Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.929
Filtrar
1.
Mikrochim Acta ; 191(8): 444, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38955823

RESUMEN

Transferrin (TRF), recognized as a glycoprotein clinical biomarker and therapeutic target, has its concentration applicable for disease diagnosis and treatment monitoring. Consequently, this study developed boronic acid affinity magnetic surface molecularly imprinted polymers (B-MMIPs) with pH-responsitivity as the "capture probe" for TRF, which have high affinity similar to antibodies, with a dissociation constant of (3.82 ± 0.24) × 10-8 M, showing 7 times of reusability. The self-copolymerized imprinted layer synthesized with dopamine (DA) and 3-Aminophenylboronic acid (APBA) as double monomers avoided nonspecific binding sites and produced excellent adsorption properties. Taking the gold nanostar (AuNS) with a branch tip "hot spot" structure as the core, the silver-coated AuNS functionalized with the biorecognition element 4-mercaptophenylboronic acid (MPBA) was employed as a surface-enhanced Raman scattering (SERS) nanotag (AuNS@Ag-MPBA) to label TRF, thereby constructing a double boronic acid affinity "sandwich" SERS biosensor (B-MMIPs-TRF-SERS nanotag) for the highly sensitive detection of TRF. The SERS biosensor exhibited a detection limit for TRF of 0.004 ng/mL, and its application to spiked serum samples confirmed its reliability and feasibility, demonstrating significant potential for clinical TRF detection. Moreover, the SERS biosensor designed in this study offers advantages in stability, detection speed (40 min), and cost efficiency. The portable Raman instrument for SERS detection fulfills the requirements for point-of-care testing.


Asunto(s)
Técnicas Biosensibles , Ácidos Borónicos , Oro , Espectrometría Raman , Ácidos Borónicos/química , Técnicas Biosensibles/métodos , Oro/química , Humanos , Espectrometría Raman/métodos , Plata/química , Nanopartículas del Metal/química , Límite de Detección , Transferrina/análisis , Transferrina/química , Impresión Molecular , Polímeros Impresos Molecularmente/química , Glicoproteínas/sangre , Glicoproteínas/química , Materiales Biomiméticos/química , Dopamina/sangre , Dopamina/análisis , Compuestos de Sulfhidrilo
2.
Mikrochim Acta ; 191(7): 365, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831060

RESUMEN

Copper-cobalt bimetallic nitrogen-doped carbon-based nanoenzymatic materials (CuCo@NC) were synthesized using a one-step pyrolysis process. A three-channel colorimetric sensor array was constructed for the detection of seven antioxidants, including cysteine (Cys), uric acid (UA), tea polyphenols (TP), lysine (Lys), ascorbic acid (AA), glutathione (GSH), and dopamine (DA). CuCo@NC with peroxidase activity was used to catalyze the oxidation of TMB by H2O2 at three different ratios of metal sites. The ability of various antioxidants to reduce the oxidation products of TMB (ox TMB) varied, leading to distinct absorbance changes. Linear discriminant analysis (LDA) results showed that the sensor array was capable of detecting seven antioxidants in buffer and serum samples. It could successfully discriminate antioxidants with a minimum concentration of 10 nM. Thus, multifunctional sensor arrays based on CuCo@NC bimetallic nanoenzymes not only offer a promising strategy for identifying various antioxidants but also expand their applications in medical diagnostics and environmental analysis of food.


Asunto(s)
Antioxidantes , Carbono , Colorimetría , Cobre , Nitrógeno , Nitrógeno/química , Colorimetría/métodos , Carbono/química , Antioxidantes/química , Antioxidantes/análisis , Cobre/química , Cobalto/química , Peróxido de Hidrógeno/química , Humanos , Catálisis , Límite de Detección , Glutatión/química , Glutatión/sangre , Dopamina/sangre , Dopamina/análisis , Dopamina/química , Bencidinas/química , Polifenoles/química , Polifenoles/análisis , Ácido Ascórbico/química , Ácido Ascórbico/sangre , Ácido Ascórbico/análisis , Oxidación-Reducción , Ácido Úrico/sangre , Ácido Úrico/química , Ácido Úrico/análisis , Cisteína/química , Cisteína/sangre
3.
Mikrochim Acta ; 191(6): 362, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822867

RESUMEN

Rapid and accurate in situ determination of dopamine is of great significance in the study of neurological diseases. In this work, poly (3,4-ethylenedioxythiophene): poly (styrenesulfonic acid) (PEDOT: PSS)/graphene oxide (GO) fibers were fabricated by an effective method based on microfluidic wet spinning technology. The composite microfibers with stratified and dense arrangement were continuously prepared by injecting PEDOT: PSS and GO dispersion solutions into a microfluidic chip. PEDOT: PSS/GO fiber microelectrodes with high electrochemical activity and enhanced electrochemical oxidation activity of dopamine were constructed by controlling the structure composition of the microfibers with varying flow rate. The fabricated fiber microelectrode had a low detection limit (4.56 nM) and wide detection range (0.01-8.0 µM) for dopamine detection with excellent stability, repeatability, and reproducibility. In addition, the PEDOT: PSS/GO fiber microelectrode prepared was successfully used for the detection of dopamine in human serum and PC12 cells. The strategy for the fabrication of multi-component fiber microelectrodes is a new and effective approach for monitoring the intercellular neurotransmitter dopamine and has high potential as an implantable neural microelectrode.


Asunto(s)
Dopamina , Grafito , Microelectrodos , Poliestirenos , Células PC12 , Dopamina/sangre , Humanos , Ratas , Animales , Poliestirenos/química , Grafito/química , Límite de Detección , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Tiofenos/química , Dispositivos Laboratorio en un Chip , Polímeros
4.
Mikrochim Acta ; 191(7): 425, 2024 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926184

RESUMEN

A solvothermal synthesis of ultrasmall cerium oxide nanoparticles (USCeOxNPs) with an average size of 0.73 ± 0.07 nm using deep eutectic solvent (DES) as a stabilizing medium at a temperature of 90 ºC is reported. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were used to morphologically characterize the USCeOxNPs. These revealed approximately spherical shapes with emission lines characteristic of cerium. Selected area electron diffraction (SAED) was used to determine the crystalline structure of the cerium oxide nanoparticles (CeO2NPs), revealing the presence of crystalline cubic structures. The USCeOxNPs-DES/CB film was characterized by scanning electron microscopy (SEM), which demonstrated the spherical characteristic of CB with layers slightly covered by DES residues. DES was characterized by Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR), indicating its formation through hydrogen bonds between the precursors. An electrochemical sensor for dopamine (DA) determination in biological fluids was developed using the USCeOxNPs together with carbon black (CB). An enhanced current response was observed on DA voltammetric determination, and this can be attributed to the USCeOxNPs. This sensor displayed linear responses for DA in the range 5.0 × 10-7 mol L-1 to 3.2 × 10-4 mol L-1, with a limit of detection of 80 nmol L-1. Besides detectability, excellent performances were verified for repeatability and anti-interference. The sensor based on USCeOxNPs synthesized in DES in a simpler and environmentally friendly way was successfully applied to determine DA in biological matrix.


Asunto(s)
Cerio , Dopamina , Técnicas Electroquímicas , Cerio/química , Dopamina/análisis , Dopamina/sangre , Técnicas Electroquímicas/métodos , Humanos , Disolventes Eutécticos Profundos/química , Nanopartículas/química , Límite de Detección , Nanopartículas del Metal/química , Tamaño de la Partícula
5.
Talanta ; 276: 126247, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759358

RESUMEN

This work presents a significant investigation involving both electrochemical experiment and quantum chemical simulation approaches. The objective was to characterize the electrochemical detection of dopamine (DA). The detection was carried out using a modified carbon paste electrode (CPE) incorporating bentonite (Bent) and l-cysteine (CySH) (named as CySH/Bent/CPE). To understand and explain the oxidation mechanism of DA on the CySH/Bent modified electrode surface, the coupling of the two approaches were exploited. The CySH/Bent/CPE showed excellent electroactivity toward DA such as good sensibility, selectivity, stability, and regenerative ability. The developed sensor shows a dynamic linear range from 0.8 to 80 µM with a limit of detection and quantification of 0.5 µM and 1.5 µM, respectively. During the quantitative analysis of DA in presence of ascorbic acid (AA) and uric acid (UA) the electrochemical oxidation signals of AA, DA, and UA distinctly appear as three separate peaks. The potential differences between the peaks are 190 mv, 150 mv, and 340 mV for the AA-DA, DA-UA, and AA-UA oxidation pairs, respectively. These observations stem from square wave voltammetry (SWV) studies, along with the corresponding redox peak potential separations. The developed sensor is simple and accurate to monitor DA in human serum samples. On the other hand, CySH acts as an electrocatalyst on the CySH/Bent/CPE surface by increasing its active electron transfer sites, as suggested by the quantum chemical modeling with analytical results of Fukui. Furthermore, the voltammetric results obtained agree well with the theoretical calculations.


Asunto(s)
Bentonita , Carbono , Cisteína , Dopamina , Técnicas Electroquímicas , Electrodos , Dopamina/sangre , Dopamina/análisis , Dopamina/química , Cisteína/química , Cisteína/análisis , Cisteína/sangre , Carbono/química , Bentonita/química , Técnicas Electroquímicas/métodos , Teoría Cuántica , Oxidación-Reducción , Límite de Detección , Humanos , Ácido Úrico/sangre , Ácido Úrico/química , Ácido Úrico/análisis
6.
ACS Sens ; 9(5): 2684-2694, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38693685

RESUMEN

Semiconductor-based photoelectrochemical (PEC) test protocols offer a viable solution for developing efficient individual health monitoring by converting light and chemical energy into electrical signals. However, slow reaction kinetics and electron-hole complexation at the interface limit their practical application. Here, we reported a triple-engineered CdS nanohierarchical structures (CdS NHs) modification scheme including morphology, defective states, and heterogeneous structure to achieve precise monitoring of the neurotransmitter dopamine (DA) in plasma and noninvasive body fluids. By precisely manipulating the Cd-S precursor, we achieved precise control over ternary CdS NHs and obtained well-defined layered self-assembled CdS NHs through a surface carbon treatment. The integration of defect states and the thin carbon layer effectively established carrier directional transfer pathways, thereby enhancing interface reaction sites and improving the conversion efficiency. The CdS NHs microelectrode fabricated demonstrated a remarkable negative response toward DA, thereby enabling the development of a miniature self-powered PEC device for precise quantification in human saliva. Additionally, the utilization of density functional theory calculations elucidated the structural characteristics of DA and the defect state of CdS, thus establishing crucial theoretical groundwork for optimizing the polymerization process of DA. The present study offers a potential engineering approach for developing high energy conversion efficiency PEC semiconductors as well as proposing a novel concept for designing sensitive testing strategies.


Asunto(s)
Compuestos de Cadmio , Dopamina , Técnicas Electroquímicas , Nanoestructuras , Neurotransmisores , Sulfuros , Compuestos de Cadmio/química , Técnicas Electroquímicas/métodos , Dopamina/análisis , Dopamina/sangre , Nanoestructuras/química , Neurotransmisores/análisis , Neurotransmisores/sangre , Humanos , Sulfuros/química , Procesos Fotoquímicos , Saliva/química , Teoría Funcional de la Densidad , Técnicas Biosensibles/métodos , Semiconductores , Microelectrodos
7.
Acta Trop ; 256: 107263, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38768696

RESUMEN

Toxoplasma gondii, a parasite infecting around one-third of the global population, has been linked to neurological disorders like schizophrenia. Abnormal dopamine levels are linked to the pathophysiology of schizophrenia, but their association remains unclear. This study aimed to investigate the relationship between T. gondii seroprevalence and dopamine serum levels in schizophrenic patients in Egypt. This case-control study included 93 patients diagnosed with schizophrenia and 93 individuals as controls. T. gondii seroprevalence was determined using an enzyme-linked immunosorbent assay (ELISA). Dopamine serum levels were measured using ELISA. Sociodemographic and clinical characteristics were also collected. The study found a higher prevalence of T. gondii IgG antibodies in patients with schizophrenia (68 %) compared to controls (46.2 %). Contact with cats, sausage consumption, and undercooked meat were identified as possible risk factors associated with T. gondii infection. The mean level of serum dopamine was significantly (P < 0.001) higher in patients with schizophrenia (115.3 Pg/ml ±31.8) compared to the control group (75.02 Pg/ml ±26.5). The study found that schizophrenic patients with T. gondii seropositivity had significantly higher dopamine serum levels (mean=145.2 ± 32.1 pg/ml) than those without T. gondii seropositivity (mean=122.5 ± 29.7 pg/ml) (p = 0.001). Logistic regression analysis revealed that T. gondii seropositivity was a significant predictor of increased dopamine serum levels in schizophrenic patients (odds ratio=3.4, 95 % confidence interval=1.8-6.4, p < 0.001). The study suggests that T. gondii seroprevalence may increase dopamine serum levels in Egyptian schizophrenic patients, potentially contributing to dopamine dysregulation in schizophrenia, but further research is needed to confirm these findings and investigate the underlying mechanisms.


Asunto(s)
Anticuerpos Antiprotozoarios , Dopamina , Esquizofrenia , Toxoplasmosis , Humanos , Esquizofrenia/sangre , Esquizofrenia/epidemiología , Esquizofrenia/parasitología , Egipto/epidemiología , Toxoplasmosis/epidemiología , Toxoplasmosis/sangre , Masculino , Femenino , Dopamina/sangre , Estudios de Casos y Controles , Adulto , Anticuerpos Antiprotozoarios/sangre , Estudios Seroepidemiológicos , Persona de Mediana Edad , Inmunoglobulina G/sangre , Toxoplasma/inmunología , Ensayo de Inmunoadsorción Enzimática , Adulto Joven , Factores de Riesgo , Animales
8.
Langmuir ; 40(22): 11635-11641, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38775800

RESUMEN

The presence of abnormal dopamine (DA) levels may cause serious neurological disorders, therefore, the quantitative analysis of DA and its related research are of great significance for ensuring health. Herein, the bovine serum albumin (BSA) template method has been proposed for the preparation of catalytically high-performance ruthenium dioxide/multiwalled carbon nanotube (RuO2/MWCNT) nanocomposites. The incorporation of MWCNTs has improved the active surface area and conductivity while effectively preventing the aggregation of RuO2 nanoparticles. The outstanding electrocatalytic performance of RuO2/MWCNTs has promoted the electro-oxidation of DA at neutral pH. The electrochemical sensing platform based on RuO2/MWCNTs has demonstrated a wide linear range (0.5 to 111.1 µM), low detection limit (0.167 µM), excellent selectivity, long-term stability, and good reproducibility for DA detection. The satisfactory recovery range of 94.7% to 103% exhibited by the proposed sensing podium in serum samples signifies its potential for analytical applications. The aforementioned results reveal that RuO2/MWCNT nanostructures hold promising aptitude in the electrochemical sensor to detect DA in real samples, further offering broad prospects in clinical and medical diagnosis.


Asunto(s)
Técnicas Biosensibles , Dopamina , Técnicas Electroquímicas , Nanotubos de Carbono , Compuestos de Rutenio , Albúmina Sérica Bovina , Nanotubos de Carbono/química , Dopamina/sangre , Dopamina/análisis , Dopamina/química , Humanos , Técnicas Biosensibles/métodos , Albúmina Sérica Bovina/química , Técnicas Electroquímicas/métodos , Compuestos de Rutenio/química , Animales , Bovinos , Límite de Detección
9.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731427

RESUMEN

Dopamine (DA) and uric acid (UA) are essential for many physiological processes in the human body. Abnormal levels of DA and UA can lead to multiple diseases, such as Parkinson's disease and gout. In this work, a three-dimensional reduced graphene oxide-MXene (3D rGO-Ti3C2) composite electrode was prepared using a simple one-step hydrothermal reduction process, which could separate the oxidation potentials of DA and UA, enabling the simultaneous detection of DA and UA. The 3D rGO-Ti3C2 electrode exhibited excellent electrocatalytic activity towards both DA and UA. In 0.01 M PBS solution, the linear range of DA was 0.5-500 µM with a sensitivity of 0.74 µA·µM-1·cm-2 and a detection limit of 0.056 µM (S/N = 3), while the linear range of UA was 0.5-60 µM and 80-450 µM, with sensitivity of 2.96 and 0.81 µA·µM-1·cm-2, respectively, and a detection limit of 0.086 µM (S/N = 3). In 10% fetal bovine serum (FBS) solution, the linear range of DA was 0.5-500 µM with a sensitivity of 0.41 µA·µM-1·cm-2 and a detection limit of 0.091 µM (S/N = 3). The linear range of UA was 2-500 µM with a sensitivity of 0.11 µA·µM-1·cm-2 and a detection limit of 0.6 µM (S/N = 3). The modified electrode exhibited advantages such as high sensitivity, a strong anti-interference capability, and good repeatability. Furthermore, the modified electrode was successfully used for DA measurement in vivo. This could present a simple reliable route for neurotransmitter detection in neuroscience.


Asunto(s)
Dopamina , Técnicas Electroquímicas , Electrodos , Grafito , Ácido Úrico , Grafito/química , Ácido Úrico/análisis , Ácido Úrico/sangre , Dopamina/análisis , Dopamina/sangre , Técnicas Electroquímicas/métodos , Límite de Detección , Oxidación-Reducción , Humanos , Titanio/química , Animales
10.
Rev Int Androl ; 22(1): 8-16, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38735872

RESUMEN

Dopamine and prolactin are the key mediators involved in sexual function in both males and females, but the role of dopamine in female sexual dysfunction (FSD) is still unclear. The aim was to investigate the possible role of dopamine and their relationship with sex steroid hormones (estrogen, progesterone and dehydroepiandrosterone; DHEA) and prolactin levels in Egyptian women suffering from sexual dysfunction. This study included 84 women having sexual dysfunction (FSD group) and 84 normal sexual function (control group). All women were subjected to the questionnaire to assess their demographic and gynecological data as well as female sexual function index (FSFI). Blood samples were collected from all women for measuring serum estradiol, progesterone, DHEA, prolactin and dopamine levels. FSD patients had significantly higher serum progesterone and DHEA and prolactin levels; while significantly lower dopamine and estradiol levels versus controls (p < 0.001). In all women, dopamine level appeared as a predictor of FSD at cut-off point ≤8.8 ng/mL with sensitivity (75%), specificity (92%) and accuracy (83%) (p < 0.001). The low levels of dopamine were associated with significantly higher prevalence in patients with low estradiol (p < 0.001) and high progesterone (p < 0.001), DHEA (p < 0.001) and prolactin (p = 0.004). Also, dopamine was significantly positive correlation with arousal score (r = 0.16, p = 0.04), and negative correlation with age (r = -0.31, p < 0.001), pain score (r = -0.19, p = 0.01), DHEA (r = -0.45, p < 0.001) and prolactin (r = -0.28, p < 0.001). Low serum dopamine level is a potential diagnostic biomarker in women's sexual dysfunction and their association with high prolactin and sex steroid hormones dysfunction.


Asunto(s)
Biomarcadores , Dopamina , Progesterona , Prolactina , Disfunciones Sexuales Fisiológicas , Humanos , Femenino , Dopamina/sangre , Biomarcadores/sangre , Adulto , Disfunciones Sexuales Fisiológicas/sangre , Disfunciones Sexuales Fisiológicas/diagnóstico , Prolactina/sangre , Progesterona/sangre , Estradiol/sangre , Estudios de Casos y Controles , Egipto , Sensibilidad y Especificidad , Encuestas y Cuestionarios , Adulto Joven , Persona de Mediana Edad , Deshidroepiandrosterona/sangre , Hormonas Esteroides Gonadales/sangre
11.
J Chromatogr A ; 1724: 464910, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38657316

RESUMEN

A simplified approach for preparation of sandwich type molecularly imprinted polymers (PPDA-MIPs) is proposed for simultaneously identify Low-density lipoprotein (LDL) and dispose "bad cholesterol". Porous polydopamine nanosphere (PPDA) is applied as a matrix for immobilization of LDL, and the imprinted layer is formed by dopamine acting as a functional monomer. Since imprinted cavities exhibit shape memory effects in terms of recognizing selectivity, the PPDA-MIPs exhibit excellent selectivity toward LDL and a substantial binding capacity of 550.3 µg mg-1. Meanwhile, six adsorption/desorption cycles later, the adsorption efficiency of 83.09 % is still achieved, indicating the adequate stability and reusability of PPDA-MIPs. Additionally, over 80 % of cholesterol is recovered, indicating the completeness of "bad cholesterol" removal in LDL. Lastly, as demonstrated by gel electrophoresis, PPDA-MIPs performed satisfactory behavior for the removal of LDL from the goat serum sample.


Asunto(s)
Colesterol , Indoles , Lipoproteínas LDL , Polímeros Impresos Molecularmente , Polímeros , Lipoproteínas LDL/sangre , Lipoproteínas LDL/química , Lipoproteínas LDL/aislamiento & purificación , Adsorción , Polímeros/química , Colesterol/sangre , Colesterol/química , Indoles/química , Animales , Polímeros Impresos Molecularmente/química , Dopamina/sangre , Dopamina/química , Dopamina/aislamiento & purificación , Dopamina/análisis , Impresión Molecular/métodos , Cabras , Nanosferas/química
12.
Analyst ; 149(9): 2728-2737, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38525963

RESUMEN

This work presents the synthesis and characterization of an innovative F,S-doped carbon dots/CuONPs hybrid nanostructure obtained by a direct mixture between F,S-doped carbon dots obtained electrochemically and copper nitrate alcoholic solution. The hybrid nanostructures synthesized were characterized by absorption spectroscopy in the Ultraviolet region (UV-vis), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and different electrochemical techniques. The fluoride and sulfur-doped carbon dots/CuONPs nanostructures were used to prepare a non-enzymatic biosensor on a printed carbon electrode, exhibiting excellent electrocatalytic activity for the simultaneous determination of NADH, dopamine, and uric acid in the presence of ascorbic acid with a detection limit of 20, 80, and 400 nmol L-1, respectively. The non-enzymatic biosensors were also used to determine NADH, dopamine, and uric acid in plasma, and they did not suffer significant interference from each other.


Asunto(s)
Técnicas Biosensibles , Carbono , Cobre , Dopamina , Técnicas Electroquímicas , Límite de Detección , NAD , Ácido Úrico , Ácido Úrico/sangre , Ácido Úrico/química , Técnicas Biosensibles/métodos , Dopamina/sangre , Dopamina/análisis , Carbono/química , NAD/química , NAD/sangre , Cobre/química , Técnicas Electroquímicas/métodos , Humanos , Azufre/química , Fluoruros/química , Puntos Cuánticos/química , Nanoestructuras/química , Electrodos
13.
Probl Endokrinol (Mosk) ; 70(2): 11-22, 2023 Jun 06.
Artículo en Ruso | MEDLINE | ID: mdl-38796757

RESUMEN

BACKGROUND: Knowledge of the physiological mechanisms of adaptation arising in response to changes in photoperiods is especially important for residents of the European North. In the literature, there is practically no information about photoperiodic dynamics of serum dopamine level, despite its significant role in the regulation of the body's activity. The mutual modulating effect of the dopaminergic and thyroid systems is known. AIM: To show the ratio of dopamine levels and the content of hormones, protines and autoantibodies of the thyroid system, taking into account photoperiod of the year, in practically healthy populations of the European North. MATERIALS AND METHODS: Healthy male population (20 men) of Arkhangelsk was examined in various photoperiods of the year (80 samples): an increase in the length of daylight hours (March), its maximum duration (June), a decrease (September), and a minimum duration (December). The inhabitants of the settlements and the nomadic aboriginal population (100 men) were examined during 2 photoperiods of the year - March and December. The serum levels of iodothyronines, TSH, TG, antibodies to TPO, antibodies to TG and plasma level of dopamine were determined using ELISA methods. RESULTS: Residents of Arkhangelsk in June compared to December have higher levels of dopamine (0.502 and 0.365 nmol/l, p=0.01), T3 (1.09 and 0.94 nmol/l, p=0.003), T4 (113.45 and 99.03 nmol/l, p=0.0002). In September, compared with June, a decrease in dopamine (0.235 nmol/l, p=0.0003), T3 (0.92 nmol/l, p=0.004) was recorded with an increase in T4/T3 ratio from 106.54 to 117.89 units (p=0.006). The nomadic aboriginal population in March compared with December showed a tendency to a higher content of dopamine (0.00 and 0.394 nmol/l, p=0.07) with the decrease in fT4 (15.20 and  13.90, p=0.015), fT4/fT3 ratio from 3.13 to 2.28 units (p=0.006). In December, 67% of nomadic population had undetectable dopamine values (0 nmol/l) and 22% - excess dopamine values, in March 27% - excess values. CONCLUSION: Unidirectional changes in dopamine and thyroid activity in men of the European North were shown with their decrease during periods of decrease and minimum daylight hours and an increase during periods of increase and maximum daylight hours.


Asunto(s)
Dopamina , Fotoperiodo , Glándula Tiroides , Humanos , Masculino , Dopamina/sangre , Adulto , Glándula Tiroides/fisiología , Glándula Tiroides/metabolismo , Estaciones del Año , Federación de Rusia , Persona de Mediana Edad
14.
Sci Rep ; 12(1): 2598, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173220

RESUMEN

This prospective study determined the effects of hypoglycemic stimulation on vascular endothelial function in non-diabetic patients using reactive hyperemia peripheral arterial tonometry (RH-PAT). The study included non-diabetic patients who were hospitalized for an insulin tolerance test (ITT) for the diagnosis of hypoadrenocorticism or hypopituitarism. Vascular endothelial function was assessed using the reactive hyperemia index (RHI) measured by the RH-PAT. We also measured the levels of anterior pituitary hormone, adrenaline, noradrenaline, and dopamine at the time of hypoglycemia. The primary endpoint was a change in the RHI at 120 min after insulin administration. The study included 27 patients. ITT was associated with significant increases in systolic blood pressure, pulse rate, and the blood levels of adrenocorticotropic hormone, cortisol, growth hormone, adrenaline, noradrenaline, and dopamine. RHI significantly decreased after ITT from 2.24 ± 0.51 to 1.71 ± 0.42. A significant inverse correlation was observed between the change in RHI and change in adrenaline (r = - 0.670, p = 0.012). We concluded that hypoglycemic stimulation altered vascular endothelial function, as measured by RH-PAT, even in patients free of glucose intolerance. The observed deterioration in vascular endothelial function correlated with increases in catecholamine levels during hypoglycemia.Trial registration: UMIN000033244.


Asunto(s)
Endotelio Vascular/fisiopatología , Hipoglucemia/fisiopatología , Manometría/métodos , Adulto , Anciano , Arterias , Dopamina/sangre , Epinefrina/sangre , Femenino , Intolerancia a la Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Hiperemia , Hipoglucemia/sangre , Resistencia a la Insulina , Masculino , Persona de Mediana Edad , Norepinefrina/sangre , Hormonas Adenohipofisarias/sangre , Estudios Prospectivos , Sístole
15.
Medicine (Baltimore) ; 100(49): e27867, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34889236

RESUMEN

ABSTRACT: This study analyzed the Val158Met polymorphisms of the catechol-O-methyltransferase (COMT) gene and serum concentrations of catecholaminergic neurotransmitters in attention deficit hyperactivity disorder (ADHD) children and adolescents.All the subjects (180 paired ADHD and non-ADHD children and adolescents) were genotyped for the Val158Met polymorphisms of the COMT gene, and determined by the difference of dopamine and noradrenalin from a 1:1 paired case-control study.The frequencies of methionine (A)/A, valine (G)/A, and G/G were 51.67%, 41.11%, and 7.22% in the case group, and 62.22%, 31.11%, and 6.67% in the control group. There was a significant difference in the distribution of all genotypes of the COMT gene between the 2 groups (odds ratio = 1.85, 95% confidence interval: 1.62-2.08; χ2 = 7.80, P < .05). The serum concentrations of dopamine and noradrenalin were 1.42 ±â€Š0.34 ng/mL and 177.70 ±â€Š37.92 pg/mL in the case group, and 1.94 ±â€Š0.42 ng/mL and 206.20 ±â€Š42.45 pg/mL in the control group. There were the significant differences in the levels of dopamine and noradrenalin between the 2 groups (dopamine: t = 4.30, P < .01; noradrenalin: t = 2.24, P < .05).Our study suggested that the Val158Met polymorphisms of the COMT gene and serum concentrations of catecholaminergic neurotransmitters were associated with ADHD children and adolescents.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Catecol O-Metiltransferasa/genética , Dopamina/sangre , Neurotransmisores/sangre , Adolescente , Estudios de Casos y Controles , Niño , China , Femenino , Genotipo , Humanos , Masculino
16.
Mikrochim Acta ; 189(1): 12, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34866160

RESUMEN

Novel Fe3O4@C@MnO2 composites were successfully synthesized for the first time via an interfacial reaction between magnetic porous carbon and KMnO4, in which the magnetic porous carbon was derived from the pyrolysis of Fe-MIL-88A under N2 atmosphere. Interestingly, the obtained Fe3O4@C@MnO2 composites were found to have triple-enzyme mimetic activity including peroxidase-like, catalase-like, and oxidase-like activity. As a peroxidase mimic, Fe3O4@C@MnO2 composites could catalyze the oxidation of TMB into a blue oxidized product by H2O2. As a catalase mimic, Fe3O4@C@MnO2 could catalyze the decomposition of H2O2 to generate O2 and H2O. As an oxidase mimic, Fe3O4@C@MnO2 could catalyze the direct oxidation of TMB to produce a blue oxidized product without H2O2. Reactive oxygen species measurements revealed that the oxidase-like activity originated from 1O2 and O2-∙and little∙OH generated by the dissolved oxygen, which was catalyzed by the Fe3O4@C@MnO2 in the TMB oxidation reaction. The oxidase-like activity of Fe3O4@C@MnO2 was investigated in detail. Under the optimized conditions, a rapid, sensitive, visual colorimetric method for dopamine detection was developed based on the inhibitory effect of dopamine on the oxidase-like activity. The proposed method allows for dopamine detection with a limit of detection of 0.034 µM and a linear range of 0.125-10 µM. This new colorimetric method was successfully used for the determination of dopamine in human blood samples.


Asunto(s)
Técnicas Biosensibles/métodos , Carbono/química , Dopamina/sangre , Nanopartículas de Magnetita/química , Compuestos de Manganeso/química , Óxidos/química , Bencidinas/química , Benzotiazoles/química , Catálisis , Compuestos Cromogénicos/química , Colorimetría/métodos , Dopamina/química , Humanos , Peróxido de Hidrógeno/química , Límite de Detección , Estructuras Metalorgánicas/química , Oxidación-Reducción , Fenilendiaminas/química , Ácidos Sulfónicos/química
17.
Bull Exp Biol Med ; 171(6): 704-706, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34705169

RESUMEN

Comparative analysis of blood sera from women with alcohol dependence and depressive disorders or from conditionally healthy women revealed reduced level of antibodies to dopamine, norepinephrine, serotonin, glutamate, and GABA in blood serum in women with dysthymic disorder and a depressive episode and their increased content in women with alcohol dependence in combination with depressive disorders.


Asunto(s)
Alcoholismo/inmunología , Autoanticuerpos/sangre , Trastorno Depresivo/inmunología , Trastorno Distímico/inmunología , Alcoholismo/sangre , Alcoholismo/complicaciones , Alcoholismo/fisiopatología , Estudios de Casos y Controles , Trastorno Depresivo/sangre , Trastorno Depresivo/complicaciones , Trastorno Depresivo/fisiopatología , Dopamina/sangre , Trastorno Distímico/sangre , Trastorno Distímico/complicaciones , Trastorno Distímico/fisiopatología , Femenino , Ácido Glutámico/sangre , Humanos , Persona de Mediana Edad , Norepinefrina/sangre , Serotonina/sangre , Ácido gamma-Aminobutírico/sangre
18.
Scand J Clin Lab Invest ; 81(7): 564-572, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34570657

RESUMEN

BACKGROUND: Accurate diagnosis of pheochromocytoma and paraganglioma (PPGLs) is highly dependent on the detection of metanephrines and catecholamines. However, the systematic investigation on influencing factors including specimen (plasma or whole blood), anticoagulant, storage conditions, and interference factors need further confirmation. METHODS: Blood with heparin-lithium or EDTA-K2 were collected, stability of epinephrine (EPI), norepinephrine (NE), dopamine (DA), metanephrine (MN), normetanephrine (NMN), 3-methoxytyramine (3-MT) in whole blood and plasma at room temperature and 4 °C for different storage times, stability of plasma MN, NMN and 3-MT at -20 °C and -80 °C were investigated. Plasma with hemoglobin (1 g/L, 2 g/L, 3 g/L, 4 g/L, 6 g/L), TG (<5 mmol/L, 5-8 mmol/L, >8 mmol/L) were prepared. RESULTS: EPI, NE, DA were prone to degrade at room temperature, samples should be centrifuged at 4 °C. EPI and NE were stable in whole blood at 4 °C for 4 h and in plasma for 2 h. For MN, NMN, 3-MT, plasma can be stable at room temperature and 4 °C for at least 6 h, which is better than whole blood; there was no significant difference when stored at -20 °C and -80 °C for 7 days. Heparin-lithium had a slight advantage over EDTA-K2. EPI, NE, DA should not be performed when Hb > 1 g/L or TG > 5 mmol/L. MN, NMN, 3-MT should not be performed when Hb > 2 g/L, whereas TG had no interference. CONCLUSIONS: According to the actual clinical application scenario, this study provided a reliable basis for the accurate diagnosis of PPGLs.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/diagnóstico , Catecolaminas/sangre , Dopamina/análogos & derivados , Metanefrina/sangre , Paraganglioma/diagnóstico , Feocromocitoma/diagnóstico , Neoplasias de las Glándulas Suprarrenales/sangre , Anticoagulantes/farmacología , Dopamina/sangre , Epinefrina/sangre , Hemoglobinas/análisis , Humanos , Metaboloma , Norepinefrina/sangre , Normetanefrina/sangre , Paraganglioma/sangre , Feocromocitoma/sangre , Triglicéridos/sangre
19.
Parkinsonism Relat Disord ; 91: 48-54, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34482194

RESUMEN

INTRODUCTION: In dystonia, dopaminergic alterations are considered to be responsible for the motor symptoms. Recent attention for the highly prevalent non-motor symptoms suggest also a role for serotonin in the pathophysiology. In this study we investigated the dopaminergic, serotonergic and noradrenergic metabolism in blood samples of dystonia patients and its relation with (non-)motor manifestations. METHODS: Concentrations of metabolites of dopaminergic, serotonergic and noradrenergic pathways were measured in platelet-rich plasma in 41 myoclonus-dystonia (M-D), 25 dopa-responsive dystonia (DRD), 50 cervical dystonia (CD) patients and 55 healthy individuals. (Non-)motor symptoms were assessed using validated instruments, and correlated with concentrations of metabolites. RESULTS: A significantly higher concentration of 3-methoxytyramine (0.03 vs. 0.02 nmol/L, p < 0.01), a metabolite of dopamine, and a reduced concentration of tryptophan (50 vs. 53 µmol/L, p = 0.03), the precursor of serotonin was found in dystonia patients compared to controls. The dopamine/levodopa ratio was higher in CD patients compared to other dystonia groups (p < 0.01). Surprisingly, relatively high concentrations of levodopa were found in the untreated DRD patients. Low concentrations of levodopa were associated with severity of dystonia (rs = -0.3, p < 0.01), depression (rs = -0.3, p < 0.01) and fatigue (rs = -0.2, p = 0.04). CONCLUSION: This study shows alterations in the dopaminergic and serotonergic metabolism of patients with dystonia, with dystonia subtype specific changes. Low concentrations of levodopa, but not of serotonergic metabolites, were associated with both motor and non-motor symptoms. Further insight into the dopaminergic and serotonergic systems in dystonia with a special attention to the kinetics of enzymes involved in these pathways, might lead to better treatment options.


Asunto(s)
Dopamina/sangre , Trastornos Distónicos/sangre , Levodopa/sangre , Serotonina/sangre , Tortícolis/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Niño , Trastornos Distónicos/tratamiento farmacológico , Femenino , Humanos , Levodopa/uso terapéutico , Masculino , Persona de Mediana Edad , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Tortícolis/tratamiento farmacológico , Adulto Joven
20.
Mikrochim Acta ; 188(9): 315, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462824

RESUMEN

Selective and sensitive dopamine (DPA) sensor was developed using hydrothermally prepared functionalized multi-walled carbon nanotube-coated bismuth molybdate (f-MWCNT@BMO). The f-MWCNT@BMO-reinforced electrode exhibited an outstanding electrocatalytic activity towards DPA oxidation. The nanocomposite-reinforced electrode displayed a rapid response towards DPA sensing and possessed the minimized potential of (Epa + 0.285 V vs Ag/AgCl) in 0.1 M phosphate buffer (PB). The electrochemical results of prepared sensors were analyzed using the differential pulse voltammetry method (DPV). As a result, the f-MWCNT@BMO-reinforced electrode exhibited a widelinear range of 10 nM - 814 µM with a very low detection limit of 3.4 nM towards DPA oxidation. The developed sensor shows excellent selectivity in presence of similar functional group biomolecules. The detection of DPA in real samples was evaluated in human serum, as the results of the proposed sensor possessed good recoveries.


Asunto(s)
Dopamina/sangre , Nanocompuestos/química , Nanotubos de Carbono/química , Bismuto/química , Dopamina/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Límite de Detección , Molibdeno/química , Oxidación-Reducción , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...