Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.354
Filtrar
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(6): 989-997, 2024 Jun 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39311795

RESUMEN

The dental pulp is the only soft tissue structure within the tooth, serving functions such as sensation and nutrition. However, the dental pulp is highly susceptible to necrosis due to external factors. Currently, root canal therapy is the most commonly used treatment for pulp necrosis. Nevertheless, teeth treated with root canal therapy are prone to secondary infections and adverse outcomes like vertical root fractures. Regenerative endodontic therapy has emerged as a solution, aiming to replace damaged tooth structures, including dentin, root structure, and the pulp-dentin complex cells. This approach demonstrates significant advantages in addressing clinical symptoms and achieving regeneration of the root and even the pulp. Since the discovery of dental pulp stem cells, regenerative endodontic therapy has gained new momentum. Advances in cell transplantation and cell homing techniques have rapidly developed, showing promising potential for clinical applications.


Asunto(s)
Pulpa Dental , Regeneración , Trasplante de Células Madre , Pulpa Dental/fisiología , Pulpa Dental/citología , Humanos , Regeneración/fisiología , Trasplante de Células Madre/métodos , Endodoncia Regenerativa/métodos , Células Madre/citología , Tratamiento del Conducto Radicular/métodos , Ingeniería de Tejidos/métodos , Necrosis de la Pulpa Dental/terapia
2.
J Appl Oral Sci ; 32: e20240168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39319905

RESUMEN

OBJECTIVES: This study sought to determine effects of Thai propolis extract mixed in mineral trioxide aggregate (MTA) on matrix metalloproteinase-2 (MMP-2) expression and its activity in inflamed human dental pulp cells (HDPCs). MATERIALS AND METHODS: Interleukin-1ß-primed HDPCs were treated with either the eluate of MTA mixed with distilled water, of MTA mixed with 0.75 mg/ml of the propolis extract, or of Dycal®, 0.75 mg/ml of the propolis extract, or 0.2% (v/v) of chlorhexidine for 24 or 72 h. The viability of HDPCs was determined by the PrestoBlue® cytotoxic assay. HDPCs' lysates were analyzed for MMP-2 mRNA expression by RT-qPCR, while their supernatants were measured for MMP-2 activity by gelatin zymography. RESULTS: At 24 and 72 h, a non-toxic dose of the propolis extract at 0.75 mg/ml by itself or mixed in MTA tended to reduce MMP-2 expression upregulated by MTA, while it further decreased the MMP-2 activity as compared to that of MTA mixed with distilled water. The MMP-2 activity of interleukin-1ß-primed HDPCs treated with the eluate of the propolis extract mixed in MTA was significantly lower than that of interleukin-1ß-primed HDPCs at 24 h (p=0.012). As a control, treatment with chlorhexidine significantly inhibited MMP-2 expression induced by MTA and MMP-2 activity enhanced by interleukin-1ß (p<0.05). Treatment with Dycal® caused a significant increase in HDPC's death, resulting in a significant decrease in MMP-2 expression and activity (p<0.05). CONCLUSIONS: MTA mixed with Thai propolis extract can reduce MMP-2 mRNA expression and activity when compared to MTA mixed with distilled water in inflamed HDPCs.


Asunto(s)
Compuestos de Aluminio , Compuestos de Calcio , Pulpa Dental , Combinación de Medicamentos , Metaloproteinasa 2 de la Matriz , Óxidos , Própolis , Silicatos , Humanos , Própolis/farmacología , Própolis/química , Compuestos de Aluminio/farmacología , Metaloproteinasa 2 de la Matriz/efectos de los fármacos , Compuestos de Calcio/farmacología , Silicatos/farmacología , Óxidos/farmacología , Pulpa Dental/efectos de los fármacos , Pulpa Dental/citología , Factores de Tiempo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Clorhexidina/farmacología , Interleucina-1beta , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Análisis de Varianza , Ensayo de Materiales , Valores de Referencia , Estadísticas no Paramétricas , Tailandia , ARN Mensajero/efectos de los fármacos , Pueblos del Sudeste Asiático
3.
Stem Cell Res Ther ; 15(1): 306, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285500

RESUMEN

BACKGROUND: Influence on stem cells' angiogenesis and osteogenesis of NAD(P)H Quinone Dehydrogenase 1(NQO1) has been established, but its impact on dental pulp stem cells (DPSCs) is unexplored. An important strategy for the treatment of arteriosclerosis is to inhibit calcium deposition and to promote vascular repair and angiogenesis. This study investigated the function and mechanism of NQO1 on angiogenesis and osteogenesis of DPSCs, so as to provide a new ideal for the treatment of arteriosclerosis. METHODS: Co-culture of human DPSCs and human umbilical vein endothelial cells (HUVECs) was used to detect the angiogenesis ability. Alkaline phosphatase (ALP) activity, alizarin red staining (ARS), and transplantation of HA/tricalcium phosphate with DPSCs were used to detect osteogenesis. RESULTS: NQO1 suppressed in vitro tubule formation, migration, chemotaxis, and in vivo angiogenesis, as evidenced by reduced CD31 expression. It also enhanced ALP activity, ARS, DSPP expression and osteogenesis and boosted mitochondrial function in DPSCs. CoQ10, an electron transport chain activator, counteracted the effects of NQO1 knockdown on these processes. Additionally, NQO1 downregulated MAPK signaling, which was reversed by CoQ10 supplementation in DPSCs-NQO1sh. CONCLUSIONS: NQO1 inhibited angiogenesis and promoted the osteogenesis of DPSCs by suppressing MAPK signaling pathways and enhancing mitochondrial respiration.


Asunto(s)
Pulpa Dental , Células Endoteliales de la Vena Umbilical Humana , Sistema de Señalización de MAP Quinasas , NAD(P)H Deshidrogenasa (Quinona) , Neovascularización Fisiológica , Osteogénesis , Humanos , Osteogénesis/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , Neovascularización Fisiológica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Pulpa Dental/citología , Pulpa Dental/metabolismo , Técnicas de Cocultivo , Células Madre/metabolismo , Células Madre/citología , Células Cultivadas , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/metabolismo , Animales , Diferenciación Celular , Angiogénesis
4.
Artículo en Inglés | MEDLINE | ID: mdl-39277882

RESUMEN

This study aimed to determine the effect of ozone on the expression of Bax and Bcl-2 genes in dental pulp cells. Additionally, the programmed cell death protein 1, programmed death-ligand 1, and CD200 antigens were determined in lymphocytes to assess their surface expression. Dental pulp cells were cultured from extracted healthy third molars and characterized as dental pulp stromal cells. Gene expression of Bcl-2 and Bax was analyzed at 0 s, 6 s, and 12 s of ozone exposure using real-time PCR. Lymphocytes from dental pulp were subjected to ozone exposure for 12 s and PD-1, PD-L1, and CD200/CD200R expression was analyzed by flow cytometry. Upon exposure to ozone for 6 s, the Bcl-2 expression decreased significantly to -0.09, and at 12 s, it increased significantly to 0.3. Bax gene expression level increased significantly to 0.188 after 6 s exposure, and at 12 s, to 0.16. Lymphocytes exposed to ozone for 12 s showed minimal changes in PD-1, PD-L1, and CD200/CD200R expression levels, indicating that oxidative stress does not impact the signaling pathways regulating these molecules. The significant upregulation of Bcl-2 at 12 s highlights the cells' effort to protect themselves from prolonged oxidative stress, possibly tipping the balance toward cell survival and tissue repair. However, the absence of changes in PD-1 and PD-L1 expression on lymphocytes under oxidative stress suggests that these molecules are not sensitive to oxidative stress in this context.


Asunto(s)
Antígenos CD , Apoptosis , Antígeno B7-H1 , Pulpa Dental , Ozono , Receptor de Muerte Celular Programada 1 , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Pulpa Dental/citología , Pulpa Dental/metabolismo , Apoptosis/efectos de los fármacos , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Células Cultivadas , Estrés Oxidativo , Proyectos Piloto , Regulación de la Expresión Génica/efectos de los fármacos , Linfocitos/metabolismo , Linfocitos/inmunología , Linfocitos/efectos de los fármacos , Adulto Joven , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Adulto , Transducción de Señal/efectos de los fármacos
5.
BMC Oral Health ; 24(1): 1087, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277754

RESUMEN

BACKGROUND: Different materials have been used as wound dressings after vital pulp therapies. Some of them have limitations such as delayed setting, difficult administration, slight degree of cytotoxicity, crown discoloration and high cost. Therefore, to overcome these disadvantages, composite scaffolds have been used in regenerative dentistry. This study aims to construct and characterize the physicochemical behavior of a novel injectable alginate hydrogel loaded with different bioactive glass nanoparticles in various concentrations as a regenerative pulpotomy filling material. METHODS: Alginate hydrogels were prepared by dissolving alginate powder in alcoholic distilled water containing mesoporous bioactive glass nanoparticles (MBG NPs) or boron-doped MBG NPs (BMBG NPs) at 10 and 20 wt% concentrations. The mixture was stirred and incubated overnight in a water bath at 50 0 C to ensure complete solubility. A sterile dual-syringe system was used to mix the alginate solution with 20 wt% calcium chloride solution, forming the hydrogel upon extrusion. Then, constructed hydrogel specimens from all groups were characterized by FTIR, SEM, water uptake percentage (WA%), bioactivity and ion release, and cytotoxicity. Statistical analysis was done using One-Way ANOVA test for comparisons between groups, followed by multiple pairwise comparisons using Bonferroni adjusted significance level (p < 0.05). RESULTS: Alginate/BMBG loaded groups exhibited remarkable increase in porosity and pore size diameter [IIB1 (168), IIB2 (183) (µm)]. Similarly, WA% increased (~ 800%) which was statistically significant (p < 0.05). Alginate/BMBG loaded groups exhibited the strongest bioactive capability displaying prominent clusters of hydroxyapatite precipitates on hydrogel surfaces. Ca/P ratio of precipitates in IIA2 and IIB1 (1.6) were like Ca/P ratio for stoichiometric pure hydroxyapatite (1.67). MTT assay data revealed that the cell viability % of human gingival fibroblast cells have declined with increasing the concentration of both powders and hydrogel extracts in all groups after 24 and 48 h but still higher than the accepted cell viability % of (˃70%). CONCLUSIONS: The outstanding laboratory performance of the injectable alginate/BMBGNPs (20 wt%) composite hydrogel suggested it as promising candidate for pulpotomy filling material potentially enhancing dentin regeneration in clinical applications.


Asunto(s)
Alginatos , Materiales Biocompatibles , Boro , Dentina , Hidrogeles , Nanopartículas , Alginatos/química , Humanos , Boro/química , Materiales Biocompatibles/química , Dentina/efectos de los fármacos , Porosidad , Supervivencia Celular/efectos de los fármacos , Regeneración/efectos de los fármacos , Ensayo de Materiales , Espectroscopía Infrarroja por Transformada de Fourier , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Microscopía Electrónica de Rastreo , Endodoncia Regenerativa/métodos , Vidrio/química , Fibroblastos/efectos de los fármacos , Cerámica/química , Agua/química
6.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273524

RESUMEN

Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to bone marrow-derived mesenchymal stem cells (BM-MSCs) for potential clinical applications because of their accessibility and anti-inflammatory capacity. We previously demonstrated that DT-MSCs from dental pulp (DP-MSCs), periodontal ligaments (PDL-MSCs), and gingival tissue (G-MSCs) show immunosuppressive effects similar to those of BM, but to date, the DT-MSC-mediated immunoregulation of T lymphocytes through the purinergic pathway remains unknown. In the present study, we compared DP-MSCs, PDL-MSCs, and G-MSCs in terms of CD26, CD39, and CD73 expression; their ability to generate adenosine (ADO) from ATP and AMP; and whether the concentrations of ADO that they generate induce an immunomodulatory effect on T lymphocytes. BM-MSCs were included as the gold standard. Our results show that DT-MSCs present similar characteristics among the different sources analyzed in terms of the properties evaluated; however, interestingly, they express more CD39 than BM-MSCs; therefore, they generate more ADO from ATP. In contrast to those produced by BM-MSCs, the concentrations of ADO produced by DT-MSCs from ATP inhibited the proliferation of CD3+ T cells and promoted the generation of CD4+CD25+FoxP3+CD39+CD73+ Tregs and Th17+CD39+ lymphocytes. Our data suggest that DT-MSCs utilize the adenosinergic pathway as an immunomodulatory mechanism and that this mechanism is more efficient than that of BM-MSCs.


Asunto(s)
5'-Nucleotidasa , Adenosina , Apirasa , Pulpa Dental , Células Madre Mesenquimatosas , Ligamento Periodontal , Linfocitos T , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/inmunología , Humanos , Adenosina/metabolismo , Pulpa Dental/citología , Pulpa Dental/inmunología , Pulpa Dental/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , 5'-Nucleotidasa/metabolismo , Apirasa/metabolismo , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Adenosina Trifosfato/metabolismo , Células Cultivadas , Encía/citología , Encía/metabolismo , Encía/inmunología , Antígenos CD/metabolismo , Inmunomodulación , Diferenciación Celular , Proliferación Celular , Dipeptidil Peptidasa 4/metabolismo , Transducción de Señal , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Proteínas Ligadas a GPI
7.
Int J Mol Sci ; 25(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39273640

RESUMEN

MicroRNA-27a-5p (miR-27a-5p) was significantly upregulated in dental pulp inflammation, yet its underlying mechanisms remain unclear. This study investigated the effect of miR-27a-5p on the expression of proinflammatory cytokines in human dental pulp cells (hDPCs) stimulated by lipopolysaccharide (LPS). LPS-stimulated hDPCs showed concurrent increases in the expression of miR-27a-5p and proinflammatory cytokines (IL-6, IL-8, and MCP1), and the increased expression was suppressed by NF-κB inhibitor BAY 11-0785. Transfection of the miR-27a-5p mimic downregulated the expression of proinflammatory cytokines, NF-κB activity, and the expression of NF-κB signaling activators (TAB1, IRAK4, RELA, and FSTL1) in LPS-stimulated hDPCs. Luciferase reporter assays revealed that miR-27a-5p bound directly to the 3'-UTR of TAB1. siTAB1 downregulated NF-κB activity and proinflammatory cytokine expression. Downregulation of proinflammatory cytokine expression, NF-κB activity, and NF-κB signaling activator expression (TAB1, IRAK4, and RELA) was also found in LPS-stimulated rat incisor pulp tissue explants following transfection with the miR-27a-5p mimic ex vivo. MiR-27a-5p, whose expression was induced by NF-κB signaling, negatively regulated the synthesis of proinflammatory cytokines via targeting NF-κB signaling. In particular, TAB1, a potent NF-κB activator, was targeted by miR-27a-5p. These results provide insights into the negative regulatory effects of miR-27a-5p, particularly those targeting the TAB1-NF-κB signaling pathway, on pulp inflammation.


Asunto(s)
Citocinas , Pulpa Dental , Lipopolisacáridos , MicroARNs , FN-kappa B , Transducción de Señal , MicroARNs/genética , MicroARNs/metabolismo , Pulpa Dental/citología , Pulpa Dental/metabolismo , Humanos , Lipopolisacáridos/farmacología , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Citocinas/metabolismo , Ratas , Animales , Regulación hacia Abajo/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Células Cultivadas , Regiones no Traducidas 3' , Regulación de la Expresión Génica/efectos de los fármacos , Masculino
8.
Chin J Dent Res ; 27(3): 203-213, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221981

RESUMEN

OBJECTIVE: To investigate the biological regulatory function of Gremlin1 (GREM1) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta (YWHAH) in dental pulp stem cells (DPSCs), and determine the underlying molecular mechanism involved. METHODS: Alkaline phosphatase (ALP) activity, alizarin red staining, scratch migration assays and in vitro and in vivo osteo-/dentinogenic marker detection of bone-like tissue generation in nude mice were used to assess osteo-/dentinogenic differentiation. Coimmunoprecipitation and polypeptide microarray assays were employed to detect the molecular mechanisms involved. RESULTS: The data revealed that knockdown of GREM1 promoted ALP activity, mineralisation in vitro and the expression of osteo-/dentinogenic differentiation markers and enhanced osteo-/ dentinogenesis of DPSCs in vivo. GREM1 bound to YWHAH in DPSCs, and the binding site was also identified. Knockdown of YWHAH suppressed the osteo-/dentinogenesis of DPSCs in vitro, and overexpression of YWHAH promoted the osteo-/dentinogenesis of DPSCs in vitro and in vivo. CONCLUSION: Taken together, the findings highlight the critical roles of GREM1-YWHAH in the osteo-/dentinogenesis of DPSCs.


Asunto(s)
Diferenciación Celular , Pulpa Dental , Péptidos y Proteínas de Señalización Intercelular , Osteogénesis , Células Madre , Animales , Humanos , Ratones , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Células Cultivadas , Pulpa Dental/citología , Pulpa Dental/metabolismo , Dentinogénesis/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones Desnudos , Osteogénesis/genética , Células Madre/metabolismo
9.
Front Immunol ; 15: 1447536, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224602

RESUMEN

Mesenchymal stem cell derived extracellular vesicles (MSC EVs) are paracrine modulators of macrophage function. Scientific research has primarily focused on the immunomodulatory and regenerative properties MSC EVs derived from bone marrow. The dental pulp is also a source for MSCs, and their anatomical location and evolutionary function has primed them to be potent immunomodulators. In this study, we demonstrate that extracellular vesicles derived from dental pulp stem cells (DPSC EVs) have pronounced immunomodulatory effect on primary macrophages by regulating the NFκb pathway. Notably, the anti-inflammatory activity of DPSC-EVs is enhanced following exposure to an inflammatory stimulus (LPS). These inhibitory effects were also observed in vivo. Sequencing of the naïve and LPS preconditioned DPSC-EVs and comparison with our published results from marrow MSC EVs revealed that Naïve and LPS preconditioned DPSC-EVs are enriched with anti-inflammatory miRNAs, particularly miR-320a-3p, which appears to be unique to DPSC-EVs and regulates the NFκb pathway. Overall, our findings highlight the immunomodulatory properties of DPSC-EVs and provide vital clues that can stimulate future research into miRNA-based EV engineering as well as therapeutic approaches to inflammation control and disease treatment.


Asunto(s)
Pulpa Dental , Vesículas Extracelulares , Inmunomodulación , Inflamación , FN-kappa B , Pulpa Dental/citología , Pulpa Dental/inmunología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Humanos , Animales , Inflamación/inmunología , Inflamación/metabolismo , FN-kappa B/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , MicroARNs/genética , Lipopolisacáridos/farmacología , Ratones , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/inmunología , Células Cultivadas , Transducción de Señal , Células Madre/inmunología , Células Madre/metabolismo , Masculino
10.
J Neural Eng ; 21(5)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39197480

RESUMEN

Objective. Engineered nerve conduits must simultaneously enhance axon regeneration and orient axon extension to effectively restore function of severely injured peripheral nerves. The dental pulp contains a population of stem/progenitor cells that endogenously express neurotrophic factors (NTFs), growth factors known to induce axon repair. We have previously generated scaffold-free dental pulp stem/progenitor cell (DPSC) sheets comprising an aligned extracellular matrix (ECM). Through the intrinsic NTF expression of DPSCs and the topography of the aligned ECM, these sheets both induce and guide axon regeneration. Here, the capacity of bioactive conduits generated using these aligned DPSC sheets to restore function in critical-sized nerve injuries in rodents was evaluated.Approach. Scaffold-free nerve conduits were formed by culturing DPSCs on a substrate with aligned microgrooves, inducing the cells to align and deposit an aligned ECM. The sheets were then detached from the substrate and assembled into scaffold-free cylindrical tissues.Main results. In vitroanalyses confirmed that scaffold-free DPSC conduits maintained an aligned ECM and had uniformly distributed NTF expression. Implanting the aligned DPSC conduits across critical-sized defects in the buccal branch of rat facial nerves resulted in the regeneration of a fascicular nerve-like structure and myelinated axon extension across the injury site. Furthermore, compound muscle action potential and stimulated whisker movement measurements revealed that the DPSC conduit treatment promoted similar functional recovery compared to the clinical standard of care, autografts. Significance. This study demonstrates that scaffold-free aligned DPSC conduits supply trophic and guidance cues, key design elements needed to successfully promote and orient axon regeneration. Consequently, these conduits restore function in nerve injuries to similar levels as autograft treatments. These conduits offer a novel bioactive approach to nerve repair capable of improving clinical outcomes and patient quality of life.


Asunto(s)
Pulpa Dental , Matriz Extracelular , Regeneración Nerviosa , Células Madre , Ingeniería de Tejidos , Andamios del Tejido , Pulpa Dental/citología , Pulpa Dental/fisiología , Animales , Matriz Extracelular/fisiología , Regeneración Nerviosa/fisiología , Ratas , Andamios del Tejido/química , Células Madre/fisiología , Células Madre/citología , Ingeniería de Tejidos/métodos , Células Cultivadas , Ratas Sprague-Dawley , Nervio Facial/fisiología , Traumatismos del Nervio Facial/terapia , Masculino , Humanos
11.
Eur Endod J ; 9(4): 260-265, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39213455

RESUMEN

OBJECTIVE: L-arginine is a semi-essential amino acid produced by the body which has an important role in the process of stem cell regeneration. However, under inflammatory conditions, denaturation of pulp amino acids and proteins occurr resulting in a decrease in the ability of stem cells to self-renew. Therefore, in this study, L-arginine was added in vitro to the culture media Dulbecco's Modified Eagle Medium - (DMEM) of human dental pulp stem cells (hDPSCs) to analyse the potential of L-arginine on migration and proliferation by comparing between 3 concentrations, namely 300, 400, 500 µmol/L and control group (DMEM), to obtain the most optimal concentration for proliferation and migration. METHODS: Serum-starved hDPSCs were divided into four groups: control: hDPSCs in DMEM; hDPSCs in 300 µmol/L of the L-Arginine based culture media group; hDPSCs in 400 µmol/L of the L-Arginine based culture media group; and hDPSCs in 500 µmol/L of the L-Arginine based culture media group, which were added in two separate 24-well-plates (5×104 cell/well) for proliferation and migration evaluation. The proliferation of all groups was measured by using a cell count test (haemacytometer and manual checker) after 24 h. The migratory speed rate of all groups was measured by using cell migration assay (scratch wound assay) after 24 h. Cell characteristics were evaluated under microscope that was then evaluated using image-J® interpretation. This image J represented the measurement of migratory speed rate (nm/h) data. Statistical analysis was conducted using one-way ANOVA and post hoc Bonferroni (p<0.05) for proliferation and post hoc LSD (p<0.05) for migration. RESULTS: There was a statistically significant difference in hDPSCs proliferation among various concentration groups of the L-Arginine based solution (300, 400 and 500 µmol/L) compared to the control group (p<0.05). There was a statistically significant difference in the migratory speed rate of hDPSCs at 500 µmol/L of the L-Arginine based solution group compared to lower concentrations and control group (p<0.05). CONCLUSION: All three concentrations of L-arginine can induce proliferation of hDPSCs. L-arginine at 500 µmol/L can induce higher hDPSCs proliferation and faster migration at 24 hours compared to lower concen-trations and control.


Asunto(s)
Arginina , Movimiento Celular , Proliferación Celular , Pulpa Dental , Células Madre , Pulpa Dental/citología , Humanos , Arginina/farmacología , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Cultivadas
12.
Cell Mol Life Sci ; 81(1): 373, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196292

RESUMEN

Dental pulp stem cells (DPSCs) are responsible for maintaining pulp structure and function after pulp injury. DPSCs migrate directionally to the injury site before differentiating into odontoblast-like cells, which is a prerequisite and a determinant in pulp repair. Increasing evidence suggests that sensory neuron-stem cell crosstalk is critical for maintaining normal physiological functions, and sensory nerves influence stem cells mainly by neuropeptides. However, the role of sensory nerves on DPSC behaviors after pulp injury is largely unexplored. Here, we find that sensory nerves released significant amounts of calcitonin gene-related peptide (CGRP) near the injury site, acting directly on DPSCs via receptor activity modifying protein 1 (RAMP1) to promote collective migration of DPSCs to the injury site, and ultimately promoting pulp repair. Specifically, sensory denervation leads to poor pulp repair and ectopic mineralization, in parallel with that DPSCs failed to be recruited to the injury site. Furthermore, in vitro evidence shows that sensory nerve-deficient microenvironment suppressed DPSC migration prominently among all related behaviors. Mechanistically, the CGRP-Ramp1 axis between sensory neurons and DPSCs was screened by single-cell RNA-seq analysis and immunohistochemical studies confirmed that the expression of CGRP rather than Ramp1 increases substantially near the damaged site. We further demonstrated that CGRP released by sensory nerves binds the receptor Ramp1 on DPSCs to facilitate cell collective migration by an indirect co-culture system using conditioned medium from trigeminal neurons, CGRP recombinant protein and antagonists BIBN4096. The treatment with exogenous CGRP promoted the recruitment of DPSCs, and ultimately enhanced the quality of pulp repair. Targeting the sensory nerve could therefore provide a new strategy for stem cell-based pulp repair and regeneration.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Movimiento Celular , Pulpa Dental , Proteína 1 Modificadora de la Actividad de Receptores , Células Receptoras Sensoriales , Células Madre , Pulpa Dental/citología , Pulpa Dental/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/genética , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Proteína 1 Modificadora de la Actividad de Receptores/genética , Células Madre/metabolismo , Células Madre/citología , Animales , Humanos , Células Receptoras Sensoriales/metabolismo , Ratones , Masculino , Cicatrización de Heridas/fisiología , Diferenciación Celular , Transducción de Señal , Células Cultivadas , Ratas
13.
Tissue Cell ; 90: 102512, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126831

RESUMEN

INTRODUCTION: Human dental pulp stem cells (DPSCs) are pivotal in tissue engineering and cell-based therapies due to their significant differentiation potential and accessibility. A major challenge in in vitro cell expansion is their replicative senescence, which impacts their regeneration and differentiation capabilities. While genetic factors influence these processes, epigenetic regulations such as Alu methylation also play crucial roles. Changes in Alu methylation have been associated with human aging and age-related diseases, contributing to cellular dysfunction and stem cell senescence. Despite this, the implications of Alu methylation alterations in stem cell senescence remain underexplored. This study focuses on examining Alu methylation during the replicative senescence of DPSCs. METHODS: The methylation status of Alu elements in serially passaged, long-term cultured human DPSCs was assessed using combined bisulfite restriction analysis. Morphological changes and indicators of replicative senescence were also evaluated. DPSCs were divided into three passage groups for analysis: early, middle, and late. Methylation levels across these groups were compared to identify trends correlating with passage number. RESULTS: Significant morphological changes and markers of replicative senescence were observed predominantly in the late-passage DPSCs. These cells exhibited notably lower levels of Alu methylation and higher proportions of hypomethylated Alu CpG sites compared to those in early passages. CONCLUSION: The study confirmed that alterations in Alu methylation are evident in the replicative senescence of human DPSCs, suggesting that epigenetic modifications could influence the aging process of these cells and potentially impact their therapeutic efficacy.


Asunto(s)
Elementos Alu , Senescencia Celular , Metilación de ADN , Pulpa Dental , Células Madre , Humanos , Pulpa Dental/citología , Elementos Alu/genética , Senescencia Celular/genética , Metilación de ADN/genética , Células Madre/metabolismo , Células Madre/citología , Epigénesis Genética , Células Cultivadas , Adulto
14.
Tissue Cell ; 90: 102508, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128193

RESUMEN

BACKGROUND: The present study aimed to evaluate the viability of human dental pulp stem cells (hDPSCs) exposed to boric acid (BA) and injectable platelet-rich fibrin (I-PRF). MATERIALS AND METHODS: hDPSCs were isolated from impacted third molars. Nine milliliters of whole blood was transferred to I-PRF tubes and centrifuged at 700 rpm for 3 minutes. A BA solution was prepared by dissolving BA in a 0.1 g/ml stock solution. The cells were divided into four groups: control, I-PRF, BA, and BA + I-PRF. Cell viability was evaluated using flow cytometry. Mineralized calcium nodules were observed using Alizarin Red staining. The data were analyzed using two-way analysis of variance and Tukey's HSD test (p<0.05). RESULTS: The highest percentage of viable cells was in the I-PRF group, and the lowest percentage of viable cells was in the BA group at all times. Larger calcium nodules were observed in the BA group compared to the other groups. CONCLUSION: The use of I-PRF with or without BA had a positive effect on cell viability. BA and I-PRF affected the formation of mineralized calcium nodules. I-PRF and BA may be used in combination because these substances minimally reduce cell viability and promote mineralized nodule formation.


Asunto(s)
Ácidos Bóricos , Supervivencia Celular , Pulpa Dental , Fibrina Rica en Plaquetas , Células Madre , Humanos , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Ácidos Bóricos/farmacología , Supervivencia Celular/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo , Calcificación Fisiológica/efectos de los fármacos
15.
Clin Oral Investig ; 28(9): 476, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120764

RESUMEN

OBJECTIVES: To synthesize casein enzymatic hydrolysate (CEH)-laden gelatin methacryloyl (GelMA) fibrous scaffolds and evaluate the cytocompatibility and anti-inflammatory effects on dental pulp stem cells (DPSCs). MATERIALS AND METHODS: GelMA fibrous scaffolds with 10%, 20%, and 30% CEH (w/w) and without CEH (control) were obtained via electrospinning. Chemo-morphological, degradation, and mechanical analyses were conducted to evaluate the morphology and composition of the fibers, mass loss, and mechanical properties, respectively. Adhesion/spreading and viability of DPSCs seeded on the scaffolds were also assessed. The anti-inflammatory potential on DPSCs was tested after the chronic challenge of cells with lipopolysaccharides (LPS), followed by treatment with extracts obtained after immersing the scaffolds in α-MEM. The synthesis of the pro-inflammatory cytokines IL-6, IL-1α, and TNF-α was measured by ELISA. Data were analyzed by ANOVA/post-hoc tests (α = 5%). RESULTS: CEH-laden electrospun fibers had a larger diameter than pure GelMA (p ≤ 0.036). GelMA scaffolds laden with 20% and 30% CEH had a greater mass loss. Tensile strength was reduced for the 10% CEH fibers (p = 0.0052), whereas no difference was observed for the 20% and 30% fibers (p ≥ 0.6736) compared to the control. Young's modulus decreased with CEH (p < 0.0001). Elongation at break increased for the 20% and 30% CEH scaffolds (p ≤ 0.0038). Over time, DPSCs viability increased across all groups, indicating cytocompatibility, with CEH-laden scaffolds exhibiting greater cell viability after seven days (p ≤ 0.0166). Also, 10% CEH-GelMA scaffolds decreased the IL-6, IL-1α, and TNF-α synthesis (p ≤ 0.035). CONCLUSION: CEH-laden GelMA scaffolds facilitated both adhesion and proliferation of DPSCs, and 10% CEH provided anti-inflammatory potential after chronic LPS challenge. CLINICAL RELEVANCE: CEH incorporated in GelMA fibrous scaffolds demonstrated the potential to be used as a cytocompatible and anti-inflammatory biomaterial for vital pulp therapy.


Asunto(s)
Antiinflamatorios , Caseínas , Supervivencia Celular , Pulpa Dental , Gelatina , Andamios del Tejido , Gelatina/química , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Andamios del Tejido/química , Humanos , Antiinflamatorios/farmacología , Supervivencia Celular/efectos de los fármacos , Metacrilatos/química , Ensayo de Materiales , Ensayo de Inmunoadsorción Enzimática , Resistencia a la Tracción , Células Cultivadas , Células Madre/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Citocinas/metabolismo , Propiedades de Superficie
16.
Biomolecules ; 14(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39199319

RESUMEN

Synthetic oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanine (CpG) motifs (CpG-ODNs) are ligand molecules for Toll-like receptor 9 (TLR9), which is expressed by odontoblasts in vitro and dental pulp cells. This study determined the effects of CpG-ODNs on pulpal immunomodulatory response and repair following injury. Briefly, the upper right first molars of three-week-old mice were extracted, immersed in Type A (D35) or B (K3) CpG-ODN solutions (0.1 or 0.8 mM) for 30 min, and then replanted. Pulpal healing and immunomodulatory activity were assessed by hematoxylin-eosin and AZAN staining, as well as immunohistochemistry. One week following the operation, inflammatory reactions occurred in all of the experimental groups; however, re-revascularization and newly formed hard tissue deposition were observed in the pulp chamber of all groups at week 2. A positive trend in the expression of immune cell markers was observed toward the CpG-ODN groups at 0.1 mM. Our data suggest that synthetic CpG-ODN solutions at low concentrations may evoke a long-lasting macrophage-TLR9-mediated pro-inflammatory, rather than anti-inflammatory, response in the dental pulp to modulate the repair process and hard tissue formation. Further studies are needed to determine the effects of current immunomodulatory agents in vitro and in vivo and develop treatment strategies for dental tissue regeneration.


Asunto(s)
Pulpa Dental , Oligodesoxirribonucleótidos , Receptor Toll-Like 9 , Animales , Ratones , Oligodesoxirribonucleótidos/farmacología , Receptor Toll-Like 9/metabolismo , Pulpa Dental/efectos de los fármacos , Pulpa Dental/citología , Ligandos , Cicatrización de Heridas/efectos de los fármacos , Masculino , Inmunomodulación/efectos de los fármacos
17.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39201803

RESUMEN

The degeneration of spiral ganglion neurons (SGNs), which convey auditory signals from hair cells to the brain, can be a primary cause of sensorineural hearing loss (SNHL) or can occur secondary to hair cell loss. Emerging therapies for SNHL include the replacement of damaged SGNs using stem cell-derived otic neuronal progenitors (ONPs). However, the availability of renewable, accessible, and patient-matched sources of human stem cells is a prerequisite for successful replacement of the auditory nerve. In this study, we derived ONP and SGN-like cells by a reliable and reproducible stepwise guidance differentiation procedure of self-renewing human dental pulp stem cells (hDPSCs). This in vitro differentiation protocol relies on the modulation of BMP and TGFß pathways using a free-floating 3D neurosphere method, followed by differentiation on a Geltrex-coated surface using two culture paradigms to modulate the major factors and pathways involved in early otic neurogenesis. Gene and protein expression analyses revealed efficient induction of a comprehensive panel of known ONP and SGN-like cell markers during the time course of hDPSCs differentiation. Atomic force microscopy revealed that hDPSC-derived SGN-like cells exhibit similar nanomechanical properties as their in vivo SGN counterparts. Furthermore, spiral ganglion neurons from newborn rats come in close contact with hDPSC-derived ONPs 5 days after co-culturing. Our data demonstrate the capability of hDPSCs to generate SGN-like neurons with specific lineage marker expression, bipolar morphology, and the nanomechanical characteristics of SGNs, suggesting that the neurons could be used for next-generation cochlear implants and/or inner ear cell-based strategies for SNHL.


Asunto(s)
Diferenciación Celular , Pulpa Dental , Neuronas , Ganglio Espiral de la Cóclea , Pulpa Dental/citología , Humanos , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/metabolismo , Animales , Ratas , Neuronas/metabolismo , Neuronas/citología , Células Cultivadas , Nervio Coclear/citología , Nervio Coclear/metabolismo , Células Madre/citología , Células Madre/metabolismo , Neurogénesis
18.
Dent Mater ; 40(10): 1692-1696, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097504

RESUMEN

OBJECTIVES: The aim of this study was to assess the cytotoxicity of novel polymerization co-initiators and their effect on cytokine release from human dental pulp stem cells (hDPSCs), comparing them with commonly used co-initiators. METHODS: Cells were isolated from the dental pulp of healthy human third molars. The new co-initiators, namely HDa1, HD4, HD1, and MHPTm, were evaluated and compared with the compounds dimethylaminoethyl amine benzoate (EDAB) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). These compounds were diluted in dimethylsulfoxide (DMSO) at concentrations ranging from 1 to 8 mM. hDPSCs were seeded onto 96-well plates and incubated for 48 h. Subsequently, the cells were exposed to different concentrations of the co-initiators mentioned for 24 h. After this period, the culture medium was removed, and mitochondrial metabolism was evaluated using the MTT assay, while cytokine release (IL-1ß, IL-6, IL-8, IL-10, TNF-α) was analyzed by the MAGPIX assay. Cells without exposure to the tested compounds served as controls. The data were analyzed using one-way ANOVA and Tukey's test. RESULTS: The compounds showed low toxicity, with 8 mM concentration causing the most significant reduction in mitochondrial metabolism. MHPTm was the most toxic co-initiator tested (compound bearing an amine functionality). All compounds up-regulated TNF-α, IL-10, IL-6, and IL-8, with HD4 exhibiting the most pronounced increase in IL-6 and IL-8. SIGNIFICANCE: The newly proposed co-initiators demonstrated reduced impact on mitochondrial metabolism, comparable to some traditional co-initiators. Despite their lower toxicity, HD4 increased IL-6 and IL-8 release, suggesting its potential involvement in triggering an inflammatory reaction, particularly in the short term.


Asunto(s)
Citocinas , Pulpa Dental , Polimerizacion , Células Madre , Humanos , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Células Madre/efectos de los fármacos , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Metacrilatos/toxicidad , Células Cultivadas , Supervivencia Celular/efectos de los fármacos
19.
Methods Mol Biol ; 2835: 49-57, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105905

RESUMEN

Dental pulp stem cells (DPSCs) are a promising alternative to the source of mesenchymal stem cells (MSCs), as they are readily available in minimally invasive procedures compared to more invasive methods associated with harvesting other MSCs sources. Despite the encouraging pre-clinical outcomes in animal disease models, culture-expanding procedures are needed to obtain a sufficient number of MSCs required for delivery to the damaged site. However, this contributes to increasing regulatory difficulties in translating stem cells and tissue engineering therapy to clinical use. Moreover, discussions continue as to which isolation method is to be preferred when obtaining DPSCs from extracted molars. This protocol describes a simple explant isolation technique of human dental pulp stem cells from the dental pulp of permanent teeth based upon the plastic adherence of MSCs and subsequent outgrowth of cells out of tissue fragments with high efficacy.


Asunto(s)
Separación Celular , Pulpa Dental , Células Madre Mesenquimatosas , Pulpa Dental/citología , Humanos , Separación Celular/métodos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Madre/citología , Células Cultivadas , Dentición Permanente , Ingeniería de Tejidos/métodos
20.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125748

RESUMEN

Mesenchymal stem-cell-derived extracellular vesicles (MSC-EVs) have been increasingly investigated for cancer therapy and drug delivery, and they offer an advanced cell-free therapeutic option. However, their overall effects and efficacy depend on various factors, including the MSC source and cargo content. In this study, we isolated EVs from the conditioned medium of human immature dental pulp stem cells (hIDPSC-EVs) and investigated their effects on two papillary thyroid cancer (PTC) cell lines (BCPAP and TPC1). We observed efficient uptake of hIDPSC-EVs by both PTC cell lines, with a notable impact on gene regulation, particularly in the Wnt signaling pathway in BCPAP cells. However, no significant effects on cell proliferation were observed. Conversely, hIDPSC-EVs significantly reduced the invasive capacity of both PTC cell lines after 120 h of treatment. These in vitro findings suggest the therapeutic potential of hIDPSC-EVs in cancer management and emphasize the need for further research to develop novel and effective treatment strategies. Furthermore, the successful internalization of hIDPSC-EVs by PTC cell lines underscores their potential use as nanocarriers for anti-cancer agents.


Asunto(s)
Proliferación Celular , Pulpa Dental , Vesículas Extracelulares , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Pulpa Dental/citología , Vesículas Extracelulares/metabolismo , Cáncer Papilar Tiroideo/terapia , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/terapia , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Línea Celular Tumoral , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Vía de Señalización Wnt , Medios de Cultivo Condicionados/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA