Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.367
Filtrar
1.
Biomaterials ; 312: 122712, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39098305

RESUMEN

Immunosuppressive tumor microenvironment (ITM) severely limited the efficacy of immunotherapy against triple-negative breast cancer (TNBC). Herein, Apt-LPR, a light-activatable photodynamic therapy (PDT)/RNAi immune synergy-enhancer was constructed by co-loading miR-34a and photosensitizers in cationic liposomes (in phase III clinical trial). Interestingly, the introduction of tumor-specific aptamers creates a special "Liposome-Aptamer-Target" interface, where the aptamers are initially in a "lying down" state but transform to "standing up" after target binding. The interfacing mechanism was elaborately revealed by computational and practical experiments. This unique interface endowed Apt-LPR with neutralized surface potential of cationic liposomes to reduce non-specific cytotoxicity, enhanced DNase resistance to protect aptamers, and preserved target-binding ability for selective drug delivery. Upon near-infrared irradiation, the generated reactive oxygen species would oxidize unsaturated phospholipids to destabilize both liposomes and lysosomes, realizing stepwise lysosomal escape of miR-34a for tumor cell apoptosis and downregulation of PD-L1 to suppress immune escape. Together, tumor-associated antigens released from PDT-damaged mitochondria and endoplasmic reticulum could activate the suppressive immune cells to establish an "immune hot" milieu. The collaborative immune-enhancing strategy effectively aroused systemic antitumor immunity and inhibited primary and distal tumor progression as well as lung metastasis in 4T1 xenografted mouse models. The photo-controlled drug release and specific tumor-targeting capabilities of Apt-LPR were also visualized in MDA-MB-231 xenografted zebrafish models. Therefore, this photoswitchable PDT/RNAi immune stimulator offered a powerful approach to reprogramming ITM and reinforcing cancer immunotherapy efficacy.


Asunto(s)
Liposomas , MicroARNs , Fotoquimioterapia , Fármacos Fotosensibilizantes , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Animales , Humanos , Liposomas/química , MicroARNs/genética , MicroARNs/metabolismo , Fotoquimioterapia/métodos , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Femenino , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/patología , Ratones , Aptámeros de Nucleótidos/química , Preparaciones de Acción Retardada/química , Interferencia de ARN , Pez Cebra
2.
Carbohydr Polym ; 346: 122613, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245524

RESUMEN

Perilla essential oil (PLEO) offers benefits for food preservation and healthcare, yet its instability restricts its applications. In this study, chitosan (CS) and TiO2 used to prepare composite particles. TiO2, after being modified with sodium laurate (SL), was successfully introduced at 0.1 %-3 % into the CS matrix. The resulting CS-SL-TiO2 composite particles can be formed by intertwining and rearranging through intramolecular and intermolecular interactions, and form an O/W interface with stability and viscoelasticity. The Pickering emulsions stabilized by these particles exhibit non-Newtonian pseudoplastic behavior, shear-thinning properties, and slow-release characteristics, along with antibacterial activity. Emulsions with 0.5 % and 1 % CS-SL-TiO2 composites demonstrated superior antibacterial effects against Escherichia coli and Staphylococcus aureus. The study revealed that all emulsions undergo Fickian diffusion and a sustained release of PLEO, with the Ritger-Peppas model best describing this release mechanism. The slow-release behaviors positively correlates with interfacial pressure, composite particle size, composite particle potential, composite contact angle, emulsion particle size and emulsion potential, but negatively correlates with diffusion rate, penetration rate, release kinetics and release rate. The findings lay groundwork for developing slow-release antimicrobial emulsions within polysaccharide matrices, showcasing promise for antimicrobial packaging solutions and enhanced food preservation techniques.


Asunto(s)
Antibacterianos , Quitosano , Emulsiones , Escherichia coli , Staphylococcus aureus , Titanio , Agua , Quitosano/química , Quitosano/farmacología , Titanio/química , Antibacterianos/química , Antibacterianos/farmacología , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Agua/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Tamaño de la Partícula , Preparaciones de Acción Retardada/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Pruebas de Sensibilidad Microbiana , Liberación de Fármacos
3.
PLoS One ; 19(8): e0307166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39133725

RESUMEN

Metformin, the primary therapy for type 2 diabetes mellitus (T2DM), showed limitations such as varying absorption, rapid system clearance, required large amount, resistance, longstanding side effects. Use of Nano formulations for pharmaceuticals is emerging as a viable technique to reduce negative consequences of drug, while simultaneously attaining precise release and targeted distribution. This study developed a Polyethylene Glycol conjugated Graphene Oxide Quantum dots (GOQD-PEG) nanocomposite for the sustained release of metformin. Herein, we evaluated the effectiveness of metformin-loaded nanoconjugate in in vitro insulin resistance model. Results demonstrated drug loaded nanoconjugate successfully restored glucose uptake and reversed insulin resistance in in vitro conditions at reduced dosage compared to free metformin.


Asunto(s)
Preparaciones de Acción Retardada , Grafito , Resistencia a la Insulina , Metformina , Nanoconjugados , Polietilenglicoles , Puntos Cuánticos , Grafito/química , Puntos Cuánticos/química , Metformina/administración & dosificación , Metformina/farmacología , Metformina/farmacocinética , Metformina/química , Polietilenglicoles/química , Nanoconjugados/química , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Sistemas de Liberación de Medicamentos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa/metabolismo , Glucosa/química
4.
Molecules ; 29(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39124951

RESUMEN

The development of targeted drug delivery systems has been a pivotal area in nanomedicine, addressing challenges like low drug loading capacity, uncontrolled release, and systemic toxicity. This study aims to develop and evaluate dual-functionalized mesoporous silica nanoparticles (MSN) for targeted delivery of celecoxib, enhancing drug loading, achieving controlled release, and reducing systemic toxicity through amine grafting and imidazolyl polyethyleneimine (PEI) gatekeepers. MSN were synthesized using the sol-gel method and functionalized with (3-aminopropyl) triethoxysilane (APTES) to create amine-grafted MSN (MSN-NH2). Celecoxib was loaded into MSN-NH2, followed by conjugation of imidazole-functionalized PEI (IP) gatekeepers synthesized via carbodiimide coupling. Characterization was conducted using Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR). Drug loading capacity, entrapment efficiency, and in vitro drug release at pH 5.5 and 7.4 were evaluated. Cytotoxicity was assessed using the MTT assay on RAW 264.7 macrophages. The synthesized IP was confirmed by FTIR and 1H-NMR. Amine-grafted MSN demonstrated a celecoxib loading capacity of 12.91 ± 2.02%, 2.1 times higher than non-functionalized MSN. In vitro release studies showed pH-responsive behavior with significantly higher celecoxib release from MSN-NH2-celecoxib-IP at pH 5.5 compared to pH 7.4, achieving a 33% increase in release rate within 2 h. Cytotoxicity tests indicated significantly higher cell viability for IP-treated cells compared to PEI-treated cells, confirming reduced toxicity. The dual-functionalization of MSN with amine grafting and imidazolyl PEI gatekeepers enhances celecoxib loading and provides controlled pH-responsive drug release while reducing systemic toxicity. These findings highlight the potential of this advanced drug delivery system for targeted anti-inflammatory and anticancer therapies.


Asunto(s)
Aminas , Celecoxib , Preparaciones de Acción Retardada , Liberación de Fármacos , Nanopartículas , Polietileneimina , Dióxido de Silicio , Celecoxib/química , Celecoxib/farmacología , Dióxido de Silicio/química , Ratones , Nanopartículas/química , Animales , Polietileneimina/química , Células RAW 264.7 , Aminas/química , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Porosidad , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Espectroscopía Infrarroja por Transformada de Fourier , Imidazoles/química , Concentración de Iones de Hidrógeno
5.
J Biomed Mater Res B Appl Biomater ; 112(9): e35455, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39177322

RESUMEN

Battlefield wounds are at high risk of infection due to gross contamination and delays in evacuation from forward-deployed locations. The aim of this study was to formulate an antibiotic wound gel for application by a field medic in austere environments to protect traumatic wounds from infection during transport. Formulation development was conducted over multiple phases to meet temperature, handling, in vitro elution, and in vivo tissue response requirements. Thermal properties were evaluated by vial inversion, DSC, and syringe expression force in a temperature range of 4-49°C. Handling was evaluated by spreading onto blood-contaminated tissue and irrigation resistance. Controlled antibiotic release was evaluated by a modified USP immersion cell dissolution method. Local tissue effects were evaluated in vivo by subcutaneous implantation in rats for 7 and 28 days. An oleogel composition of cholesterol, hydrogenated castor oil, soybean oil, and glyceryl monocaprylocaprate met the target performance criteria. Peak expression force from a 5 mL syringe at 4°C was 48.3 N, the dropping point temperature was 68°C, and the oleogel formulation could be spread onto blood-contaminated tissue and resisted aqueous irrigation. The formulation demonstrated sustained release of tobramycin in PBS at 32°C for 5 days. Implantation in a rat dorsal pocket demonstrated a slight tissue reaction after 7 days with minimal to no reaction after 28 days, comparable to a commercial hemostat control. Material resorption was evident after 28 days. The formulation met target characteristics and is appropriate for further evaluation in a large animal contaminated blast wound model.


Asunto(s)
Antibacterianos , Preparaciones de Acción Retardada , Geles , Animales , Ratas , Antibacterianos/química , Antibacterianos/farmacología , Geles/química , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Masculino , Ratas Sprague-Dawley , Configuración de Recursos Limitados
6.
Int J Biol Macromol ; 277(Pt 2): 134118, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098460

RESUMEN

Coated fertilizers have been widely used to improve fertility in barren land. However, improving soil structure and water-retention capacity is also essential for arid and semi-arid areas with sandy soils to promote crop growth. Most currently available coated fertilizers rarely meet these requirements, limiting their application scope. Therefore, this study "tailored" pectin-montmorillonite (PM) multifunctional coatings for arid areas, featuring intercalation reactions and nanoscale entanglement between pectin and montmorillonite via hydrogen bonding and electrostatic and van der Waals forces. Notably, PM coatings have demonstrated an effective "relay" model of action. First, the PM-50 coating could act as a "shield" to protect urea pills, increasing the mechanical strength (82.12 %). Second, this coating prolonged the release longevity of urea (<0.5 h to 15 days). Further, the remaining coating performed a water-retention function. Subsequently, the degraded coating improved the soil properties. Thus, this coating facilitated the growth of wheat seedlings in a simulated arid environment. Moreover, the cytotoxicity test, life cycle assessment, and soil biodegradation experiment showed that the PM coating exhibited minimal environmental impact. Overall, the "relay" model of PM coating overcomes the application limitations of traditional coated fertilizers and provides a sustainable strategy for developing coating materials in soil degradation areas.


Asunto(s)
Bentonita , Preparaciones de Acción Retardada , Fertilizantes , Pectinas , Suelo , Agua , Pectinas/química , Agua/química , Suelo/química , Bentonita/química , Preparaciones de Acción Retardada/química , Biodegradación Ambiental , Triticum/química , Urea/química
7.
Int J Nanomedicine ; 19: 7851-7870, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105098

RESUMEN

Background: Inhibiting ROS overproduction is considered a very effective strategy for the treatment of peripheral nerve injuries, and Se has a remarkable antioxidant effect; however, since the difference between the effective concentration of Se and the toxic dose is not large, we synthesized a nanomaterial that can release Se slowly so that it can be used more effectively. Methods: Se@SiO2 NPs were synthesized using a mixture of Cu2-x Se nanocrystals, and the mechanism of action of Se@SiO2 NPs was initially explored by performing sequencing, immunofluorescence staining and Western blotting of cellular experiments. The mechanism of action of Se@SiO2 NPs was further determined by performing behavioral assays after animal experiments and by sampling the material for histological staining, immunofluorescence staining, and ELISA. The effects, mechanisms and biocompatibility of Se@SiO2 NPs for peripheral nerve regeneration were determined. Results: Porous Se@SiO2 was successfully synthesized, had good particle properties, and could release Se slowly. CCK-8 experiments revealed that the optimal experimental doses were 100 µM H2O2 and 200 µg/mL Se@SiO2, and RNA-seq revealed that porous Se@SiO2 was associated with cell proliferation, apoptosis, and the PI3K/AKT pathway. WB showed that porous Se@SiO2 could increase the expression of cell proliferation antigens (PCNA and S100) and antiapoptotic proteins (Bcl-2), decrease the expression of proapoptotic proteins (Bax), and increase the expression of antioxidative stress proteins (Nrf2, HO-1, and SOD2). EdU cell proliferation and ROS fluorescence assays showed that porous Se@SiO2 promoted cell proliferation and reduced ROS levels. The therapeutic effect of LY294002 (a PI3K/AKT pathway inhibitor) was decreased significantly and its effect was lost when it was added simultaneously with porous Se@SiO2. Animal experiments revealed that the regenerated nerve fiber density, myelin thickness, axon area, gastrocnemius muscle wet-to-weight ratio, myofiber area, sciatic nerve function index (SFI), CMAP, apoptotic cell ratio, and levels of antioxidative stress proteins and anti-inflammatory factors were increased following the administration of porous Se@SiO2. The levels of oxidative stress proteins and anti-inflammatory factors were significantly greater in the Se@SiO2 group than in the PNI group, and the effect of LY294002 was decreased significantly and was lost when it was added simultaneously with porous Se@SiO2. Conclusion: Se@SiO2 NPs are promising, economical and effective Se-releasing nanomaterials that can effectively reduce ROS production, inhibit apoptosis and promote cell proliferation after nerve injury via the PI3K/AKT pathway, ultimately accelerating nerve regeneration. These findings could be used to design new, promising drugs for the treatment of peripheral nerve injury.


Asunto(s)
Proliferación Celular , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Selenio , Transducción de Señal , Dióxido de Silicio , Animales , Selenio/química , Selenio/farmacología , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratas , Apoptosis/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas/química , Masculino , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/química , Ratas Sprague-Dawley , Estrés Oxidativo/efectos de los fármacos , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo
8.
J Nanobiotechnology ; 22(1): 468, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39103846

RESUMEN

Ulcerative colitis (UC) is a challenging inflammatory gastrointestinal disorder, whose therapies encounter limitations in overcoming insufficient colonic retention and rapid systemic clearance. In this study, we report an innovative polymeric prodrug nanoformulation for targeted UC treatment through sustained 5-aminosalicylic acid (5-ASA) delivery. Amphiphilic polymer-based 13.5 nm micelles were engineered to incorporate azo-linked 5-ASA prodrug motifs, enabling cleavage via colonic azoreductases. In vitro, micelles exhibited excellent stability under gastric/intestinal conditions while demonstrating controlled 5-ASA release over 24 h in colonic fluids. Orally administered micelles revealed prolonged 24-h retention and a high accumulation within inflamed murine colonic tissue. At an approximately 60% dose reduction from those most advanced recent studies, the platform halted DSS colitis progression and outperformed standard 5-ASA therapy through a 77-97% suppression of inflammatory markers. Histological analysis confirmed intact colon morphology and restored barrier protein expression. This integrated prodrug nanoformulation addresses limitations in colon-targeted UC therapy through localized bioactivation and tailored pharmacokinetics, suggesting the potential of nanotechnology-guided precision delivery to transform disease management.


Asunto(s)
Colitis , Colon , Preparaciones de Acción Retardada , Mesalamina , Micelas , Nitrorreductasas , Polímeros , Profármacos , Animales , Profármacos/química , Profármacos/farmacocinética , Mesalamina/química , Mesalamina/farmacocinética , Nitrorreductasas/metabolismo , Ratones , Colon/metabolismo , Colon/patología , Polímeros/química , Colitis/tratamiento farmacológico , Colitis/metabolismo , Preparaciones de Acción Retardada/química , NADH NADPH Oxidorreductasas/metabolismo , Ratones Endogámicos C57BL , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Masculino
9.
J Mater Sci Mater Med ; 35(1): 46, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115576

RESUMEN

An antifungal agent, luliconazole, is commercially available in cream or gel form. The major limitation of these conventional formulations is less residence time at the infection site. The primary objective of this work was to develop luliconazole-loaded polyvinyl alcohol (Luz-PVA) nanofibers for mycotic skin conditions with a longer retention. Luz-PVA nanofibers were prepared by plate electrospinning and optimized for polymer concentration and process parameters. The optimized batch (Trial 5) was prepared by 10% PVA, processed at 22.4 kV applied voltage, and 14 cm plate and spinneret distance to yield thick, uniform, and peelable nanofibers film. There was no interaction observed between Luz and PVA in the FTIR study. DSC and XRD analysis showed that luliconazole was loaded into fabricated nanofibers with a reduced crystallinity. FESEM studies confirmed the smooth, defect-free mats of nanofibers. Luz-PVA nanofibers possessed a tensile strength of 21.8 N and a maximum elongation of 10.8%, representing the excellent elasticity of the scaffolds. For Luz-PVA nanofibers, the sustained and complete drug release was observed in 48 h. In antifungal activity using Candida albicans, the Luz-PVA nanofibers showed a greater zone of inhibition (30.55 ± 0.38 mm and 29.27 ± 0.31 mm) than marketed cream (28.06 ± 0.18 mm and 28.47 ± 0.24 mm) and pure drug (27.57 ± 0.17 mm and 27.50 ± 0.47 mm) at 1% concentration in Sabouraud dextrose agar and yeast malt agar, respectively. Therefore, Luz-PVA nanofibers exhibited good mechanical properties, longer retention time, and better antifungal activity than marketed products and, therefore, can be further examined preclinically as a potential treatment option for topical mycotic infection.


Asunto(s)
Antifúngicos , Candida albicans , Imidazoles , Pruebas de Sensibilidad Microbiana , Nanofibras , Alcohol Polivinílico , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/farmacocinética , Candida albicans/efectos de los fármacos , Nanofibras/química , Alcohol Polivinílico/química , Imidazoles/química , Imidazoles/farmacología , Administración Tópica , Espectroscopía Infrarroja por Transformada de Fourier , Resistencia a la Tracción , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Difracción de Rayos X
10.
Nanotechnology ; 35(47)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39163877

RESUMEN

Bacterial vaginosis (BV) is a common vaginal infection affecting millions of women. Vaginal anaerobic dysbiosis occurs whenLactobacillusspp., the dominant flora in healthy vagina is replaced by certain overgrown anaerobes, resulting in unpleasant symptoms such as vaginal discharge and odor. With a high recurrence rate, BV also severely impacts the overall quality of life of childbearing women by inducing preterm delivery and increasing the risks of pelvic inflammatory disease and sexually transmitted infections. Among various BV-associated bacteria,Gardnerella vaginalis(G. vaginalis) has been identified as a primary pathogen since it has been isolated from almost all women carrying BV and exhibits higher virulence potential over other bacteria. When dealing with BV relapse, intravaginal drug delivery systems are superior to conventional oral antibiotic therapies in improving therapeutic efficacy owing to more effective drug dose, reduced drug resistance and minimized side effects such as stomach irritation. Traditional intravaginal drug administration generally involves solids, semi-solids and delivery devices inserted into the vaginal lumen to achieve sustained drug release. However, they are mostly designed for continuous drug release and are not preventative therapies, resulting in severe side effects caused by excess dosing. Stimuli-responsive systems that can release drug only when needed ('on-demand') can help diminish these negative side effects. Hence, we developed a bacteria-responsive liposomal platform for the prevention and treatment of BV. This platform demonstrated sustained drug release in the presence of vaginolysin, a toxin secreted specifically byG. vaginalis. We prepared four liposome formulations and evaluated their responsiveness toG. vaginalis. The results demonstrated that the liposome formulations could achieve cumulative drug release ranging from 46.7% to 51.8% over a 3-5 d period in response toG. vaginalisand hardly any drug release in the presence ofLactobacillus crispatus(L. crispatus), indicating the high specificity of the system. Overall, the bacteria-responsive drug release platform has great potential, since it will be the first time to realize sustained drug release stimulated by a specific pathogen for BV prevention and treatment. This on-demand therapy can potentially provide relief to the millions of women affected by BV.


Asunto(s)
Antibacterianos , Gardnerella vaginalis , Vaginosis Bacteriana , Vaginosis Bacteriana/tratamiento farmacológico , Vaginosis Bacteriana/microbiología , Femenino , Humanos , Gardnerella vaginalis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Administración Intravaginal , Liberación de Fármacos , Liposomas/química , Sistemas de Liberación de Medicamentos/métodos , Preparaciones de Acción Retardada/química , Vagina/microbiología
11.
Int J Pharm ; 663: 124556, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39122196

RESUMEN

Hot melt extrusion (HME) processed Poly (lactic-co-glycolic acid) (PLGA) implant is one of the commercialized drug delivery products, which has solid, well-designed shape and rigid structures that afford efficient locoregional drug delivery on the spot of interest for months. In general, there are a variety of material, processing, and physiological factors that impact the degradation rates of PLGA-based implants and concurrent drug release kinetics. The objective of this study was to investigate the impacts of PLGA's material characteristics on PLGA degradation and subsequent drug release behavior from the implants. Three model drugs (Dexamethasone, Carbamazepine, and Metformin hydrochloride) with different water solubility and property were formulated with different grades of PLGAs possessing distinct co-polymer ratios, molecular weights, end groups, and levels of residual monomer (high/ViatelTM and low/ ViatelTM Ultrapure). Physicochemical characterizations revealed that the plasticity of PLGA was inversely proportional to its molecular weight; moreover, the residual monomer could impose a plasticizing effect on PLGA, which increased its thermal plasticity and enhanced its thermal processability. Although the morphology and microstructure of the implants were affected by many factors, such as processing parameters, polymer and drug particle size and distribution, polymer properties and polymer-drug interactions, implants prepared with ViatelTM PLGA showed a smoother surface and a stronger PLGA-drug intimacy than the implants with ViatelTM Ultrapure PLGA, due to the higher plasticity of the ViatelTM PLGA. Subsequently, the implants with ViatelTM PLGA exhibited less burst release than implants with ViatelTM Ultrapure PLGA, however, their onset and progress of the lag and substantial release phases were shorter and faster than the ViatelTM Ultrapure PLGA-based implants, owing to the residual monomer accelerated the water diffusion and autocatalyzed PLGA hydrolysis. Even though the drug release profiles were also influenced by other factors, such as composition, drug properties and polymer-drug interaction, all three cases revealed that the residual monomer accelerated the swelling and degradation of PLGA and impaired the implant's integrity, which could negatively affect the subsequent drug release behavior and performance of the implants. These results provided insights to formulators on rational PLGA implant design and polymer selection.


Asunto(s)
Carbamazepina , Preparaciones de Acción Retardada , Dexametasona , Liberación de Fármacos , Tecnología de Extrusión de Fusión en Caliente , Metformina , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Solubilidad , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Dexametasona/química , Dexametasona/administración & dosificación , Metformina/química , Metformina/administración & dosificación , Preparaciones de Acción Retardada/química , Carbamazepina/química , Carbamazepina/administración & dosificación , Tecnología de Extrusión de Fusión en Caliente/métodos , Implantes de Medicamentos/química , Ácido Poliglicólico/química , Portadores de Fármacos/química , Calor , Ácido Láctico/química
12.
Food Chem ; 460(Pt 2): 140674, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089025

RESUMEN

Citrus oil (CO) is a commonly used natural flavor with high volatility, which is not conducive to sustained release under food environmental stress. This study constructed novel ß-cyclodextrin/cationic cellulose nanocrystal (ß-CD/C-CNC) complexes via noncovalent interaction, which were used to stabilize CO-loaded Pickering emulsions (PEß-CD/C-CNC). The C-CNC greatly improved the physical stability, droplet dispersion and viscoelasticity of PEß-CD/C-CNC by forming a tight network structure, as verified by rheological behavior. Moreover, C-CNC improved the wettability of ß-CD/C-CNC complexes and enhanced the interaction between adjacent ß-CD/C-CNC complexes. C-CNC also contributed to the interfacial viscoelasticity, hydrated mass, and layer thickness via the interfacial dilational modulus and QCM-D. ß-CD/C-CNC complexes adsorbed on the oil-water interface gave rise to a dense filling layer as a physical barrier, enhancing the sustained-release performance of PEß-CD/C-CNC by limiting diffusion of citrus essential oil into the headspace. This study provides new technical approaches for aroma retention in the food industry.


Asunto(s)
Celulosa , Citrus , Preparaciones de Acción Retardada , Emulsiones , Aceites Volátiles , beta-Ciclodextrinas , Emulsiones/química , Citrus/química , beta-Ciclodextrinas/química , Celulosa/química , Aceites Volátiles/química , Preparaciones de Acción Retardada/química , Reología , Viscosidad , Cationes/química , Nanopartículas/química
13.
Biomed Mater Eng ; 35(5): 475-485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39150826

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a chronic and degenerative joint disease that remains a great challenge in treatment due to the lack of effective therapies. 4-octyl itaconate (4-OI) is a novel and potent modulator of inflammation for the treatment of inflammatory disease. However, the clinical usage of 4-OI is limited due to its poor solubility and low bioavailability. As a promising drug delivery strategy, injectable hydrogels offers an effective approach to address these limitations of 4-OI. OBJECTIVE: The aim of the study was to verify that the composite 4-OI/SA hydrogels could achieve a controlled release of 4-OI and reduce damage to articular cartilage in the group of osteoarthritic rats treated with the system. METHODS: In this study, an injectable composite hydrogel containing sodium alginate (SA) and 4-octyl itaconate (4-OI) has been developed for continuous intra-articular administration in the treatment of OA. RESULTS: After intra-articular injection in arthritic rats, the as-prepared 4-OI/SA hydrogel containing of 62.5 µM 4-OI effectively significantly reduced the expression of TNF-α, IL-1ß, IL-6 and MMP3 in the ankle fluid. Most importantly, the as-prepared 4-OI/SA hydrogel system restored the morphological parameters of the ankle joints close to normal. CONCLUSION: 4-OI/SA hydrogel shows a good anti-inflammatory activity and reverse cartilage disruption, which provide a new strategy for the clinical treatment of OA.


Asunto(s)
Alginatos , Antiinflamatorios , Preparaciones de Acción Retardada , Hidrogeles , Osteoartritis , Ratas Sprague-Dawley , Succinatos , Animales , Hidrogeles/química , Alginatos/química , Succinatos/química , Succinatos/farmacología , Antiinflamatorios/administración & dosificación , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/farmacocinética , Preparaciones de Acción Retardada/química , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Ratas , Masculino , Inyecciones Intraarticulares , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Cartílago Articular/metabolismo
14.
Food Chem ; 460(Pt 3): 140726, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39111044

RESUMEN

The freeze-drying approach was used to create inclusion complexes utilizing alkyl gallates and ß-cyclodextrin, namely dodecyl gallate, octyl gallate, butyl gallate, and ethyl gallate, which are exemplary examples of phenolic esters. The everted-rat-gut-sac model demonstrated that the inclusion complexes released alkyl gallates, which were subsequently hydrolyzed to generate free gallic acid, as evidenced by HPLC-UV analysis. Both gallic acid and short-chain alkyl gallates were capable of permeating the small intestinal membrane. The transport rate of gallic acid (or alkyl gallates) exhibited an initial rise followed by a drop when the carbon-chain lengths varied. The inclusion complex groups exhibited a superior sustained-release effect compared to the comparable alkyl gallates groups, thus possibly leading to higher bioavailability and stronger bioactivity. Moreover, altering the length of the carbon chain will allow for the effortless achievement of regulated release of phenolic compounds and short-chain phenolic esters from such ß-cyclodextrin inclusion complexes.


Asunto(s)
Preparaciones de Acción Retardada , Ácido Gálico , beta-Ciclodextrinas , Ácido Gálico/química , Ácido Gálico/análogos & derivados , beta-Ciclodextrinas/química , Animales , Preparaciones de Acción Retardada/química , Ratas , Masculino , Ratas Sprague-Dawley , Disponibilidad Biológica
15.
Int J Nanomedicine ; 19: 8091-8113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161361

RESUMEN

The current treatments for wound healing still exhibit drawbacks due to limited availability at the action sites, susceptibility to degradation, and immediate drug release, all of which are detrimental in chronic conditions. Nano-modification strategies, offering various advantages that can enhance the physicochemical properties of drugs, have been employed in efforts to maximize the efficacy of wound healing medications. Nowadays, nanostructured lipid carriers (NLCs) provide drug delivery capabilities that can safeguard active compounds from environmental influences and enable controlled release profiles. Consequently, NLCs are considered an alternative therapy to address the challenges encountered in wound treatment. This review delves into the application of NLCs in drug delivery for wound healing, encompassing discussions on their composition, preparation methods, and their impact on treatment effectiveness. The modification of drugs into the NLC model can be facilitated using relatively straightforward technologies such as pressure-based processes, emulsification techniques, solvent utilization methods, or phase inversion. Moreover, NLC production with minimal material compositions can accommodate both single and combination drug delivery. Through in vitro, in vivo, and clinical studies, it has been substantiated that NLCs can enhance the therapeutic potential of various drug types in wound healing treatments. NLCs enhance efficacy by reducing the active substance particle size, increasing solubility and bioavailability, and prolonging drug release, ensuring sustained dosage at the wound site for chronic wounds. In summary, NLCs represent an effective nanocarrier system for optimizing the bioavailability of active pharmacological ingredients in the context of wound healing.


Asunto(s)
Portadores de Fármacos , Lípidos , Nanoestructuras , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Humanos , Portadores de Fármacos/química , Lípidos/química , Nanoestructuras/química , Animales , Tamaño de la Partícula , Liberación de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Preparaciones de Acción Retardada/química , Disponibilidad Biológica
16.
Soft Matter ; 20(29): 5788-5799, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38984641

RESUMEN

Adopting a non-covalent co-assembly strategy shows great potential in loading drugs efficiently and safely in drug delivery systems. However, finding an efficient method for developing high strength gels with thixotropic characteristics is still challenging. In this work, by hybridizing the low molecular weight gelator fluorenylmethyloxycarbonyl-phenylalanine (Fmoc-F) (first single network, 1st SN) and alginate (second single network, 2nd SN) into a dual network (DN) gel, gels with high strength as well as thixotropy were prepared efficiently. The DN gels showed high strength (103 Pa in SN gels and 105 Pa in DN gels) and thixotropic characteristics (yield strain <25%; recovery ratio >85% within 100 seconds). The application performance was verified by loading doxorubicin (DOX), showing better encapsulation capacity (77.06% in 1st SN, 59.11% in 2nd SN and 96.71% in DN) and sustained release performance (lasting one week under physiological conditions) than single network gels. Experimental and DFT results allowed the elaboration of the specific non-covalent co-assembly mechanism for DN gel formation and DOX loading. The DN gels were formed by co-assembly driven by H-bond and π-π stacking interactions and then strengthened by Ca2+-coupling. Most DOX molecules co-assembled with Fmoc-F and alginate through π-π stacking and H-bond interactions (DOX-I), with a few free DOX molecules (DOX-II) left. Proven by the release dynamics test, DOX was released through a diffusion-erosion process, in an order of DOX-I first and then DOX-II. This work suggests that non-covalent co-assembly is a useful technique for effective material strengthening and drug delivery.


Asunto(s)
Alginatos , Doxorrubicina , Liberación de Fármacos , Geles , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Geles/química , Alginatos/química , Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Fluorenos/química , Fenilalanina/química
17.
Anal Chim Acta ; 1317: 342881, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029999

RESUMEN

A molecularly imprinting polymer (MIP) carrier with pH-responsivity was designed to construct a drug delivery system (DDS) focusing on controlled and sustainable capecitabine (CAPE) release. The pH-responsive characteristic was achieved by the functionalization of SiO2 substrate with 4-formylphenylboronic acid, accompanied by the introduction of fluorescein isothiocyanate for the visualization of the intracellular localization of the nanocarrier. Experimental results indicated that CAPE was adsorbed onto the drug carrier with satisfactory encapsulation efficiency. The controlled release of CAPE was realized based on the break of borate ester bonds between -B(OH)2 and cis-diols in the weakly acidic environment. Density functional theory computations were conducted to investigate the adsorption/release mechanism. Moreover, in vitro experiments confirmed the good biocompatibility and ideal inhibition efficiency of the developed DDS. The MIP can act as an eligible carrier and exhibits the great potential in practical applications for tumor treatment.


Asunto(s)
Capecitabina , Portadores de Fármacos , Polímeros Impresos Molecularmente , Capecitabina/química , Concentración de Iones de Hidrógeno , Portadores de Fármacos/química , Polímeros Impresos Molecularmente/química , Humanos , Liberación de Fármacos , Antimetabolitos Antineoplásicos/química , Preparaciones de Acción Retardada/química , Supervivencia Celular/efectos de los fármacos , Teoría Funcional de la Densidad , Polímeros/química , Polímeros/síntesis química
18.
Molecules ; 29(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38999141

RESUMEN

Gemcitabine is a widely used antimetabolite drug of pyrimidine structure, which can exist as a free-base molecular form (Gem). The encapsulated forms of medicinal drugs are of interest for delayed and local drug release. We utilized, for the first time, a novel approach of mechano-chemistry by liquid-assisted grinding (LAG) to encapsulate Gem on a "matrix" of porphyrin aluminum metal-organic framework Al-MOF-TCPPH2 (compound 2). The chemical bonding of Gem to compound 2 was studied by ATR-FTIR spectroscopy and powder XRD. The interaction involves the C=O group of Gem molecules, which indicates the formation of the encapsulation complex in the obtained composite. Further, the delayed release of Gem from the composite was studied to phosphate buffered saline (PBS) at 37 °C using an automated drug dissolution apparatus equipped with an autosampler. The concentration of the released drug was determined by HPLC-UV analysis. The composite shows delayed release of Gem due to the bonded form and constant concentration thereafter, while pure Gem shows quick dissolution in less than 45 min. Delayed release of Gem drug from the composite follows the kinetic pseudo-first-order rate law. Further, for the first time, the mechanism of delayed release of Gem was assessed by the variable stirring speed of drug release media, and kinetic rate constant k was found to decrease when stirring speed is decreased (diffusion control). Finally, the prolonged time scale of toxicity of Gem to pancreatic cancer PANC-1 cells was studied by continuous measurements of proliferation (growth) for 6 days, using the xCELLigence real-time cell analyzer (RTCA), for the composite vs. pure drug, and their differences indicate delayed drug release. Aluminum metal-organic frameworks are new and promising materials for the encapsulation of gemcitabine and related small-molecule antimetabolites for controlled delayed drug release and potential use in drug-eluting implants.


Asunto(s)
Aluminio , Preparaciones de Acción Retardada , Desoxicitidina , Liberación de Fármacos , Gemcitabina , Estructuras Metalorgánicas , Neoplasias Pancreáticas , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacología , Estructuras Metalorgánicas/química , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , Aluminio/química , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/química , Porfirinas/química , Porfirinas/farmacología , Supervivencia Celular/efectos de los fármacos , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/química
19.
Molecules ; 29(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38999160

RESUMEN

Chemically modified mandua starch was successfully synthesized and applied to coat mesalamine-loaded matrix tablets. The coating material was an aqueous dispersion of mandua starch modified by sodium trimetaphosphate and sodium tripolyphosphate. To investigate the colon-targeting release competence, chemically modified mandua starch film-coated mesalamine tablets were produced using the wet granulation method followed by dip coating. The effect of the coating on the colon-targeted release of the resultant delivery system was inspected in healthy human volunteers and rabbits using roentgenography. The results show that drug release was controlled when the coating level was 10% w/w. The release percentage in the upper gastric phase (pH 1.2, simulated gastric fluid) was less than 6% and reached up to 59.51% w/w after 14 h in simulated colonic fluid. In addition to in vivo roentgenographic studies in healthy rabbits, human volunteer studies proved the colon targeting efficiency of the formulation. These results clearly demonstrated that chemically modified mandua starch has high effectiveness as a novel aqueous coating material for controlled release or colon targeting.


Asunto(s)
Liberación de Fármacos , Mesalamina , Almidón , Comprimidos , Mesalamina/química , Mesalamina/farmacocinética , Conejos , Almidón/química , Animales , Humanos , Concentración de Iones de Hidrógeno , Fosforilación , Preparaciones de Acción Retardada/química , Colon/metabolismo
20.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000223

RESUMEN

Microparticles as a multicompartment drug delivery system are beneficial for poorly soluble drugs. Mucoadhesive polymers applied in microparticle technology prolong the contact of the drug with the mucosa surface enhancing drug bioavailability and extending drug activity. Sodium alginate (ALG) and hydroxypropyl methylcellulose (hypromellose, HPMC) are polymers of a natural or semi-synthetic origin, respectively. They are characterized by mucoadhesive properties and are applied in microparticle technology. Spray drying is a technology employed in microparticle preparation, consisting of the atomization of liquid in a stream of gas. In this study, the pharmaceutical properties of spray-dried ALG/HPMC microparticles with posaconazole were compared with the properties of physical mixtures of powders with equal qualitative and quantitative compositions. Posaconazole (POS) as a relatively novel antifungal was utilized as a model poorly water-soluble drug, and hard gelatin capsules were applied as a reservoir for designed formulations. A release study in 0.1 M HCl showed significantly prolonged POS release from microparticles compared to a mixture of powders. Such a relationship was not followed in simulated vaginal fluid (SVF). Microparticles were also characterized by stronger mucoadhesive properties, an increased swelling ratio, and prolonged residence time compared to physical mixtures of powders. The obtained results indicated that the pharmaceutical properties of hard gelatin capsules filled with microparticles were significantly different from hard gelatin capsules with mixtures of powders.


Asunto(s)
Alginatos , Cápsulas , Sistemas de Liberación de Medicamentos , Gelatina , Derivados de la Hipromelosa , Triazoles , Alginatos/química , Gelatina/química , Derivados de la Hipromelosa/química , Sistemas de Liberación de Medicamentos/métodos , Triazoles/química , Triazoles/administración & dosificación , Triazoles/farmacocinética , Liberación de Fármacos , Preparaciones de Acción Retardada/química , Antifúngicos/administración & dosificación , Antifúngicos/química , Antifúngicos/farmacocinética , Microesferas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA