Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42.150
Filtrar
1.
BMC Res Notes ; 17(1): 279, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350189

RESUMEN

OBJECTIVE: We quantified the effect of acute exposure to a high dosage of inorganic mercury on gene expression in Drosophila melanogaster using RNA-sequencing of whole adult females. RESULTS: We found 119 genes with higher gene expression following treatment (including all 5 Drosophila metallothionine genes and a number of heat shock protein genes), and 31 with lower expression (several of which are involved in egg formation). Our results highlight biological processes and genetic pathways impacted by exposure to this toxic metal, and provide motivation for future studies to understand the genetic basis of response to mercury.


Asunto(s)
Drosophila melanogaster , Mercurio , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/efectos de los fármacos , Femenino , Mercurio/toxicidad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo
2.
Mol Biol (Mosk) ; 58(2): 246-259, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-39355882

RESUMEN

This study investigated the effect of knockout of six Hsp70 genes (orthologues of the mammalian genes Hspa1a, Hspa1b, Hspa2, and Hspa8) on age-related changes in gene expression in the legs of Drosophila melanogaster, which contain predominantly skeletal muscle bundles. For this, the leg transcriptomic profile was examined in males of the w^(1118) control strain and the Hsp70^(-) strain on the 7th, 23rd and 47th days of life. In w^(1118) flies, an age-related decrease in the locomotion (climbing) speed (a marker of functional state and endurance) was accompanied by a pronounced change in the transcriptomic profile of the leg skeletal muscles, which is conservative in nature. In Hsp70^(-) flies, the median lifespan was shorter and the locomotion speed was significantly lower compared to the control; at the same time, complex changes in the age-related dynamics of the skeletal muscle transcriptome were observed. Mass spectrometry-based quantitative proteomics showed that 47-day-old Hsp70^(-) flies, compared with w^(1118) flies, demonstrated multidirectional changes in the contents of key enzymes of glucose metabolism and fat oxidation (glycolysis, pentose phosphate pathway, Krebs cycle, beta-oxidation, and oxidative phosphorylation). Such dysregulation may be associated with a compensatory increase in the expression of other genes encoding chaperones (small Hsp, Hsp40, 60, and 70), which regulate specific sets of target proteins. Taken together, our data show that knockout of six Hsp70 genes slightly reduced the median lifespan of flies, but significantly reduced the locomotion speed, which may be associated with complex changes in the transcriptome of the leg skeletal muscles and with multidirectional changes in the contents of key enzymes of energy metabolism.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Proteínas HSP70 de Choque Térmico , Locomoción , Longevidad , Músculo Esquelético , Transcriptoma , Animales , Drosophila melanogaster/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Masculino , Locomoción/fisiología , Locomoción/genética , Músculo Esquelético/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Longevidad/genética , Envejecimiento/genética , Envejecimiento/metabolismo , Técnicas de Inactivación de Genes
3.
Mol Biol (Mosk) ; 58(2): 305-313, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-39355887

RESUMEN

An RNA interference-based method was proposed to achieve an inducible knockdown of genes essential for cell viability. In the method, a genetic cassette in which a copper ion-dependent inducible metallothionein promoter controls expression of a siRNA precursor is inserted into a genomic pre-integrated transgene by CRIPSR/Cas9 technology. The endogenous siRNA source allows the gene knockdown in cell cultures that are refractory to conventional transfection with exogenous siRNA. The efficiency of the method was demonstrated in Drosophila ovarian somatic cell culture (OSC) for two genes that are essential for oogenesis: Cul3, encoding a component of the multiprotein ubiquitin-ligase complex with versatile functions in proteostasis, and cut, encoding a transcription factor regulating differentiation of ovarian follicular cells.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Técnicas de Silenciamiento del Gen , Animales , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ovario/metabolismo , Ovario/citología , Oogénesis/genética , Interferencia de ARN , Genes Esenciales , Sistemas CRISPR-Cas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
4.
Nat Commun ; 15(1): 8584, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39362902

RESUMEN

Genomic enhancers are key transcriptional regulators which, upon the binding of sequence-specific transcription factors, activate their cognate target promoters. Although enhancers have been extensively studied in isolation, a substantial number of genes have more than one simultaneously active enhancer, and it remains unclear how these cooperate to regulate transcription. Using Drosophila melanogaster S2 cells as a model, we assay the activities of more than a thousand individual enhancers and about a million enhancer pairs toward housekeeping and developmental core promoters with STARR-seq. We report that housekeeping and developmental enhancers show distinct modes of enhancer-enhancer cooperativity: while housekeeping enhancers are additive such that their combined activity mirrors the sum of their individual activities, developmental enhancers are super-additive and combine multiplicatively. Super-additivity between developmental enhancers is promiscuous and neither depends on the enhancers' endogenous genomic contexts nor on specific transcription factor motif signatures. However, it can be further boosted by Twist and Trl motifs and saturates for the highest levels of enhancer activity. These results have important implications for our understanding of gene regulation in complex multi-enhancer developmental loci and genomically clustered housekeeping genes, providing a rationale to interpret the transcriptional impact of non-coding mutations at different loci.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Regiones Promotoras Genéticas , Factores de Transcripción , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Genes Esenciales , Transcripción Genética , Línea Celular , Proteínas de Unión al ADN , Proteína 1 Relacionada con Twist
5.
Elife ; 122024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39364747

RESUMEN

Neuronal stem cells generate a limited and consistent number of neuronal progenies, each possessing distinct morphologies and functions, which are crucial for optimal brain function. Our study focused on a neuroblast (NB) lineage in Drosophila known as Lin A/15, which generates motoneurons (MNs) and glia. Intriguingly, Lin A/15 NB dedicates 40% of its time to producing immature MNs (iMNs) that are subsequently eliminated through apoptosis. Two RNA-binding proteins, Imp and Syp, play crucial roles in this process. Imp+ MNs survive, while Imp-, Syp+ MNs undergo apoptosis. Genetic experiments show that Imp promotes survival, whereas Syp promotes cell death in iMNs. Late-born MNs, which fail to express a functional code of transcription factors (mTFs) that control their morphological fate, are subject to elimination. Manipulating the expression of Imp and Syp in Lin A/15 NB and progeny leads to a shift of TF code in late-born MNs toward that of early-born MNs, and their survival. Additionally, introducing the TF code of early-born MNs into late-born MNs also promoted their survival. These findings demonstrate that the differential expression of Imp and Syp in iMNs links precise neuronal generation and distinct identities through the regulation of mTFs. Both Imp and Syp are conserved in vertebrates, suggesting that they play a fundamental role in precise neurogenesis across species.


Asunto(s)
Apoptosis , Proteínas de Drosophila , Proteínas de Unión al ARN , Factores de Transcripción , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Neuronas Motoras/metabolismo , Drosophila/metabolismo , Neuronas/metabolismo , Células-Madre Neurales/metabolismo , Regulación del Desarrollo de la Expresión Génica
6.
Open Biol ; 14(10): 240110, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39353569

RESUMEN

The members of the evolutionary conserved actin-binding Ezrin, Radixin and Moesin (ERM) protein family are involved in numerous key cellular processes in the cytoplasm. In the last decades, ERM proteins, like actin and other cytoskeletal components, have also been shown to be functional components of the nucleus; however, the molecular mechanism behind their nuclear activities remained unclear. Therefore, our primary aim was to identify the nuclear protein interactome of the single Drosophila ERM protein, Moesin. We demonstrate that Moesin directly interacts with the Mediator complex through direct binding to its Med15 subunit, and the presence of Moesin at the regulatory regions of the Hsp70Ab heat shock gene was found to be Med15-dependent. Both Moesin and Med15 bind to heat shock factor (Hsf), and they are required for proper Hsp gene expression under physiological conditions. Moreover, we confirmed that Moesin, Med15 and Hsf are able to bind the monomeric form of actin and together they form a complex in the nucleus. These results elucidate a mechanism by which ERMs function within the nucleus. Finally, we present the direct interaction of the human orthologues of Drosophila Moesin and Med15, which highlights the evolutionary significance of our finding.


Asunto(s)
Núcleo Celular , Proteínas de Drosophila , Respuesta al Choque Térmico , Proteínas de Microfilamentos , Unión Proteica , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Núcleo Celular/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Complejo Mediador/metabolismo , Complejo Mediador/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Actinas/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de la Membrana
7.
Dis Model Mech ; 17(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39350752

RESUMEN

Brain protein aggregates are a hallmark of neurodegenerative disease. Previous work indicates that specific protein components of these aggregates are toxic, including tau (encoded by MAPT) in Alzheimer's disease and related tauopathies. Increasing evidence also indicates that these toxic proteins traffic between cells in a prion-like fashion, thereby spreading pathology from one brain region to another. However, the mechanisms involved in trafficking are poorly understood. We therefore developed a transgenic Drosophila model to facilitate rapid evaluation of candidate tau trafficking modifiers. Our model uses the bipartite Q system to drive co-expression of tau and GFP in the fly eye. We found age-dependent spread of tau into the brain, represented by detection of tau, but not of GFP. We also found that tau trafficking was attenuated upon inhibition of the endocytic factor dynamin (encoded by shi) or knockdown of glycogen synthase kinase-3ß (GSK-3ß, encoded by sgg). Further work revealed that dynamin promoted tau uptake in recipient tissues, whereas GSK-3ß appeared to promote tau spread via direct phosphorylation of tau. Our robust and flexible system will promote the identification of tau-trafficking components involved in the pathogenesis of neurodegenerative diseases.


Asunto(s)
Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Proteínas de Drosophila , Drosophila melanogaster , Glucógeno Sintasa Quinasa 3 beta , Proteínas tau , Animales , Proteínas tau/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fosforilación , Encéfalo/metabolismo , Encéfalo/patología , Dinaminas/metabolismo , Transporte de Proteínas , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Proteínas Fluorescentes Verdes/metabolismo
8.
Sci Signal ; 17(856): eadk2345, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39353037

RESUMEN

The axon guidance cue netrin-1 signals through its receptor DCC (deleted in colorectal cancer) to attract commissural axons to the midline. Variants in DCC are frequently associated with congenital mirror movements (CMMs). A CMM-associated variant in the cytoplasmic tail of DCC is located in a conserved motif predicted to bind to a regulator of actin dynamics called the WAVE (Wiskott-Aldrich syndrome protein-family verprolin homologous protein) regulatory complex (WRC). Here, we explored how this variant affects DCC function and may contribute to CMM. We found that a conserved WRC-interacting receptor sequence (WIRS) motif in the cytoplasmic tail of DCC mediated the interaction between DCC and the WRC. This interaction was required for netrin-1-mediated axon guidance in cultured rodent commissural neurons. Furthermore, the WIRS motif of Fra, the Drosophila DCC ortholog, was required for attractive signaling in vivo at the Drosophila midline. The CMM-associated R1343H variant of DCC, which altered the WIRS motif, prevented the DCC-WRC interaction and impaired axon guidance in cultured commissural neurons and in Drosophila. The findings reveal the WRC as a pivotal component of netrin-1-DCC signaling and uncover a molecular mechanism explaining how a human genetic variant in the cytoplasmic tail of DCC may lead to CMM.


Asunto(s)
Orientación del Axón , Receptor DCC , Proteínas de Drosophila , Netrina-1 , Netrina-1/metabolismo , Netrina-1/genética , Receptor DCC/metabolismo , Receptor DCC/genética , Animales , Humanos , Orientación del Axón/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ratas , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Axones/metabolismo , Axones/fisiología , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Transducción de Señal , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ratones , Neuronas/metabolismo , Células HEK293 , Receptores de Netrina
9.
J Cell Biol ; 223(12)2024 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-39373700

RESUMEN

Two protocadherins, Dachsous and Fat, regulate organ growth in Drosophila via the Hippo pathway. Dachsous and Fat bind heterotypically to regulate the abundance and subcellular localization of a "core complex" consisting of Dachs, Dlish, and Approximated. This complex localizes to the junctional cortex where it represses Warts. Dachsous is believed to promote growth by recruiting and stabilizing this complex, while Fat represses growth by promoting its degradation. Here, we examine the functional relationships between the intracellular domains of Dachsous and Fat and the core complex. While Dachsous promotes the accumulation of core complex proteins in puncta, it is not required for their assembly. Indeed, the core complex accumulates maximally in the absence of both Dachsous and Fat. Furthermore, Dachsous represses growth in the absence of Fat by removing the core complex from the junctional cortex. Fat similarly recruits core complex components but promotes their degradation. Our findings reveal that Dachsous and Fat coordinately constrain tissue growth by repressing the core complex.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Cadherinas/metabolismo , Cadherinas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transducción de Señal , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana , Proteínas Quinasas , Caseína Cinasa 1 épsilon , Miosinas , Moléculas de Adhesión Celular
10.
Nat Commun ; 15(1): 8691, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375335

RESUMEN

Morphogenesis requires building stable macromolecular structures from highly dynamic proteins. Muscles are anchored by long-lasting integrin adhesions to resist contractile force. However, the mechanisms governing integrin diffusion, immobilization, and activation within developing tissues remain elusive. Here, we show that actin polymerization-driven membrane protrusions form nanotopographies that enable strong adhesion at Drosophila muscle attachment sites (MASs). Super-resolution microscopy reveals that integrins assemble adhesive belts around Arp2/3-dependent actin protrusions, forming invadosome-like structures with membrane nanotopographies. Single protein tracking shows that, during MAS development, integrins become immobile and confined within diffusion traps formed by the membrane nanotopographies. Actin filaments also display restricted motion and confinement, indicating strong mechanical connection with integrins. Using isolated muscle cells, we show that substrate nanotopography, rather than rigidity, drives adhesion maturation by regulating actin protrusion, integrin diffusion and immobilization. These results thus demonstrate that actin-polymerization-driven membrane protrusions are essential for the formation of strong integrin adhesions sites in the developing embryo, and highlight the important contribution of geometry to morphogenesis.


Asunto(s)
Actinas , Adhesión Celular , Proteínas de Drosophila , Drosophila melanogaster , Integrinas , Animales , Actinas/metabolismo , Integrinas/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/embriología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Morfogénesis , Citoesqueleto de Actina/metabolismo , Embrión no Mamífero/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Músculos/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(42): e2403450121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39388265

RESUMEN

Aging is the biggest risk factor for Parkinson's disease (PD), suggesting that age-related changes in the brain promote dopamine neuron vulnerability. It is unclear, however, whether aging alone is sufficient to cause significant dopamine neuron loss, and if so, how this intersects with PD-related neurodegeneration. Here, through examining a large collection of naturally varying Drosophila strains, we find a strong relationship between life span and age-related dopamine neuron loss. Strains with naturally short-lived animals exhibit a loss of dopamine neurons without generalized neurodegeneration, while animals from long-lived strains retain dopamine neurons across age. Metabolomic profiling reveals lower glutathione levels in short-lived strains which is associated with elevated levels of reactive oxygen species (ROS), sensitivity to oxidative stress, and vulnerability to silencing the familial PD gene parkin. Strikingly, boosting neuronal glutathione levels via glutamate-cysteine ligase (Gcl) overexpression is sufficient to normalize ROS levels, extend life span, and block dopamine neurons loss in short-lived backgrounds, demonstrating that glutathione deficiencies are central to neurodegenerative phenotypes associated with short longevity. These findings may be relevant to human PD pathogenesis, where glutathione depletion is reported to occur in the idiopathic PD patient brain through unknown mechanisms. Building on this, we find reduced expression of the Gcl catalytic subunit in both Drosophila strains vulnerable to age-related dopamine neuron loss and in the human brain from familial PD patients harboring the common LRRK2 G2019S mutation. Our study across Drosophila and human PD systems suggests that glutathione synthesis and levels play a conserved role in regulating age-related dopamine neuron health.


Asunto(s)
Envejecimiento , Neuronas Dopaminérgicas , Proteínas de Drosophila , Glutatión , Longevidad , Enfermedad de Parkinson , Especies Reactivas de Oxígeno , Animales , Glutatión/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Especies Reactivas de Oxígeno/metabolismo , Drosophila melanogaster/metabolismo , Estrés Oxidativo , Humanos , Glutamato-Cisteína Ligasa/metabolismo , Glutamato-Cisteína Ligasa/genética , Degeneración Nerviosa/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Drosophila/metabolismo , Masculino
12.
Nat Commun ; 15(1): 8477, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353950

RESUMEN

Seminal fluid is rich in sugars, but their role beyond supporting sperm motility is unknown. In this study, we found Drosophila melanogaster males transfer a substantial amount of a phospho-galactoside to females during mating, but only half as much when undernourished. This seminal substance, which we named venerose, induces an increase in germline stem cells (GSCs) and promotes sperm storage in females, especially undernourished ones. Venerose enters the hemolymph and directly activates nutrient-sensing Dh44+ neurons in the brain. Food deprivation directs the nutrient-sensing neurons to secrete more of the neuropeptide Dh44 in response to infused venerose. The secreted Dh44 then enhances the local niche signal, stimulating GSC proliferation. It also extends the retention of ejaculate by females, resulting in greater venerose absorption and increased sperm storage. In this study, we uncovered the role of a sugar-like seminal substance produced by males that coordinates reproductive responses to nutritional challenges in females.


Asunto(s)
Drosophila melanogaster , Reproducción , Conducta Sexual Animal , Animales , Masculino , Femenino , Drosophila melanogaster/fisiología , Drosophila melanogaster/metabolismo , Conducta Sexual Animal/fisiología , Reproducción/fisiología , Espermatozoides/metabolismo , Espermatozoides/fisiología , Semen/metabolismo , Semen/química , Proteínas de Drosophila/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Azúcares/metabolismo , Neuropéptidos/metabolismo , Estrés Fisiológico , Hemolinfa/metabolismo , Encéfalo/metabolismo , Motilidad Espermática/fisiología
13.
Nat Commun ; 15(1): 8405, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333531

RESUMEN

Stem cells preferentially use glycolysis instead of oxidative phosphorylation and this metabolic rewiring plays an instructive role in their fate; however, the underlying molecular mechanisms remain largely unexplored. PIWI-interacting RNAs (piRNAs) and PIWI proteins have essential functions in a range of adult stem cells across species. Here, we show that piRNAs and the PIWI protein Aubergine (Aub) are instrumental in activating glycolysis in Drosophila female germline stem cells (GSCs). Higher glycolysis is required for GSC self-renewal and aub loss-of-function induces a metabolic switch in GSCs leading to their differentiation. Aub directly binds glycolytic mRNAs and Enolase mRNA regulation by Aub depends on its 5'UTR. Furthermore, mutations of a piRNA target site in Enolase 5'UTR lead to GSC loss. These data reveal an Aub/piRNA function in translational activation of glycolytic mRNAs in GSCs, and pinpoint a mechanism of regulation of metabolic reprogramming in stem cells based on small RNAs.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Glucólisis , Factores de Iniciación de Péptidos , ARN Interferente Pequeño , Animales , Glucólisis/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Femenino , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Diferenciación Celular , Reprogramación Celular/genética , Regiones no Traducidas 5' , Células Madre Oogoniales/metabolismo , Células Madre Oogoniales/citología , Células Madre/metabolismo , Células Madre/citología , Reprogramación Metabólica , ARN de Interacción con Piwi
14.
Biomolecules ; 14(9)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39334829

RESUMEN

The role of Drosophila numb in regulating Notch signaling and neurogenesis has been extensively studied, with a particular focus on its effects on the peripheral nervous system (PNS). Previous studies based on a single loss-of-function allele of numb, numb1, showed an antineurogenic effect on the peripheral nervous system (PNS), which revealed that the wild-type numb suppresses Notch signaling. In the current study, we examined whether this phenotype is consistently observed in loss-of-function mutations of numb. Two more numb alleles, numbEY03840 and numbEY03852, were shown to have an antineurogenic phenotype in the PNS. We also found that introducing a wild-type numb genomic fragment into numb1 homozygotes rescued their antineurogenic phenotype. These results demonstrated that loss-of-function mutations of numb universally induce this phenotype. Many components of Notch signaling are encoded by maternal effect genes, but no maternal effect of numb was observed in this study. The antineurogenic phenotype of numb was found to be dependent on the Enhancer of split (E(spl)), a downstream gene of Notch signaling. We found that the combination of E(spl) homozygous and numb1 homozygous suppressed the neurogenic phenotype of the embryonic central nervous system (CNS) associated with the E(spl) mutation. In the E(spl) allele, genes encoding basic helix-loop-helix proteins, such as m5, m6, m7, and m8, remain. Thus, in the E(spl) allele, derepression of Notch activity by numb mutation can rescue the neurogenic phenotype by increasing the expression of the remaining genes in the E(spl) complex. We also uncovered a role for numb in regulating neuronal projections. Our results further support an important role for numb in the suppression of Notch signaling during embryonic nervous system development.


Asunto(s)
Proteínas de Drosophila , Receptores Notch , Transducción de Señal , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Drosophila melanogaster/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neurogénesis/genética , Fenotipo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Alelos , Mutación , Sistema Nervioso/metabolismo , Sistema Nervioso/embriología , Hormonas Juveniles
15.
Elife ; 132024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291827

RESUMEN

Differentiation of female germline stem cells into a mature oocyte includes the expression of RNAs and proteins that drive early embryonic development in Drosophila. We have little insight into what activates the expression of these maternal factors. One candidate is the zinc-finger protein OVO. OVO is required for female germline viability and has been shown to positively regulate its own expression, as well as a downstream target, ovarian tumor, by binding to the transcriptional start site (TSS). To find additional OVO targets in the female germline and further elucidate OVO's role in oocyte development, we performed ChIP-seq to determine genome-wide OVO occupancy, as well as RNA-seq comparing hypomorphic and wild type rescue ovo alleles. OVO preferentially binds in close proximity to target TSSs genome-wide, is associated with open chromatin, transcriptionally active histone marks, and OVO-dependent expression. Motif enrichment analysis on OVO ChIP peaks identified a 5'-TAACNGT-3' OVO DNA binding motif spatially enriched near TSSs. However, the OVO DNA binding motif does not exhibit precise motif spacing relative to the TSS characteristic of RNA polymerase II complex binding core promoter elements. Integrated genomics analysis showed that 525 genes that are bound and increase in expression downstream of OVO are known to be essential maternally expressed genes. These include genes involved in anterior/posterior/germ plasm specification (bcd, exu, swa, osk, nos, aub, pgc, gcl), egg activation (png, plu, gnu, wisp, C(3)g, mtrm), translational regulation (cup, orb, bru1, me31B), and vitelline membrane formation (fs(1)N, fs(1)M3, clos). This suggests that OVO is a master transcriptional regulator of oocyte development and is responsible for the expression of structural components of the egg as well as maternally provided RNAs that are required for early embryonic development.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Sitio de Iniciación de la Transcripción , Animales , Femenino , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Oocitos/metabolismo , Proteínas de Unión al ADN , Factores de Transcripción
16.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39337379

RESUMEN

The temperature-sensitive Drosophila mutant agnts3 exhibits the restoration of learning defects both after heat shock (HS) and under hypomagnetic conditions (HMC). Previously, agnts3 was shown to have an increased level of LIM kinase 1 (LIMK1). However, its limk1 sequence did not significantly differ from that of the wild-type strain Canton-S (CS). Here, we performed whole-genome and poly(A)-enriched transcriptome sequencing of CS and agnts3 males normally, after HMC, and after HS. Several high-effect agnts3-specific mutations were identified, including MED23 (regulation of HS-dependent transcription) and Spn42De, the human orthologs of which are associated with intellectual disorders. Pronounced interstrain differences between the transcription profiles were revealed. Mainly, they included the genes of defense and stress response, long non-coding RNAs, and transposons. After HS, the differences between the transcriptomes became less pronounced. In agnts3, prosalpha1 was the only gene whose expression changed after both HS and HMC. The normal downregulation of prosalpha1 and Spn42De in agnts3 was confirmed by RT-PCR. Analysis of limk1 expression did not reveal any interstrain differences or changes after stress. Thus, behavioral differences between CS and agnts3 both under normal and stressed conditions are not due to differences in limk1 transcription. Instead, MED23, Spn42De, and prosalpha1 are more likely to contribute to the agnts3 phenotype.


Asunto(s)
Perfilación de la Expresión Génica , Quinasas Lim , Mutación , Transcriptoma , Animales , Perfilación de la Expresión Génica/métodos , Quinasas Lim/genética , Quinasas Lim/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Masculino , Drosophila melanogaster/genética , Respuesta al Choque Térmico/genética , Genoma de los Insectos
17.
Int J Mol Sci ; 25(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39337588

RESUMEN

Evidence suggests that angiotensin-converting enzyme inhibitors (ACEIs) may increase metabolic rate by promoting thermogenesis, potentially through enhanced fat oxidation and improved insulin. More research is, however, needed to understand this intricate process. In this study, we used 22 lines from the Drosophila Genetic Reference Panel to assess the metabolic rate of virgin female and male flies that were either fed a standard medium or received lisinopril for one week or five weeks. We demonstrated that lisinopril affects the whole-body metabolic rate in Drosophila melanogaster in a genotype-dependent manner. However, the effects of genotypes are highly context-dependent, being influenced by sex and age. Our findings also suggest that lisinopril may increase the Drosophila metabolic rate via the accumulation of a bradykinin-like peptide, which, in turn, enhances cold tolerance by upregulating Ucp4b and Ucp4c genes. Finally, we showed that knocking down Ance, the ortholog of mammalian ACE in Malpighian/renal tubules and the nervous system, leads to opposite changes in metabolic rate, and that the effect of lisinopril depends on Ance in these systems, but in a sex- and age-specific manner. In conclusion, our results regarding D. melanogaster support existing evidence of a connection between ACEI drugs and metabolic rate while offering new insights into this relationship.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Proteínas de Drosophila , Drosophila melanogaster , Lisinopril , Animales , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Lisinopril/farmacología , Masculino , Femenino , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/antagonistas & inhibidores , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/genética , Termogénesis/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos
18.
Cell Mol Life Sci ; 81(1): 396, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261338

RESUMEN

High dietary sugar (HDS), a contemporary dietary concern due to excessive intake of added sugars and carbohydrates, escalates the risk of metabolic disorders and concomitant cancers. However, the molecular mechanisms underlying HDS-induced cancer progression are not completely understood. We found that phosphoenolpyruvate carboxykinase 1 (PEPCK1), a pivotal enzyme in gluconeogenesis, is paradoxically upregulated in tumors by HDS, but not by normal dietary sugar (NDS), during tumor progression. Targeted knockdown of pepck1, but not pepck2, specifically in tumor tissue in Drosophila in vivo, not only attenuates HDS-induced tumor growth but also significantly improves the survival of Ras/Src tumor-bearing animals fed HDS. Interestingly, HP1a-mediated heterochromatin interacts directly with the pepck1 gene and downregulates pepck1 gene expression in wild-type Drosophila. Mechanistically, we demonstrated that, under HDS conditions, pepck1 knockdown reduces both wingless and TOR signaling, decreases evasion of apoptosis, reduces genome instability, and suppresses glucose uptake and trehalose levels in tumor cells in vivo. Moreover, rational pharmacological inhibition of PEPCK1, using hydrazinium sulfate, greatly improves the survival of tumor-bearing animals with pepck1 knockdown under HDS. This study is the first to show that elevated levels of dietary sugar induce aberrant upregulation of PEPCK1, which promotes tumor progression through altered cell signaling, evasion of apoptosis, genome instability, and reprogramming of carbohydrate metabolism. These findings contribute to our understanding of the complex relationship between diet and cancer at the molecular, cellular, and organismal levels and reveal PEPCK1 as a potential target for the prevention and treatment of cancers associated with metabolic disorders.


Asunto(s)
Progresión de la Enfermedad , Proteínas de Drosophila , Regulación hacia Arriba , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Humanos , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Apoptosis/genética , Transducción de Señal , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Glucosa/metabolismo , Inestabilidad Genómica , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Línea Celular Tumoral , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Regulación Neoplásica de la Expresión Génica , Trehalosa/metabolismo , Carbohidratos de la Dieta/efectos adversos , Drosophila/metabolismo
19.
Elife ; 122024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291956

RESUMEN

Synaptic heterogeneity is a hallmark of nervous systems that enables complex and adaptable communication in neural circuits. To understand circuit function, it is thus critical to determine the factors that contribute to the functional diversity of synapses. We investigated the contributions of voltage-gated calcium channel (VGCC) abundance, spatial organization, and subunit composition to synapse diversity among and between synapses formed by two closely related Drosophila glutamatergic motor neurons with distinct neurotransmitter release probabilities (Pr). Surprisingly, VGCC levels are highly predictive of heterogeneous Pr among individual synapses of either low- or high-Pr inputs, but not between inputs. We find that the same number of VGCCs are more densely organized at high-Pr synapses, consistent with tighter VGCC-synaptic vesicle coupling. We generated endogenously tagged lines to investigate VGCC subunits in vivo and found that the α2δ-3 subunit Straightjacket along with the CAST/ELKS active zone (AZ) protein Bruchpilot, both key regulators of VGCCs, are less abundant at high-Pr inputs, yet positively correlate with Pr among synapses formed by either input. Consistently, both Straightjacket and Bruchpilot levels are dynamically increased across AZs of both inputs when neurotransmitter release is potentiated to maintain stable communication following glutamate receptor inhibition. Together, these findings suggest a model in which VGCC and AZ protein abundance intersects with input-specific spatial and molecular organization to shape the functional diversity of synapses.


Asunto(s)
Canales de Calcio , Proteínas de Drosophila , Sinapsis , Animales , Sinapsis/metabolismo , Sinapsis/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Canales de Calcio/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Drosophila/fisiología , Drosophila melanogaster/metabolismo , Transmisión Sináptica/fisiología
20.
Sci Rep ; 14(1): 20867, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242711

RESUMEN

Huntington's disease (HD) is a rare neurodegenerative disease caused due to aggregation of Huntingtin (HTT) protein. This study involves the cloning of 40 DnaJ chaperones from Drosophila, and overexpressing them in yeasts and fly models of HD. Accordingly, DnaJ chaperones were catalogued as enhancers or suppressors based on their growth phenotypes and aggregation properties. 2 of the chaperones that came up as targets were CG5001 and P58IPK. Protein aggregation and slow growth phenotype was rescued in yeasts, S2 cells, and Drosophila transgenic lines of HTT103Q with these overexpressed chaperones. Since DnaJ chaperones have protein sequence similarity across species, they can be used as possible tools to combat the effects of neurodegenerative diseases.


Asunto(s)
Proteínas de Drosophila , Proteínas del Choque Térmico HSP40 , Proteína Huntingtina , Enfermedad de Huntington , Animales , Humanos , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Drosophila , Drosophila melanogaster , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Agregado de Proteínas , Agregación Patológica de Proteínas/genética , Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA