Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.008
Filtrar
1.
J Clin Invest ; 134(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38950317

RESUMEN

Glucose plays a key role in shaping pancreatic ß cell function. Thus, deciphering the mechanisms by which this nutrient stimulates ß cells holds therapeutic promise for combating ß cell failure in type 2 diabetes (T2D). ß Cells respond to hyperglycemia in part by rewiring their mRNA metabolism, yet the mechanisms governing these changes remain poorly understood. Here, we identify a requirement for the RNA-binding protein PCBP2 in maintaining ß cell function basally and during sustained hyperglycemic challenge. PCBP2 was induced in primary mouse islets incubated with elevated glucose and was required to adapt insulin secretion. Transcriptomic analysis of primary Pcbp2-deficient ß cells revealed impacts on basal and glucose-regulated mRNAs encoding core components of the insulin secretory pathway. Accordingly, Pcbp2-deficient ß cells exhibited defects in calcium flux, insulin granule ultrastructure and exocytosis, and the amplification pathway of insulin secretion. Further, PCBP2 was induced by glucose in primary human islets, was downregulated in islets from T2D donors, and impacted genes commonly altered in islets from donors with T2D and linked to single-nucleotide polymorphisms associated with T2D. Thus, these findings establish a paradigm for PCBP2 in governing basal and glucose-adaptive gene programs critical for shaping the functional state of ß cells.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Células Secretoras de Insulina , Insulina , Proteínas de Unión al ARN , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Animales , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Ratones , Humanos , Glucosa/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Insulina/metabolismo , Secreción de Insulina , Ratones Noqueados , Masculino , Adaptación Fisiológica
2.
Front Endocrinol (Lausanne) ; 15: 1386471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966213

RESUMEN

Diabetes mellitus (DM), is a chronic disorder characterized by impaired glucose homeostasis that results from the loss or dysfunction of pancreatic ß-cells leading to type 1 diabetes (T1DM) and type 2 diabetes (T2DM), respectively. Pancreatic ß-cells rely to a great degree on their endoplasmic reticulum (ER) to overcome the increased secretary need for insulin biosynthesis and secretion in response to nutrient demand to maintain glucose homeostasis in the body. As a result, ß-cells are potentially under ER stress following nutrient levels rise in the circulation for a proper pro-insulin folding mediated by the unfolded protein response (UPR), underscoring the importance of this process to maintain ER homeostasis for normal ß-cell function. However, excessive or prolonged increased influx of nascent proinsulin into the ER lumen can exceed the ER capacity leading to pancreatic ß-cells ER stress and subsequently to ß-cell dysfunction. In mammalian cells, such as ß-cells, the ER stress response is primarily regulated by three canonical ER-resident transmembrane proteins: ATF6, IRE1, and PERK/PEK. Each of these proteins generates a transcription factor (ATF4, XBP1s, and ATF6, respectively), which in turn activates the transcription of ER stress-inducible genes. An increasing number of evidence suggests that unresolved or dysregulated ER stress signaling pathways play a pivotal role in ß-cell failure leading to insulin secretion defect and diabetes. In this article we first highlight and summarize recent insights on the role of ER stress and its associated signaling mechanisms on ß-cell function and diabetes and second how the ER stress pathways could be targeted in vitro during direct differentiation protocols for generation of hPSC-derived pancreatic ß-cells to faithfully phenocopy all features of bona fide human ß-cells for diabetes therapy or drug screening.


Asunto(s)
Estrés del Retículo Endoplásmico , Células Secretoras de Insulina , Respuesta de Proteína Desplegada , Células Secretoras de Insulina/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Humanos , Animales , Respuesta de Proteína Desplegada/fisiología , Diabetes Mellitus/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología
3.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928163

RESUMEN

Obesity is a risk factor for type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). Adipose tissue (AT) extracellular vesicles (EVs) could play a role in obesity and T2DM associated CVD progression via the influence of their specific cargo on gene expression in recipient cells. The aim of this work was to evaluate the effects of AT EVs of patients with obesity with/without T2DM on reverse cholesterol transport (RCT)-related gene expression in human monocyte-derived macrophages (MDMs) from healthy donors. AT EVs were obtained after ex vivo cultivation of visceral and subcutaneous AT (VAT and SAT, respectively). ABCA1, ABCG1, PPARG, LXRß (NR1H2), and LXRα (NR1H3) mRNA levels in MDMs as well as in origine AT were determined by a real-time PCR. T2DM VAT and SAT EVs induced ABCG1 gene expression whereas LXRα and PPARG mRNA levels were simultaneously downregulated. PPARG mRNA levels also decreased in the presence of VAT EVs of obese patients without T2DM. In contrast ABCA1 and LXRß mRNA levels tended to increase with the addition of obese AT EVs. Thus, AT EVs can influence RCT gene expression in MDMs during obesity, and the effects are dependent on T2DM status.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Tejido Adiposo , Colesterol , Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Receptores X del Hígado , Macrófagos , Obesidad , PPAR gamma , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Obesidad/metabolismo , Obesidad/genética , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Macrófagos/metabolismo , Colesterol/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Tejido Adiposo/metabolismo , PPAR gamma/metabolismo , PPAR gamma/genética , Femenino , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Masculino , Persona de Mediana Edad , Transporte Biológico , Regulación de la Expresión Génica , Adulto , ARN Mensajero/metabolismo , ARN Mensajero/genética
4.
Biochem Biophys Res Commun ; 725: 150254, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38901223

RESUMEN

Decreased pancreatic ß-cell volume is a serious problem in patients with type 2 diabetes mellitus, and there is a need to establish appropriate treatments. Increasingly, sodium/glucose cotransporter 2 (SGLT2) inhibitors, which have a protective effect on pancreatic ß-cells, are being prescribed to treat diabetes; however, the underlying mechanism is not well understood. We previously administered SGLT2 inhibitor dapagliflozin to a mouse model of type 2 diabetes and found significant changes in gene expression in the early-treated group, which led us to hypothesize that epigenetic regulation was a possible mechanism of these changes. Therefore, we performed comprehensive DNA methylation analysis by methylated DNA immunoprecipitation using isolated pancreatic islets after dapagliflozin administration to diabetic model mice. As a result, we identified 31 genes with changes in expression due to DNA methylation changes. Upon immunostaining, cystic fibrosis transmembrane conductance regulator and cadherin 24 were found to be upregulated in islets in the dapagliflozin-treated group. These molecules may contribute to the maintenance of islet morphology and insulin secretory capacity, suggesting that SGLT2 inhibitors' protective effect on pancreatic ß-cells is accompanied by DNA methylation changes, and that the effect is long-term and not temporary. In future diabetes care, SGLT2 inhibitors may be expected to have positive therapeutic effects, including pancreatic ß-cell protection.


Asunto(s)
Compuestos de Bencidrilo , Metilación de ADN , Diabetes Mellitus Tipo 2 , Glucósidos , Islotes Pancreáticos , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico , Metilación de ADN/efectos de los fármacos , Glucósidos/farmacología , Glucósidos/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Ratones , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/patología , Masculino , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Epigénesis Genética/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Cadherinas/metabolismo , Cadherinas/genética
5.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892122

RESUMEN

Pancreatic islet isolation is critical for type 2 diabetes research. Although -omics approaches have shed light on islet molecular profiles, inconsistencies persist; on the other hand, functional studies are essential, but they require reliable and standardized isolation methods. Here, we propose a simplified protocol applied to very small-sized samples collected from partially pancreatectomized living donors. Islet isolation was performed by digesting tissue specimens collected during surgery within a collagenase P solution, followed by a Lympholyte density gradient separation; finally, functional assays and staining with dithizone were carried out. Isolated pancreatic islets exhibited functional responses to glucose and arginine stimulation mirroring donors' metabolic profiles, with insulin secretion significantly decreasing in diabetic islets compared to non-diabetic islets; conversely, proinsulin secretion showed an increasing trend from non-diabetic to diabetic islets. This novel islet isolation method from living patients undergoing partial pancreatectomy offers a valuable opportunity for targeted study of islet physiology, with the primary advantage of being time-effective and successfully preserving islet viability and functionality. It enables the generation of islet preparations that closely reflect donors' clinical profiles, simplifying the isolation process and eliminating the need for a Ricordi chamber. Thus, this method holds promises for advancing our understanding of diabetes and for new personalized pharmacological approaches.


Asunto(s)
Separación Celular , Islotes Pancreáticos , Humanos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/citología , Separación Celular/métodos , Donadores Vivos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Insulina/metabolismo , Glucosa/metabolismo , Secreción de Insulina
6.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892134

RESUMEN

Type 2 diabetes mellitus (T2DM) is a risk factor for male infertility, but the underlying molecular mechanisms remain unclear. Advanced glycation end products (AGEs) are pathogenic molecules for diabetic vascular complications. Here, we investigated the effects of the DNA aptamer raised against AGEs (AGE-Apt) on testicular and sperm abnormalities in a T2DM mouse model. KK-Ay (DM) and wild-type (non-DM) 4- and 7-week-old male mice were sacrificed to collect the testes and spermatozoa for immunofluorescence, RT-PCR, and histological analyses. DM and non-DM 7-week-old mice were subcutaneously infused with the AGE-Apt or control-aptamer for 6 weeks and were then sacrificed. Plasma glucose, testicular AGEs, and Rage gene expression in 4-week-old DM mice and plasma glucose, testicular AGEs, oxidative stress, and pro-inflammatory gene expressions in 7-week-old DM mice were higher than those in age-matched non-DM mice, the latter of which was associated with seminiferous tubular dilation. AGE-Apt did not affect glycemic parameters, but it inhibited seminiferous tubular dilation, reduced the number of testicular macrophages and apoptotic cells, and restored the decrease in sperm concentration, motility, and viability of 13-week-old DM mice. Our findings suggest that AGEs-Apt may improve sperm abnormality by suppressing AGE-RAGE-induced oxidative stress and inflammation in the testes of DM mice.


Asunto(s)
Aptámeros de Nucleótidos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Productos Finales de Glicación Avanzada , Inflamación , Estrés Oxidativo , Receptor para Productos Finales de Glicación Avanzada , Motilidad Espermática , Testículo , Animales , Masculino , Estrés Oxidativo/efectos de los fármacos , Productos Finales de Glicación Avanzada/metabolismo , Ratones , Aptámeros de Nucleótidos/farmacología , Testículo/metabolismo , Testículo/efectos de los fármacos , Testículo/patología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Diabetes Mellitus Experimental/metabolismo , Motilidad Espermática/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Inflamación/metabolismo , Inflamación/patología , Espermatozoides/metabolismo , Espermatozoides/efectos de los fármacos , Recuento de Espermatozoides
7.
Front Endocrinol (Lausanne) ; 15: 1375610, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854688

RESUMEN

Muscle loss is a significant health concern, particularly with the increasing trend of population aging, and sarcopenia has emerged as a common pathological process of muscle loss in the elderly. Currently, there has been significant progress in the research on sarcopenia, including in-depth analysis of the mechanisms underlying sarcopenia caused by aging and the development of corresponding diagnostic criteria, forming a relatively complete system. However, as research on sarcopenia progresses, the concept of secondary sarcopenia has also been proposed. Due to the incomplete understanding of muscle loss caused by chronic diseases, there are various limitations in epidemiological, basic, and clinical research. As a result, a comprehensive concept and diagnostic system have not yet been established, which greatly hinders the prevention and treatment of the disease. This review focuses on Type 2 Diabetes Mellitus (T2DM)-related sarcopenia, comparing its similarities and differences with sarcopenia and disuse muscle atrophy. The review show significant differences between the three muscle-related issues in terms of pathological changes, epidemiology and clinical manifestations, etiology, and preventive and therapeutic strategies. Unlike sarcopenia, T2DM-related sarcopenia is characterized by a reduction in type I fibers, and it differs from disuse muscle atrophy as well. The mechanism involving insulin resistance, inflammatory status, and oxidative stress remains unclear. Therefore, future research should further explore the etiology, disease progression, and prognosis of T2DM-related sarcopenia, and develop targeted diagnostic criteria and effective preventive and therapeutic strategies to better address the muscle-related issues faced by T2DM patients and improve their quality of life and overall health.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sarcopenia , Humanos , Sarcopenia/patología , Sarcopenia/etiología , Sarcopenia/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/epidemiología , Músculo Esquelético/patología , Atrofia Muscular/patología , Atrofia Muscular/etiología , Trastornos Musculares Atróficos/patología , Trastornos Musculares Atróficos/complicaciones , Envejecimiento/patología
8.
Diabetes Metab Res Rev ; 40(5): e3829, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850100

RESUMEN

AIMS: Pancreatic polypeptide (PP) is elevated in people with vascular risk factors such as type 2 diabetes or increased visceral fat. We investigated potential relationships between PP and microvascular and macrovascular complications of diabetes. MATERIALS AND METHODS: Animal study: Subcutaneous PP infusion for 4 weeks in high fat diet mouse model. Retinal mRNA submitted for Ingenuity Pathway Analysis. Human study: fasting PP measured in 1478 participants and vascular complications recorded over median 5.5 (IQR 4.9-5.8) years follow-up. RESULTS: Animal study: The retinal transcriptional response to PP was indicative of cellular stress and damage, and this footprint matched responses described in previously published studies of retinal disease. Of mechanistic importance the transcriptional landscape was consistent with upregulation of folliculin, a recently identified susceptibility gene for diabetic retinopathy. Human study: Adjusting for established risk factors, PP was associated with prevalent and incident clinically significant retinopathy (odds ratio (OR) 1.289 (1.107-1.501) p = 0.001; hazard ratio (HR) 1.259 (1.035-1.531) p = 0.0213), albuminuria (OR 1.277 (1.124-1.454), p = 0.0002; HR 1.608 (1.208-2.141) p = 0.0011), and macrovascular disease (OR 1.021 (1.006-1.037) p = 0.0068; HR 1.324 (1.089-1.61), p = 0.0049), in individuals with type 2 diabetes, and progression to diabetes in non-diabetic individuals (HR 1.402 (1.081-1.818), p = 0.0109). CONCLUSIONS: Elevated fasting PP is independently associated with vascular complications of diabetes and affects retinal pathways potentially influencing retinal neuronal survival. Our results suggest possible new roles for PP-fold peptides in the pathophysiology of diabetes complications and vascular risk stratification.


Asunto(s)
Diabetes Mellitus Tipo 2 , Angiopatías Diabéticas , Retinopatía Diabética , Ayuno , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Humanos , Masculino , Femenino , Persona de Mediana Edad , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/epidemiología , Animales , Ratones , Estudios de Seguimiento , Retinopatía Diabética/etiología , Retinopatía Diabética/epidemiología , Retinopatía Diabética/patología , Pronóstico , Incidencia , Biomarcadores/análisis , Factores de Riesgo , Anciano
9.
PLoS One ; 19(6): e0304870, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38900754

RESUMEN

The underlying causes of breast cancer are diverse, however, there is a striking association between type 2 diabetes and poor patient outcomes. Platelet activation is a common feature of both type 2 diabetes and breast cancer and has been implicated in tumourigenesis through a multitude of pathways. Here transcriptomic analysis of type 2 diabetes patient-derived platelet microvesicles revealed an altered miRNA signature compared with normoglycaemic control patients. Interestingly, interrogation of these data identifies a shift towards an oncogenic signature in type 2 diabetes-derived platelet microvesicles, with increased levels of miRNAs implicated in breast cancer progression and poor prognosis. Functional studies demonstrate that platelet microvesicles isolated from type 2 diabetes patient blood are internalised by triple-negative breast cancer cells in vitro, and that co-incubation with type 2 diabetes patient-derived platelet microvesicles led to significantly increased expression of epithelial to mesenchymal transition markers and triple-negative breast cancer cell invasion compared with platelet microvesicles from healthy volunteers. Together, these data suggest that circulating PMVs in type 2 diabetes patients may contribute to the progression of triple-negative breast cancer.


Asunto(s)
Plaquetas , Micropartículas Derivadas de Células , Diabetes Mellitus Tipo 2 , MicroARNs , Invasividad Neoplásica , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Plaquetas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Micropartículas Derivadas de Células/metabolismo , Línea Celular Tumoral , Persona de Mediana Edad , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica
10.
ACS Nano ; 18(24): 15452-15467, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38830624

RESUMEN

Type 2 diabetes (T2D), a prevalent metabolic disorder lacking effective treatments, is associated with lysosomal acidification dysfunction, as well as autophagic and mitochondrial impairments. Here, we report a series of biodegradable poly(butylene tetrafluorosuccinate-co-succinate) polyesters, comprising a 1,4-butanediol linker and varying ratios of tetrafluorosuccinic acid (TFSA) and succinic acid as components, to engineer lysosome-acidifying nanoparticles (NPs). The synthesized NPs are spherical with diameters of ≈100 nm and have low polydispersity and good stability. Notably, TFSA NPs, which are composed entirely of TFSA, exhibit the strongest degradation capability and superior acidifying properties. We further reveal significant downregulation of lysosomal vacuolar (H+)-ATPase subunits, which are responsible for maintaining lysosomal acidification, in human T2D pancreatic islets, INS-1 ß-cells under chronic lipotoxic conditions, and pancreatic tissues of high-fat-diet (HFD) mice. Treatment with TFSA NPs restores lysosomal acidification, autophagic function, and mitochondrial activity, thereby improving the pancreatic function in INS-1 cells and HFD mice with lipid overload. Importantly, the administration of TFSA NPs to HFD mice reduces insulin resistance and improves glucose clearance. These findings highlight the therapeutic potential of lysosome-acidifying TFSA NPs for T2D.


Asunto(s)
Células Secretoras de Insulina , Lisosomas , Nanopartículas , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Animales , Nanopartículas/química , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Ratones , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Masculino , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Concentración de Iones de Hidrógeno
11.
Hum Genomics ; 18(1): 70, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909264

RESUMEN

INTRODUCTION: We previously identified a genetic subtype (C4) of type 2 diabetes (T2D), benefitting from intensive glycemia treatment in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Here, we characterized the population of patients that met the C4 criteria in the UKBiobank cohort. RESEARCH DESIGN AND METHODS: Using our polygenic score (PS), we identified C4 individuals in the UKBiobank and tested C4 status with risk of developing T2D, cardiovascular disease (CVD) outcomes, and differences in T2D medications. RESULTS: C4 individuals were less likely to develop T2D, were slightly older at T2D diagnosis, had lower HbA1c values, and were less likely to be prescribed T2D medications (P < .05). Genetic variants in MAS1 and IGF2R, major components of the C4 PS, were associated with fewer overall T2D prescriptions. CONCLUSION: We have confirmed C4 individuals are a lower risk subpopulation of patients with T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Herencia Multifactorial , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Reino Unido/epidemiología , Herencia Multifactorial/genética , Anciano , Fenotipo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/epidemiología , Predisposición Genética a la Enfermedad , Hemoglobina Glucada/metabolismo , Hemoglobina Glucada/genética , Bancos de Muestras Biológicas , Polimorfismo de Nucleótido Simple/genética
12.
Front Endocrinol (Lausanne) ; 15: 1414447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915897

RESUMEN

Type 2 diabetes (T2D) is a polygenic metabolic disorder characterized by insulin resistance in peripheral tissues and impaired insulin secretion by the pancreas. While the decline in insulin production and secretion was previously attributed to apoptosis of insulin-producing ß-cells, recent studies indicate that ß-cell apoptosis rates are relatively low in diabetes. Instead, ß-cells primarily undergo dedifferentiation, a process where they lose their specialized identity and transition into non-functional endocrine progenitor-like cells, ultimately leading to ß-cell failure. The underlying mechanisms driving ß-cell dedifferentiation remain elusive due to the intricate interplay of genetic factors and cellular stress. Understanding these mechanisms holds the potential to inform innovative therapeutic approaches aimed at reversing ß-cell dedifferentiation in T2D. This review explores the proposed drivers of ß-cell dedifferentiation leading to ß-cell failure, and discusses current interventions capable of reversing this process, thus restoring ß-cell identity and function.


Asunto(s)
Desdiferenciación Celular , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Células Secretoras de Insulina/citología , Desdiferenciación Celular/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Animales , Diferenciación Celular/fisiología , Apoptosis/fisiología , Secreción de Insulina/fisiología
13.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928386

RESUMEN

Adipose tissue, a central player in energy balance, exhibits significant metabolic flexibility that is often compromised in obesity and type 2 diabetes (T2D). Mitochondrial dysfunction within adipocytes leads to inefficient lipid handling and increased oxidative stress, which together promote systemic metabolic disruptions central to obesity and its complications. This review explores the pivotal role that mitochondria play in altering the metabolic functions of the primary adipocyte types, white, brown, and beige, within the context of obesity and T2D. Specifically, in white adipocytes, these dysfunctions contribute to impaired lipid processing and an increased burden of oxidative stress, worsening metabolic disturbances. Conversely, compromised mitochondrial function undermines their thermogenic capabilities, reducing the capacity for optimal energy expenditure in brown adipocytes. Beige adipocytes uniquely combine the functional properties of white and brown adipocytes, maintaining morphological similarities to white adipocytes while possessing the capability to transform into mitochondria-rich, energy-burning cells under appropriate stimuli. Each type of adipocyte displays unique metabolic characteristics, governed by the mitochondrial dynamics specific to each cell type. These distinct mitochondrial metabolic phenotypes are regulated by specialized networks comprising transcription factors, co-activators, and enzymes, which together ensure the precise control of cellular energy processes. Strong evidence has shown impaired adipocyte mitochondrial metabolism and faulty upstream regulators in a causal relationship with obesity-induced T2D. Targeted interventions aimed at improving mitochondrial function in adipocytes offer a promising therapeutic avenue for enhancing systemic macronutrient oxidation, thereby potentially mitigating obesity. Advances in understanding mitochondrial function within adipocytes underscore a pivotal shift in approach to combating obesity and associated comorbidities. Reigniting the burning of calories in adipose tissues, and other important metabolic organs such as the muscle and liver, is crucial given the extensive role of adipose tissue in energy storage and release.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metabolismo Energético , Mitocondrias , Obesidad , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Humanos , Obesidad/metabolismo , Obesidad/patología , Mitocondrias/metabolismo , Animales , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Estrés Oxidativo , Termogénesis
14.
Diabetes Metab ; 50(4): 101547, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852840

RESUMEN

AIMS: Podocyte injury plays an essential role in the progression of diabetic nephropathy (DN). The associations between the ultrastructural changes of podocyte with proteinuria and the pathological classification of DN proposed by Renal Pathology Society (RPS) have not been clarified in patients with type 2 diabetic nephropathy (T2DN). METHODS: We collected 110 patients with kidney biopsy-confirmed T2DN at Peking University First Hospital from 2017 to 2022. The morphometric analysis on the podocyte foot process width (FPW) and podocyte detachment (PD) as markers of podocyte injury was performed, and the correlations between the ultrastructural changes of podocytes with severity of proteinuria and the RPS pathological classification of DN were analyzed. RESULTS: Mean FPW was significantly broader in the group of T2DN patients with nephrotic proteinuria (565.1 nm) than those with microalbuminuria (437.4 nm) or overt proteinuria (494.6 nm). The cut-off value of FPW (> 506 nm) could differentiate nephrotic proteinuria from non-nephrotic proteinuria with a sensitivity of 75.3% and a specificity of 75.8%. Percentage of PD was significantly higher in group of nephrotic proteinuria (3.2%) than that in microalbuminuria (0%) or overt proteinuria (0.2%). FPW and PD significantly correlated with proteinuria in T2DN (r = 0.473, p < 0.001 and r = 0.656, P < 0.001). FPW and PD correlated with RPS pathological classification of T2DN (r = 0.179, P = 0.014 and r = 0.250, P = 0.001). FPW value was increased significantly with more severe DN classification (P for trend =0.007). The percentage of PD tended to increase with more severe DN classification (P for trend = 0.017). CONCLUSIONS: Podocyte injury, characterized by FPW broadening and PD, was associated with the severity of proteinuria and the pathological classification of DN.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Podocitos , Proteinuria , Humanos , Podocitos/patología , Podocitos/ultraestructura , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/clasificación , Proteinuria/patología , Masculino , Femenino , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Anciano , Adulto
15.
Mol Cell Endocrinol ; 591: 112269, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763428

RESUMEN

Polypeptide N-Acetylgalactosaminyl transferase 14 (GALNT14) plays important roles in cancer progression and chemotherapy response. Here, we show that GALNT14 is highly expressed in pancreatic ß cells and regulates ß cell function and growth. We found that the expression level of Ganlt14 was significantly decreased in the primary islets from three rodent type-2 diabetic models. Single-Cell sequencing defined that Galnt14 was mainly expressed in ß cells of mouse islets. Galnt14 knockout (G14KO) INS-1 cell line, constructed by using CRISPR/Cas9 technology were growth normal, but showed blunt shape, and increased basal insulin secretion. Combined proteomics and glycoproteomics demonstrated that G14KO altered cell-to-cell junctions, communication, and adhesion. Insulin receptor (IR) and IGF1-1R were indirectly confirmed for GALNT14 substrates, contributed to diminished IGF1-induced p-AKT levels and cell growth in G14KO cells. Overall, this study uncovers that GALNT14 is a novel modulator in regulating ß cells biology, providing a missing link of ß cells O-glycosylation to diabetes development.


Asunto(s)
Proliferación Celular , Células Secretoras de Insulina , N-Acetilgalactosaminiltransferasas , Polipéptido N-Acetilgalactosaminiltransferasa , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Animales , Células Secretoras de Insulina/metabolismo , Ratones , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Ratones Endogámicos C57BL , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Masculino , Línea Celular , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Transducción de Señal , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos
16.
Tissue Cell ; 88: 102396, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703582

RESUMEN

By using a unique animal model of type 2 diabetes mellitus, Psammomys obesus induced by a high-calorie diet (HCD) for nine months, we showed for the first time, in the liver, the impact of inflammation on the remodeling of intercellular junction molecules E-cadherins during the progression of steatohepatitis. Under the effect of HCD, the expressions of immunohistochemical markers, Tumor Necrosis Factor alpha (TNFα) and E-cadherins were inversely correlated. Ultrastructural examination revealed the involvement of destabilization and loss of E-cadherins in the process of hepatic pathogenesis. This mechanical maintenance stress was favored by the recruitment of immune cells which contributed to the triggering and progression of fibrosis by the enlargement of the intercellular space and the invasion of collagen fibers. Furthermore to escape cell death, loss of E-cadherins played a major role in mediating fibrosis. Psammomys obesus is a promising model for experimental research, enabling the extrapolation of observed structural and functional alterations in humans, the objective to find new therapeutic targets. The physiological resemblance between Psammomys obesus and humans enhances the precision and relevance of biomedical research efforts.


Asunto(s)
Cadherinas , Diabetes Mellitus Tipo 2 , Modelos Animales de Enfermedad , Gerbillinae , Hígado , Factor de Necrosis Tumoral alfa , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Cadherinas/metabolismo , Hígado/metabolismo , Hígado/patología , Hígado/ultraestructura , Enfermedades Metabólicas/patología , Enfermedades Metabólicas/metabolismo , Masculino
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167258, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38788910

RESUMEN

The increasing prevalence of obesity, type 2 diabetes mellitus (T2DM), and gestational diabetes (GDM) among pregnant women has risen dramatically worldwide. The antihyperglycemic drug metformin is the most common drug for T2DM treatment in non-pregnant individuals; nevertheless, it is increasingly being used for diabetes-complicated pregnancies. Studies on the long-term metabolic effects of this drug in offspring remain scarce. This work aimed to determine the effect of metformin exposure during pregnancy and lactation on the offspring of a model of diet-induced maternal hyperglycemia. Cohorts of pregnant mice were fed a 46% fat diet (HFD) or a control standard diet (SD). A group of dams were exposed to metformin during pregnancy and lactation. After weaning, the offspring were fed SD for 8 weeks and then challenged with a 46% HFD after puberty for 12 weeks. Irrespective of the maternal diet, offspring of metformin-exposed mothers had a lower body weight and reduced inguinal white adipose tissue (iWAT) mass after HFD challenge. This was associated with increased expression of Pparg, Fabp4, Glut4, Srebp1, and Fasn in the iWAT during adulthood in the metabolically impaired dams exposed to metformin, suggesting increased adipogenesis and de novo lipogenesis. Increased expression of Fasn associated with decreased methylation levels at its promoter and proximal coding region in the iWAT was found. These results suggest that metformin modulates gene expression levels by epigenetic mechanisms in maternal metabolic-impaired conditions.


Asunto(s)
Peso Corporal , Dieta Alta en Grasa , Lactancia , Metformina , Efectos Tardíos de la Exposición Prenatal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Animales , Metformina/farmacología , Femenino , Embarazo , Lactancia/efectos de los fármacos , Ratones , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Dieta Alta en Grasa/efectos adversos , Peso Corporal/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , PPAR gamma/metabolismo , PPAR gamma/genética , Transportador de Glucosa de Tipo 4/metabolismo , Transportador de Glucosa de Tipo 4/genética , Hipoglucemiantes/farmacología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Obesidad/metabolismo , Obesidad/patología , Obesidad/inducido químicamente , Acido Graso Sintasa Tipo I/metabolismo , Acido Graso Sintasa Tipo I/genética , Masculino , Ratones Endogámicos C57BL , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/inducido químicamente
18.
Stem Cells Dev ; 33(11-12): 262-275, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38717965

RESUMEN

Type 2 diabetes mellitus (T2DM) is associated with endothelial dysfunction, which results in delayed wound healing. Mesenchymal stem cells (MSCs) play a vital role in supporting endothelial cells (ECs) and promoting wound healing by paracrine effects through their secretome-containing extracellular vesicles. We previously reported the impaired wound healing ability of adipose tissue-derived MSC from T2DM donors; however, whether extracellular vesicles isolated from T2DM adipose tissue-derived MSCs (dEVs) exhibit altered functions in comparison to those derived from healthy donors (nEVs) is still unclear. In this study, we found that nEVs induced EC survival and angiogenesis, whereas dEVs lost these abilities. In addition, under high glucose conditions, nEV protected ECs from endothelial-mesenchymal transition (EndMT), whereas dEV significantly induced EndMT by activating the transforming growth factor-ß/Smad3 signaling pathway, which impaired the tube formation and in vivo wound healing abilities of ECs. Interestingly, the treatment of dEV-internalized ECs with nEVs rescued the induced EndMT effects. Of note, the internalization of nEV into T2DM adipose tissue-derived MSC resulted in the production of an altered n-dEV, which inhibited EndMT and supported the survival of T2DM db/db mice from severe wounds. Taken together, our findings suggest the role of dEV in endothelial dysfunction and delayed wound healing in T2DM by the promotion of EndMT. Moreover, nEV treatment can be considered a promising candidate for cell-free therapy to protect ECs in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Endoteliales , Vesículas Extracelulares , Glucosa , Células Madre Mesenquimatosas , Transducción de Señal , Proteína smad3 , Factor de Crecimiento Transformador beta , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Vesículas Extracelulares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Proteína smad3/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Animales , Ratones , Células Endoteliales/metabolismo , Masculino , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Transición Epitelial-Mesenquimal , Cicatrización de Heridas , Femenino , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Transición Endotelial-Mesenquimatosa
19.
Kidney Blood Press Res ; 49(1): 377-384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38754398

RESUMEN

INTRODUCTION: Diabetic kidney disease (DKD) affects 30-40% of patients with diabetes. The prevalence of nondiabetic kidney disease (NDKD) in patients with type 2 diabetes mellitus (T2D) in Egypt is unknown. This study aimed to assess the prevalence of NDKD in patients with T2D in Egypt. METHODS: In this cross-sectional study, we searched the data of patients with T2D who underwent a native kidney biopsy between January 2010 and December 2020 in a kidney pathology laboratory in Egypt. RESULTS: Of 12,006 patients who underwent kidney biopsy, 677 patients had T2D. NDKD was found in 285 patients (42.7%), DKD in 220 patients (33%), and mixed DKD and NDKD in 162 patients (24.3%). The total prevalence of NDKD was 67% in patients with T2D in our study group. Membranous nephropathy was the most common histopathological disease in patients with NDKD (20.6%) followed by acute tubular injury (ATI) (19.2%) and focal segmental glomerulosclerosis (15.2%). The presence of ATI in a kidney biopsy was associated with a significantly higher mean serum creatine level (p < 0.001). Minimal change disease was associated with a significantly higher proteinuria level (p < 0.001). In binary logistic regression analysis, combining NDKD and mixed groups, the duration of diabetes was a negative predictor of NDKD, with a longer duration decreasing the likelihood of NDKD. CONCLUSION: NDKD is prevalent among patients with T2D who underwent a kidney biopsy. Kidney biopsy remains the gold standard for diagnosing NDKD in patients with T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Egipto/epidemiología , Estudios Transversales , Masculino , Femenino , Persona de Mediana Edad , Biopsia , Adulto , Prevalencia , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/epidemiología , Riñón/patología , Enfermedades Renales/patología , Enfermedades Renales/etiología , Enfermedades Renales/epidemiología , Enfermedades Renales/diagnóstico , Anciano
20.
Cell Death Dis ; 15(5): 374, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811543

RESUMEN

High workload-induced cellular stress can cause pancreatic islet ß cell death and dysfunction, or ß cell failure, a hallmark of type 2 diabetes mellitus. Thus, activation of molecular chaperones and other stress-response genes prevents ß cell failure. To this end, we have shown that deletion of the glucose-regulated protein 94 (GRP94) in Pdx1+ pancreatic progenitor cells led to pancreas hypoplasia and reduced ß cell mass during pancreas development in mice. Here, we show that GRP94 was involved in ß cell adaption and compensation (or failure) in islets from leptin receptor-deficient (db/db) mice in an age-dependent manner. GRP94-deficient cells were more susceptible to cell death induced by various diabetogenic stress conditions. We also identified a new client of GRP94, insulin-like growth factor-1 receptor (IGF-1R), a critical factor for ß cell survival and function that may mediate the effect of GRP94 in the pathogenesis of diabetes. This study has identified essential functions of GRP94 in ß cell failure related to diabetes.


Asunto(s)
Células Secretoras de Insulina , Receptor IGF Tipo 1 , Animales , Ratones , Muerte Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Receptores de Leptina/metabolismo , Receptores de Leptina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...