling mode could offer a promising alternative to mitigate both short- and long-term consequences without affecting the beneficial effects of IL-6 classic signalling. These results have implications for the development of new therapies of lung injury and endotheliopathy in COVID-19. FUNDING: The project was supported by ISCIII, Spain (COV-20/00792 to MB, PI23/01351 to MARH) and the European Commission-Next generation EU (European Union) (Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global, SGL2103029 to MB). PID2019-110587RB-I00 (MB) supported by MICIN/AEI/10.13039/501100011033/and PID2022-143034OB-I00 (MB) by MICIN/AEI/10.13039/501100011033/FEDER. MAR-H acknowledges support from ISCIII, Spain and the European Commission-Next generation EU (European Union), through CSIC's Global Health PTI.


Asunto(s)
COVID-19 , Receptor gp130 de Citocinas , Modelos Animales de Enfermedad , Interleucina-6 , Ratones Transgénicos , SARS-CoV-2 , Transducción de Señal , Animales , Interleucina-6/metabolismo , COVID-19/metabolismo , Humanos , Ratones , Transducción de Señal/efectos de los fármacos , Receptor gp130 de Citocinas/metabolismo , Receptor gp130 de Citocinas/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Pulmón/patología , Pulmón/virología , Pulmón/metabolismo , Células Endoteliales/metabolismo , Tratamiento Farmacológico de COVID-19 , Betacoronavirus , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Neumonía Viral/patología , Neumonía Viral/metabolismo , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/patología , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/antagonistas & inhibidores , Índice de Severidad de la Enfermedad
15.
JAMA Netw Open ; 7(4): e247965, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38652474

RESUMEN

Importance: Numerous studies have provided evidence for the negative associations of the COVID-19 pandemic with mental health, but data on the use of psychotropic medication in children and adolescents after the onset of the COVID-19 pandemic are lacking. Objective: To assess the rates and trends of psychotropic medication prescribing before and over the 2 years after the onset of the COVID-19 pandemic in children and adolescents in France. Design, Setting, and Participants: This cross-sectional study used nationwide interrupted time-series analysis of outpatient drug dispensing data from the IQVIA X-ponent database. All 8 839 143 psychotropic medication prescriptions dispensed to children (6 to 11 years of age) and adolescents (12 to 17 years of age) between January 2016 and May 2022 in France were retrieved and analyzed. Exposure: Onset of COVID-19 pandemic. Main outcomes and Measures: Monthly rates of psychotropic medication prescriptions per 1000 children and adolescents were analyzed using a quasi-Poisson regression before and after the pandemic onset (March 2020), and percentage changes in rates and trends were assessed. After the pandemic onset, rate ratios (RRs) were calculated between estimated and expected monthly prescription rates. Analyses were stratified by psychotropic medication class (antipsychotic, anxiolytic, hypnotic and sedative, antidepressant, and psychostimulant) and age group (children, adolescents). Results: In total, 8 839 143 psychotropic medication prescriptions were analyzed, 5 884 819 [66.6%] for adolescents and 2 954 324 [33.4%] for children. In January 2016, the estimated rate of monthly psychotropic medication prescriptions was 9.9 per 1000 children and adolescents, with the prepandemic rate increasing by 0.4% per month (95% CI, 0.3%-0.4%). In March 2020, the monthly prescription rate dropped by 11.5% (95% CI, -17.7% to -4.9%). During the 2 years following the pandemic onset, the trend changed significantly, and the prescription rate increased by 1.3% per month (95% CI, 1.2%-1.5%), reaching 16.1 per 1000 children and adolescents in May 2022. Monthly rates of psychotropic medication prescriptions exceeded the expected rates by 11% (RR, 1.11 [95% CI, 1.08-1.14]). Increases in prescribing trends were observed for all psychotropic medication classes after the pandemic onset but were substantial for anxiolytics, hypnotics and sedatives, and antidepressants. Prescription rates rose above those expected for all psychotropic medication classes except psychostimulants (RR, 1.12 [95% CI, 1.09-1.15] in adolescents and 1.06 [95% CI, 1.05-1.07] in children for antipsychotics; RR, 1.30 [95% CI, 1.25-1.35] in adolescents and 1.11 [95% CI, 1.09-1.12] in children for anxiolytics; RR, 2.50 [95% CI, 2.23-2.77] in adolescents and 1.40 [95% CI, 1.30-1.50] in children for hypnotics and sedatives; RR, 1.38 [95% CI, 1.29-1.47] in adolescents and 1.23 [95% CI, 1.20-1.25] in children for antidepressants; and RR, 0.97 [95% CI, 0.95-0.98] in adolescents and 1.02 [95% CI, 1.00-1.04] in children for psychostimulants). Changes were more pronounced among adolescents than children. Conclusions and Relevance: These findings suggest that prescribing of psychotropic medications for children and adolescents in France significantly and persistently increased after the COVID-19 pandemic onset. Future research should identify underlying determinants to improve psychological trajectories in young people.


Asunto(s)
COVID-19 , Pandemias , Psicotrópicos , SARS-CoV-2 , Humanos , Niño , Adolescente , COVID-19/epidemiología , Psicotrópicos/uso terapéutico , Masculino , Femenino , Estudios Transversales , Francia/epidemiología , Prescripciones de Medicamentos/estadística & datos numéricos , Pautas de la Práctica en Medicina/estadística & datos numéricos , Pautas de la Práctica en Medicina/tendencias , Análisis de Series de Tiempo Interrumpido , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/epidemiología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Betacoronavirus , Ansiolíticos/uso terapéutico , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/epidemiología
16.
BMC Vet Res ; 20(1): 134, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570774

RESUMEN

BACKGROUND: Porcine acute diarrhea syndrome coronavirus (SADS-CoV) is one of the novel pathogens responsible for piglet diarrhea, contributing to substantial economic losses in the farming sector. The broad host range of SADS-CoV raises concerns regarding its potential for cross-species transmission. Currently, there are no effective means of preventing or treating SADS-CoV infection, underscoring the urgent need for identifying efficient antiviral drugs. This study focuses on evaluating quercetin as an antiviral agent against SADS-CoV. RESULTS: In vitro experiments showed that quercetin inhibited SADS-CoV proliferation in a concentration-dependent manner, targeting the adsorption and replication stages of the viral life cycle. Furthermore, quercetin disrupts the regulation of the P53 gene by the virus and inhibits host cell cycle progression induced by SADS-CoV infection. In vivo experiments revealed that quercetin effectively alleviated the clinical symptoms and intestinal pathological damage caused by SADS-CoV-infected piglets, leading to reduced expression levels of inflammatory factors such as TLR3, IL-6, IL-8, and TNF-α. CONCLUSIONS: Therefore, this study provides compelling evidence that quercetin has great potential and promising applications for anti- SADS-CoV action.


Asunto(s)
Alphacoronavirus , Infecciones por Coronavirus , Coronavirus , Enfermedades de los Porcinos , Porcinos , Animales , Coronavirus/genética , Quercetina/farmacología , Quercetina/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/veterinaria , Diarrea/veterinaria , Enfermedades de los Porcinos/tratamiento farmacológico
17.
Pol Merkur Lekarski ; 52(1): 60-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38518235

RESUMEN

OBJECTIVE: Aim: The purpose of this study was a clinical approbation of the Kometad drug (international non-proprietary name sodium colistimethate), an antibiotic from the polymyxin group in patients with severe course of confirmed сoronavirus infection in the intensive care unit of the Branch of the I. Zhekenova Municipal Clinical Infectious Diseases Hospital.. PATIENTS AND METHODS: Materials and Methods: The methodology is based on both theoretical and empirical methods of scientific cognition. During the study, the features of the Coronavirus infection and the inflammatory reaction syndrome were considered, which became quite a big problem during the pandemic. RESULTS: Results: The main indications for the tested drug and the consequences of its use for one age group were also determined. CONCLUSION: Conclusions: The conclusion was made about the positive dynamics of the patients' health status, and recommendations were given for further research in this area. The practical significance of this study lies in the first clinical approbation of the Kometad drug, which can be used in medicine to reduce the severity of the systemic inflammatory reaction syndrome and improve the patient's health as a result of the disease of Coronavirus infection, after further clinical trials of the drug with different age groups of patients.


Asunto(s)
Infecciones por Coronavirus , Humanos , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/tratamiento farmacológico , Inflamación , Unidades de Cuidados Intensivos , Síndrome , Antibacterianos/uso terapéutico
18.
Int J Nanomedicine ; 19: 2889-2915, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525012

RESUMEN

Since the beginning of the coronavirus pandemic in late 2019, viral infections have become one of the top three causes of mortality worldwide. Immunization and the use of immunomodulatory drugs are effective ways to prevent and treat viral infections. However, the primary therapy for managing viral infections remains antiviral and antiretroviral medication. Unfortunately, these drugs are often limited by physicochemical constraints such as low target selectivity and poor aqueous solubility. Although several modifications have been made to enhance the physicochemical characteristics and efficacy of these drugs, there are few published studies that summarize and compare these modifications. Our review systematically synthesized and discussed antiviral drug modification reports from publications indexed in Scopus, PubMed, and Google Scholar databases. We examined various approaches that were investigated to address physicochemical issues and increase activity, including liposomes, cocrystals, solid dispersions, salt modifications, and nanoparticle drug delivery systems. We were impressed by how well each strategy addressed physicochemical issues and improved antiviral activity. In conclusion, these modifications represent a promising way to improve the physicochemical characteristics, functionality, and effectiveness of antivirals in clinical therapy.


Asunto(s)
Infecciones por Coronavirus , Virosis , Humanos , Antivirales/uso terapéutico , Preparaciones Farmacéuticas/química , Virosis/tratamiento farmacológico , Infecciones por Coronavirus/tratamiento farmacológico , Sistemas de Liberación de Medicamentos
19.
J Med Virol ; 96(3): e29512, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483056

RESUMEN

Coronaviruses (CoVs) have continuously posed a threat to human and animal health. However, existing antiviral drugs are still insufficient in overcoming the challenges caused by multiple strains of CoVs. And methods for developing multi-target drugs are limited in terms of exploring drug targets with similar functions or structures. In this study, four rounds of structural design and modification on salinomycin were performed for novel antiviral compounds. It was based on the strategy of similar topological structure binding properties of protein targets (STSBPT), resulting in the high-efficient synthesis of the optimal compound M1, which could bind to aminopeptidase N and 3C-like protease from hosts and viruses, respectively, and exhibit a broad-spectrum antiviral effect against severe acute respiratory syndrome CoV 2 pseudovirus, porcine epidemic diarrhea virus, transmissible gastroenteritis virus, feline infectious peritonitis virus and mouse hepatitis virus. Furthermore, the drug-binding domains of these proteins were found to be structurally similar based on the STSBPT strategy. The compounds screened and designed based on this region were expected to have broad-spectrum and strong antiviral activities. The STSBPT strategy is expected to be a fundamental tool in accelerating the discovery of multiple targets with similar effects and drugs.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Animales , Gatos , Ratones , Porcinos , Humanos , Antivirales/química , Infecciones por Coronavirus/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
20.
J Public Health (Oxf) ; 46(2): 256-266, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38291897

RESUMEN

BACKGROUND: efficacy of therapeutic cholecalciferol supplementation for severe COVID-19 is sparingly studied. OBJECTIVE: effect of single high-dose cholecalciferol supplementation on sequential organ failure assessment (SOFA) score in moderate-to-severe COVID-19. METHODS: participants with moderate to severe COVID-19 with PaO2/FiO2 ratio < 200 were randomized to 0.6 million IU cholecalciferol oral (intervention) or placebo. OUTCOMES: primary outcome was change in Day 7 SOFA score and pre-specified secondary outcomes were SOFA and 28-day all-cause mortality. RESULTS: in all, 90 patients (45 each group) were included for intention-to-treat analysis. 25(OH)D3 levels were 12 (10-16) and 13 (12-18) ng/ml (P = 0.06) at baseline; and 60 (55-65) ng/ml and 4 (1-7) ng/ml by Day 7 in vitamin D and placebo groups, respectively. The SOFA score on Day 7 was better in the vitamin D group [3 (95% CI, 2-5) versus 5 (95% CI, 3-7), P = 0.01, intergroup difference - 2 (95% CI, -4 to -0.01); r = 0.4]. A lower all-cause 28-day mortality [24% compared to 44% (P = 0.046)] was observed with vitamin D. CONCLUSIONS: single high-dose oral cholecalciferol supplementation on ICU admission can improve SOFA score at Day 7 and reduce in-hospital mortality in vitamin D-deficient COVID-19. ClinicalTrials.gov  id: NCT04952857 registered dated 7 July 2021. What is already known on this topic-vitamin D has immunomodulatory role. Observational and isolated intervention studies show some benefit in COVID-19. Targeted therapeutic vitamin D supplementation improve outcomes in severe COVID-19 is not studied in RCTs. What this study adds-high-dose vitamin D supplementation (0.6 Million IU) to increase 25(OH)D > 50 ng/ml is safe and reduces sequential organ failure assessment score, in-hospital mortality in moderate to severe COVID-19. How this study might affect research, practice or policy-vitamin D supplementation in vitamin D-deficient patients with severe COVID-19 is useful may be practiced.


Asunto(s)
COVID-19 , Colecalciferol , SARS-CoV-2 , Deficiencia de Vitamina D , Humanos , Masculino , Femenino , Método Doble Ciego , Persona de Mediana Edad , COVID-19/mortalidad , COVID-19/complicaciones , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/complicaciones , Colecalciferol/administración & dosificación , Colecalciferol/uso terapéutico , Anciano , Vitamina D/sangre , Vitaminas/uso terapéutico , Vitaminas/administración & dosificación , Puntuaciones en la Disfunción de Órganos , Suplementos Dietéticos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/mortalidad , Tratamiento Farmacológico de COVID-19 , Pandemias , Adulto , Resultado del Tratamiento , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/mortalidad , Índice de Severidad de la Enfermedad , Betacoronavirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...