Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 126.198
1.
Sci Rep ; 14(1): 12813, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834719

Deep-sea coral assemblages are marine biodiversity hot spots. Because of their life history traits, deep-sea corals are highly vulnerable to the impacts of human activities such as fishing. The critically endangered "bamboo coral" Isidella elongata is a key structuring species of deep muddy bottoms that is susceptible to habitat destruction, particularly from trawling. A shallow population of this species was recently discovered by a multibeam and ROV survey offshore of the Asinara Island marine protected area (MPA) (northwestern Sardinia, NW Mediterranean Sea). This vulnerable marine assemblage has been found under healthy conditions at depths ranging from 110 to 298 m. Isidella elongata occurs on a muddy seafloor locally characterised by boulders associated with black coral species (Parantipathes larix and Antipathes dichotoma). The lush colonies of I. elongata seem to be related to natural protection from bottom trawling activity; nevertheless, the presence of lost fishing artisanal nets has been observed in the study area. These structuring species are indicators of vulnerable marine ecosystems, and their conservation is essential for preserving marine biodiversity. Therefore, enlarging the perimeter of the Asinara Island MPA into its deeper western waters is suggested to ensure the protection of these valuable and vulnerable marine ecosystems.


Anthozoa , Biodiversity , Conservation of Natural Resources , Islands , Animals , Mediterranean Sea , Conservation of Natural Resources/methods , Italy , Ecosystem , Fisheries
2.
Parasit Vectors ; 17(1): 244, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822348

BACKGROUND: Snails of the Lymnaeidae family are the intermediate hosts of Fasciola species, the causative agents of fascioliasis. The purpose of this study was to determine the prevalence of Fasciola species in lymnaeid snails and to investigate the association of geoclimatic factors and Fasciola species distribution in northwestern provinces of Iran using geographical information system (GIS) data. METHODS: A total of 2000 lymnaeid snails were collected from 33 permanent and seasonal habitats in northwestern Iran during the period from June to November 2021. After identification by standard morphological keys, they were subjected to shedding and crushing methods. Different stages of Fasciola obtained from these snails were subjected to the ITS1 polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for species identification. The associations of weather temperature, rainfall, humidity, evaporation, air pressure, wind speed, elevation, and land cover with the distribution of Fasciola species were investigated. Geographical and statistical analysis was performed using ArcMap and SPSS software, respectively, to determine factors related to Fasciola species distribution. RESULTS: Of the 2000 snails collected, 19 were infected with Fasciola hepatica (0.09%), six with F. gigantica (0.03%), and 13 with other trematodes. Among geoclimatic and environmental factors, mean humidity, maximum humidity, and wind speed were significantly higher in areas where F. hepatica was more common than F. gigantica. The altitude of F. hepatica-prevalent areas was generally lower than F. gigantica areas. No significant relationship was observed between other investigated geoclimatic factors and the distribution of infected snails. CONCLUSIONS: The present study showed the relationship of humidity and wind speed with the distribution of snails infected with F. hepatica or F. gigantica in the northwestern regions of Iran. In contrast to F. gigantica, F. hepatica was more prevalent in low-altitude areas. Further research is recommended to elucidate the relationship between geoclimatic factors and the presence of intermediate hosts of the two Fasciola species.


Fasciola , Fascioliasis , Snails , Animals , Iran/epidemiology , Fascioliasis/epidemiology , Fascioliasis/veterinary , Fascioliasis/parasitology , Snails/parasitology , Fasciola/genetics , Fasciola/isolation & purification , Fasciola/classification , Fasciola hepatica/genetics , Fasciola hepatica/isolation & purification , Fasciola hepatica/physiology , Fasciola hepatica/classification , Climate , Ecosystem , Seasons , Polymorphism, Restriction Fragment Length
3.
Glob Chang Biol ; 30(6): e17362, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822565

The presence of alien species represents a major cause of habitat degradation and biodiversity loss worldwide, constituting a critical environmental challenge of our time. Despite sometimes experiencing reduced propagule pressure, leading to a reduced genetic diversity and an increased chance of inbreeding depression, alien invaders are often able to thrive in the habitats of introduction, giving rise to the so-called "genetic paradox" of biological invasions. The adaptation of alien species to the new habitats is therefore a complex aspect of biological invasions, encompassing genetic, epigenetic, and ecological processes. Albeit numerous studies and reviews investigated the mechanistic foundation of the invaders' success, and aimed to solve the genetic paradox, still remains a crucial oversight regarding the temporal context in which adaptation takes place. Given the profound knowledge and management implications, this neglected aspect of invasion biology should receive more attention when examining invaders' ability to thrive in the habitats of introduction. Here, we discuss the adaptation mechanisms exhibited by alien species with the purpose of highlighting the timing of their occurrence during the invasion process. We analyze each stage of the invasion separately, providing evidence that adaptation mechanisms play a role in all of them. However, these mechanisms vary across the different stages of invasion, and are also influenced by other factors, such as the transport speed, the reproduction type of the invader, and the presence of human interventions. Finally, we provide insights into the implications for management, and identify knowledge gaps, suggesting avenues for future research that can shed light on species adaptability. This, in turn, will contribute to a more comprehensive understanding of biological invasions.


Adaptation, Physiological , Ecosystem , Introduced Species , Biodiversity , Animals
4.
Glob Chang Biol ; 30(6): e17357, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822559

Determination of tipping points in nitrogen (N) isotope (δ15N) natural abundance, especially soil δ15N, with increasing aridity, is critical for estimating N-cycling dynamics and N limitation in terrestrial ecosystems. However, whether there are linear or nonlinear responses of soil δ15N to increases in aridity and if these responses correspond well with soil N cycling remains largely unknown. In this study, we investigated soil δ15N and soil N-cycling characteristics in both topsoil and subsoil layers along a drought gradient across a 3000-km transect of drylands on the Qinghai-Tibetan Plateau. We found that the effect of increasing aridity on soil δ15N values shifted from negative to positive with thresholds at aridity index (AI) = 0.27 and 0.29 for the topsoil and subsoil, respectively, although soil N pools and N transformation rates linearly decreased with increasing aridity in both soil layers. Furthermore, we identified markedly different correlations between soil δ15N and soil N-cycling traits above and below the AI thresholds (0.27 and 0.29 for topsoil and subsoil, respectively). Specifically, in wetter regions, soil δ15N positively correlated with most soil N-cycling traits, suggesting that high soil δ15N may result from the "openness" of soil N cycling. Conversely, in drier regions, soil δ15N showed insignificant relationships with soil N-cycling traits and correlated well with factors, such as soil-available phosphorus and foliage δ15N, demonstrating that pathways other than typical soil N cycling may dominate soil δ15N under drier conditions. Overall, these results highlight that different ecosystem N-cycling processes may drive soil δ15N along the aridity gradient, broadening our understanding of N cycling as indicated by soil δ15N under changing drought regimes. The aridity threshold of soil δ15N should be considered in terrestrial N-cycling models when incorporating 15N isotope signals to predict N cycling and availability under climatic dryness.


Droughts , Ecosystem , Nitrogen Cycle , Nitrogen Isotopes , Soil , Soil/chemistry , Nitrogen Isotopes/analysis , China , Nitrogen/analysis , Nitrogen/metabolism , Desert Climate
5.
Glob Chang Biol ; 30(6): e17361, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822568

Our current planetary crisis, including multiple jointly acting factors of global change, moves the need for effective ecosystem restoration center stage and compels us to explore unusual options. We here propose exploring combinatorial approaches to restoration practices: management practices are drawn at random and combined from a locally relevant pool of possible management interventions, thus creating an experimental gradient in the number of interventions. This will move the current degree of interventions to higher dimensionality, opening new opportunities for unlocking unknown synergistic effects. Thus, the high dimensionality of global change (multiple jointly acting factors) would be more effectively countered by similar high-dimensionality in solutions. In this concept, regional restoration hubs play an important role as guardians of locally relevant information and sites of experimental exploration. Data collected from such studies could feed into a global database, which could be used to learn about general principles of combined restoration practices, helping to refine future experiments. Such combinatorial approaches to exploring restoration intervention options may be our best hope yet to achieve decisive progress in ecological restoration at the timescale needed to mitigate and reverse the most severe losses caused by global environmental change.


Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Environmental Restoration and Remediation/methods , Ecology/methods , Climate Change
6.
Glob Chang Biol ; 30(6): e17358, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822590

Human activities and climate change cause abiotic factors to fluctuate through time, sometimes passing thresholds for organismal reproduction and survival. Multiple stressors can independently or interactively impact organisms; however, few studies have examined how they interact when they overlap spatially but occur asynchronously. Fluctuations in salinity have been found in freshwater habitats worldwide. Meanwhile, heatwaves have become more frequent and extreme. High salinity pulses and heatwaves are often decoupled in time but can still collectively impact freshwater zooplankton. The time intervals between them, during which population growth and community recovery could happen, can influence combined effects, but no one has examined these effects. We conducted a mesocosm experiment to examine how different recovery times (0-, 3-, 6-week) between salt treatment and heatwave exposure influence their combined effects. We hypothesized that antagonistic effects would appear when having short recovery time, because previous study found that similar species were affected by the two stressors, but effects would become additive with longer recovery time since fully recovered communities would respond to heatwave similar to undisturbed communities. Our findings showed that, when combined, the two-stressor joint impacts changed from antagonistic to additive with increased recovery time between stressors. Surprisingly, full compositional recovery was not achieved despite a recovery period that was long enough for population growth, suggesting legacy effects from earlier treatment. The recovery was mainly driven by small organisms, such as rotifers and small cladocerans. As a result, communities recovering from previous salt exposure responded differently to heatwaves than undisturbed communities, leading to similar zooplankton communities regardless of the recovery time between stressors. Our research bolsters the understanding and management of multiple-stressor issues by revealing that prior exposure to one stressor has long-lasting impacts on community recovery that can lead to unexpected joint effects of multiple stressors.


Climate Change , Salinity , Stress, Physiological , Zooplankton , Animals , Zooplankton/physiology , Time Factors , Fresh Water , Hot Temperature/adverse effects , Ecosystem
7.
Microbes Environ ; 39(2)2024.
Article En | MEDLINE | ID: mdl-38825479

The nitrite oxidizing bacterial genus Ca. Nitrotoga was only recently discovered to be widespread in freshwater systems; however, limited information is currently available on the environmental factors and seasonal effects that influence its distribution in lakes. In a one-year study in a dimictic lake, based on monthly sampling along a vertical profile, the droplet digital PCR quantification of Ca. Nitrotoga showed a strong spatio-temporal patchiness. A correlation ana-lysis with environmental parameters revealed that the abundance of Ca. Nitrotoga correlated with dissolved oxygen and ammonium, suggesting that the upper hypolimnion of the lake is the preferred habitat.


Lakes , Seasons , Lakes/microbiology , Lakes/chemistry , Nitrites/metabolism , Nitrites/analysis , Ammonium Compounds/metabolism , Ammonium Compounds/analysis , Oxygen/metabolism , Oxygen/analysis , Ecosystem
8.
Environ Monit Assess ; 196(7): 596, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839676

The issue of soil acidification in tea plantations has become a critical concern due to its potential impact on tea quality and plant health. Understanding the factors contributing to soil acidification is essential for implementing effective soil management strategies in tea-growing regions. In this study, a field study was conducted to investigate the effects of tea plantations on soil acidification and the associated acid-base buffering capacity (pHBC). We assessed acidification, pHBC, nutrient concentrations, and cation contents in the top 0-20 cm layer of soil across forty tea gardens of varying stand ages (0-5, 5-10, 10-20, and 20-40 years old) in Anji County, Zhejiang Province, China. The results revealed evident soil acidification due to tea plantation activities, with the lowest soil pH observed in tea gardens aged 10-20 and 20-40 years. Higher levels of soil organic matter (SOM), total nitrogen (TN), Olsen phosphorus (Olsen-P), available iron (Fe), and exchangeable hydrogen (H+) were notably recorded in 10-20 and 20-40 years old tea garden soils, suggesting an increased risk of soil acidification with prolonged tea cultivation. Furthermore, prolonged tea cultivation correlated with increased pHBC, which amplified with tea stand ages. The investigation of the relationship between soil pHBC and various parameters highlighted significant influences from soil pH, SOM, cation exchange capacity, TN, available potassium, Olsen-P, exchangeable acids (including H+ and aluminum), available Fe, and available zinc. Consequently, these findings underscore a substantial risk of soil acidification in tea gardens within the monitored region, with SOM and TN content being key driving factors influencing pHBC.


Camellia sinensis , Environmental Monitoring , Nitrogen , Soil , Soil/chemistry , Camellia sinensis/chemistry , Nitrogen/analysis , China , Hydrogen-Ion Concentration , Ecosystem , Phosphorus/analysis , Tea/chemistry , Agriculture
10.
Glob Chang Biol ; 30(6): e17353, 2024 Jun.
Article En | MEDLINE | ID: mdl-38837850

Rapid climate change is altering Arctic ecosystems at unprecedented rates. These changes in the physical environment may open new corridors for species range expansions, with substantial implications for subsistence-dependent communities and sensitive ecosystems. Over the past 20 years, rising incidental harvest of Pacific salmon by subsistence fishers has been monitored across a widening range spanning multiple land claim jurisdictions in Arctic Canada. In this study, we connect Indigenous and scientific knowledges to explore potential oceanographic mechanisms facilitating this ongoing northward expansion of Pacific salmon into the western Canadian Arctic. A regression analysis was used to reveal and characterize a two-part mechanism related to thermal and sea-ice conditions in the Chukchi and Beaufort seas that explains nearly all of the variation in the relative abundance of salmon observed within this region. The results indicate that warmer late-spring temperatures in a Chukchi Sea watch-zone and persistent, suitable summer thermal conditions in a Beaufort Sea watch-zone together create a range-expansion corridor and are associated with higher salmon occurrences in subsistence harvests. Furthermore, there is a body of knowledge to suggest that these conditions, and consequently the presence and abundance of Pacific salmon, will become more persistent in the coming decades. Our collaborative approach positions us to document, explore, and explain mechanisms driving changes in fish biodiversity that have the potential to, or are already affecting, Indigenous rights-holders in a rapidly warming Arctic.


Climate Change , Animals , Arctic Regions , Canada , Salmon/physiology , Temperature , Animal Distribution , Ecosystem , Seasons
11.
Glob Chang Biol ; 30(6): e17367, 2024 Jun.
Article En | MEDLINE | ID: mdl-38840430

Wildfire activity is increasing globally. The resulting smoke plumes can travel hundreds to thousands of kilometers, reflecting or scattering sunlight and depositing particles within ecosystems. Several key physical, chemical, and biological processes in lakes are controlled by factors affected by smoke. The spatial and temporal scales of lake exposure to smoke are extensive and under-recognized. We introduce the concept of the lake smoke-day, or the number of days any given lake is exposed to smoke in any given fire season, and quantify the total lake smoke-day exposure in North America from 2019 to 2021. Because smoke can be transported at continental to intercontinental scales, even regions that may not typically experience direct burning of landscapes by wildfire are at risk of smoke exposure. We found that 99.3% of North America was covered by smoke, affecting a total of 1,333,687 lakes ≥10 ha. An incredible 98.9% of lakes experienced at least 10 smoke-days a year, with 89.6% of lakes receiving over 30 lake smoke-days, and lakes in some regions experiencing up to 4 months of cumulative smoke-days. Herein we review the mechanisms through which smoke and ash can affect lakes by altering the amount and spectral composition of incoming solar radiation and depositing carbon, nutrients, or toxic compounds that could alter chemical conditions and impact biota. We develop a conceptual framework that synthesizes known and theoretical impacts of smoke on lakes to guide future research. Finally, we identify emerging research priorities that can help us better understand how lakes will be affected by smoke as wildfire activity increases due to climate change and other anthropogenic activities.


Ecosystem , Lakes , Smoke , Wildfires , Smoke/analysis , North America , Environmental Monitoring
12.
Glob Chang Biol ; 30(6): e17340, 2024 Jun.
Article En | MEDLINE | ID: mdl-38840515

Grassy ecosystems cover more than 40% of the world's terrestrial surface, supporting crucial ecosystem services and unique biodiversity. These ecosystems have experienced major losses from conversion to agriculture with the remaining fragments threatened by global change. Woody plant encroachment, the increase in woody cover threatening grassy ecosystems, is a major global change symptom, shifting the composition, structure, and function of plant communities with concomitant effects on all biodiversity. To identify generalisable impacts of encroachment on biodiversity, we urgently need broad-scale studies on how species respond to woody cover change. Here, we make use of bird atlas, woody cover change data (between 2007 and 2016) and species traits, to assess: (1) population trends and woody cover responses using dynamic occupancy models; (2) how outcomes relate to habitat, diet and nesting traits; and (3) predictions of future occupancy trends, for 191 abundant, southern African bird species. We found that: (1) 63% (121) of species showed a decline in occupancy, with 18% (34) of species' declines correlated with increasing woody cover (i.e. losers). Only 2% (4) of species showed increasing population trends linked with increased woody cover (i.e. winners); (2) Open habitat specialist, invertivorous, ground nesting birds were the most frequent losers, however, we found no definitive evidence that the selected traits could predict outcomes; and (3) We predict open habitat loser species will take on average 52 years to experience 50% population declines with current rates of encroachment. Our results bring attention to concerning region-wide declining bird population trends and highlight woody plant encroachment as an important driver of bird population dynamics. Importantly, these findings should encourage improved management and restoration of our remaining grassy ecosystems. Furthermore, our findings show the importance of lands beyond protected areas for biodiversity, and the urgent need to mitigate the impacts of woody plant encroachment on bird biodiversity.


Biodiversity , Birds , Ecosystem , Population Dynamics , Animals , Birds/physiology , Conservation of Natural Resources , South Africa
13.
Environ Monit Assess ; 196(7): 597, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842642

Photosynthesis in vegetation is one of the key processes in maintaining regional ecological balance and climate stability, and it is of significant importance for understanding the health of regional ecosystems and addressing climate change. Based on 2001-2021 Global OCO-2 Solar-Induced Fluorescence (GOSIF) dataset, this study analyzed spatiotemporal variations in Asian vegetation photosynthesis and its response to climate and human activities. Results show the following: (1) From 2001 to 2021, the overall photosynthetic activity of vegetation in the Asian region has shown an upward trend, exhibiting a stable distribution pattern with higher values in the eastern and southern regions and lower values in the central, western, and northern regions. In specific regions such as the Turgen Plateau in northwestern Kazakhstan, Cambodia, Laos, and northeastern Syria, photosynthesis significantly declined. (2) Meteorological factors influencing photosynthesis exhibit differences based on latitude and vertical zones. In low-latitude regions, temperature is the primary driver, while in mid-latitude areas, solar radiation and precipitation are crucial. High-latitude regions are primarily influenced by temperature, and high-altitude areas depend on precipitation and solar radiation. (3) Human activities (56.44%) have a slightly greater impact on the dynamics of Asian vegetation photosynthesis compared to climate change (43.56%). This research deepens our comprehension of the mechanisms behind the fluctuations in Asian vegetation photosynthesis, offering valuable perspectives for initiatives in environmental conservation, sustainability, and climate research.


Climate Change , Environmental Monitoring , Photosynthesis , Satellite Imagery , Environmental Monitoring/methods , Asia , Ecosystem , Plants
14.
PLoS One ; 19(6): e0303422, 2024.
Article En | MEDLINE | ID: mdl-38843131

Describing the structural complexity of seabeds is of primary importance for a number of geomorphological, hydrodynamical and ecological issues. Aiming to bring a decisive insight on the long-term development of a unified view, the present study reports on a comparative multi-site analysis of high resolution topography surveys in rough nearshore environments. The nine study sites have been selected to cover a wide variety of topographical features, including rocky and coral seabeds. The topography data has been processed to separate roughness and bathymetry-related terrain features, allowing to perform a comprehensive spectral and statistical analysis of each site. A series of roughness metrics have been tested to identify the most relevant estimators of the bottom roughness at each site. The spectral analysis highlights the systematic presence of a self-affine range of variable extension and spectral slope. The standard deviation of the seabed elevation varies from 0.04 to 0.77 m. The statistical and multi-scale analysis performed on the whole set of roughness metrics allows to identify connection between metrics and therefore to propose a reduced set of relevant roughness estimators. A more general emphasis is placed on the need to properly define a unified framework when reconstructing roughness statistics and bathymetry from fine seabed topographical data.


Anthozoa , Anthozoa/anatomy & histology , Animals , Geologic Sediments , Ecosystem
15.
PLoS One ; 19(6): e0298868, 2024.
Article En | MEDLINE | ID: mdl-38843128

Commercial fisheries along the US West Coast are important components of local and regional economies. They use various fishing gear, target a high diversity of species, and are highly spatially heterogeneous, making it challenging to generate a synoptic picture of fisheries activity in the region. Still, understanding the spatial and temporal dynamics of US West Coast fisheries is critical to meet the US legal mandate to manage fisheries sustainably and to better coordinate activities among a growing number of users of ocean space, including offshore renewable energy, aquaculture, shipping, and interactions with habitats and key non-fishery species such as seabirds and marine mammals. We analyzed vessel tracking data from Vessel Monitoring System (VMS) from 2010 to 2017 to generate high-resolution spatio-temporal estimates of contemporary fishing effort across a wide range of commercial fisheries along the entire US West Coast. We identified over 247,000 fishing trips across the entire VMS data, covering over 25 different fisheries. We validated the spatial accuracy of our analyses using independent estimates of spatial groundfish fisheries effort generated through the NOAA's National Marine Fisheries Service Observer Program. Additionally, for commercial groundfish fisheries operating in federal waters in California, we combined the VMS data with landings and ex-vessel value data from California commercial fisheries landings receipts to generate highly resolved estimates of landings and ex-vessel value, matching over 38,000 fish tickets with VMS data that included 87% of the landings and 76% of the ex-vessel value for groundfish. We highlight fisheries-specific and spatially-resolved patterns of effort, landings, and ex-vessel value, a bimodal distribution of fishing effort with respect to depth, and variable and generally declining effort over eight years. The information generated by our study can help inform future sustainable spatial fisheries management and other activities in the marine environment including offshore renewable energy planning.


Conservation of Natural Resources , Fisheries , Fisheries/legislation & jurisprudence , Fisheries/economics , California , Animals , Conservation of Natural Resources/methods , Ecosystem , Fishes , Ships
17.
Glob Chang Biol ; 30(6): e17338, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822535

Nitrogen (N) immobilization (Nim, including microbial N assimilation) and plant N uptake (PNU) are the two most important pathways of N retention in soils. The ratio of Nim to PNU (hereafter Nim:PNU ratio) generally reflects the degree of N limitation for plant growth in terrestrial ecosystems. However, the key factors driving the pattern of Nim:PNU ratio across global ecosystems remain unclear. Here, using a global data set of 1018 observations from 184 studies, we examined the relative importance of mycorrhizal associations, climate, plant, and soil properties on the Nim:PNU ratio across terrestrial ecosystems. Our results show that mycorrhizal fungi type (arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi) in combination with soil inorganic N mainly explain the global variation in the Nim:PNU ratio in terrestrial ecosystems. In AM fungi-associated ecosystems, the relationship between Nim and PNU displays a weaker negative correlation (r = -.06, p < .001), whereas there is a stronger positive correlation (r = .25, p < .001) in EM fungi-associated ecosystems. Our meta-analysis thus suggests that the AM-associated plants display a weak interaction with soil microorganisms for N absorption, while EM-associated plants cooperate with soil microorganisms. Furthermore, we find that the Nim:PNU ratio for both AM- and EM-associated ecosystems gradually converge around a stable value (13.8 ± 0.5 for AM- and 12.1 ± 1.2 for EM-associated ecosystems) under high soil inorganic N conditions. Our findings highlight the dependence of plant-microbial interaction for N absorption on both plant mycorrhizal association and soil inorganic N, with the stable convergence of the Nim:PNU ratio under high soil N conditions.


Mycorrhizae , Nitrogen , Soil Microbiology , Soil , Mycorrhizae/physiology , Mycorrhizae/metabolism , Nitrogen/metabolism , Soil/chemistry , Plants/metabolism , Plants/microbiology , Ecosystem
18.
PLoS One ; 19(6): e0304204, 2024.
Article En | MEDLINE | ID: mdl-38843205

Vegetation construction is a key process for restoring and rehabilitating degraded ecosystems. However, the spatial pattern and process of native plants colonized by different vegetation restoration methods in semi-arid sandy land are poorly understood. In this study, two artificial vegetation restoration patterns (P1: row belt restoration pattern of Salix matsudana with low coverage; P2: a living sand barrier pattern of Caryopteris mongolica with low coverage) were selected to analyze the spatial distribution pattern and interspecific association of the colonizing native shrubs. The effects of the two restoration models on the spatial patterns of the main native semi-shrubs of the colonies (i.e., Artemisia ordosica and Corethrodendron lignosum var. leave) were studied using single variable and bivariate transformation point pattern analysis based on Ripley's L function. Our results showed that two restoration patterns significantly facilitated the establishment of A. ordosica and C. lignosum var. leave, with their coverage reaching 17.04% and 22.62%, respectively. In P1, the spatial distribution pattern of colonial shrubs tended to be a random distribution, and there was no spatial correlation between the species. In P2, the colonial shrub aggregation distribution was more dominant, and with the increase in scale, the aggregation distribution changed to a random distribution, whereas the interspecific association was negatively correlated. The differences in the spatial distribution patterns of colonized native semi-shrubs in these two restoration patterns could be related to the life form of planted plants, configuration methods, biological characteristics of colonized plants, and intra- and interspecific relationships of plants. Our results demonstrated that the nurse effect of artificially planted vegetation in the early stage of sand ecological restoration effectively facilitated the near-natural succession of communities. These findings have important implications for ecological restoration of degraded sandy land in the semi-arid region of northern China.


Ecosystem , China , Conservation of Natural Resources/methods , Artemisia/growth & development , Artemisia/physiology , Salix/growth & development , Environmental Restoration and Remediation/methods , Sand
19.
PLoS One ; 19(6): e0297251, 2024.
Article En | MEDLINE | ID: mdl-38843245

The challenges posed by environmental pollution, water scarcity, and energy limitations resulting from industrialization and modernization pose significant threats to human habitats. Consequently, assessing ecological livability and delineating pathways for improvement carry considerable practical importance. Leveraging panel data encompassing 288 cities in China from 2010 to 2021, this study establishes an evaluation system for ecological livability, encompassing three dimensions: natural greenery level, residential comfort level, and environmental governance level. Subsequently, the study measures the ecological livability level and investigates the impact of "sponge city" pilots on ecological livability and their underlying mechanisms using a multi-period difference-in-differences model. Our findings underscore the substantial role of "sponge city" pilot projects in bolstering ecological livability, with robustness observed across various models and specifications. Specifically, human capital concentration and green technology innovation emerge as pivotal pathways through which "sponge city" pilots augment ecological livability. Moreover, the effectiveness of "sponge city" pilots varies across regions due to disparities in drought severity and water supply, with more pronounced effects observed in arid areas and cities facing water supply shortages. This research furnishes comprehensive theoretical and empirical underpinnings for comprehending the influence of "sponge city" pilots on ecological livability, offering valuable insights and recommendations to inform future efforts aimed at enhancing ecological livability and fostering sustainable development.


Cities , China , Humans , Conservation of Natural Resources/methods , Ecosystem , Water Supply , Pilot Projects , Pilots , Environmental Pollution
20.
PLoS One ; 19(6): e0304718, 2024.
Article En | MEDLINE | ID: mdl-38843266

Climate change is anticipated to have long-term and pervasive effects on marine ecosystems, with cascading consequences to many ocean-reliant sectors. For the marine fisheries sector, these impacts can be further influenced by future socio-economic and political factors. This raises the need for robust projections to capture the range of potential biological and economic risks and opportunities posed by climate change to marine fisheries. Here, we project future changes in the abundance of eight commercially important fish and crab species in the eastern Bering Sea and Chukchi Sea under different CMIP6 Shared Socioeconomic Pathways (SSPs) leading to contrasting future (2021-2100) scenarios of warming, sea ice concentration, and net primary production. Our results revealed contrasting patterns of abundance and distribution changes across species, time periods and climate scenarios, highlighting potential winners and losers under future climate change. In particular, the least changes in future species abundance and distribution were observed under SSP126. However, under the extreme scenario (SSP585), projected Pacific cod and snow crab abundances increased and decreased, respectively, with concurrent zonal and meridional future shifts in their centers of gravity. Importantly, projected changes in species abundance suggest that fishing at the same distance from the current major port in the Bering Sea (i.e., Dutch Harbor) could yield declining catches for highly valuable fisheries (e.g., Pacific cod and snow crab) under SSP585. This is driven by strong decreases in future catches of highly valuable species despite minimal declines in maximum catch potential, which are dominated by less valuable taxa. Hence, our findings show that projected changes in abundance and shifting distributions could have important biological and economic impacts on the productivity of commercial and subsistence fisheries in the eastern Bering and Chukchi seas, with potential implications for the effective management of transboundary resources.


Climate Change , Conservation of Natural Resources , Fisheries , Fishes , Fisheries/economics , Animals , Conservation of Natural Resources/economics , Ecosystem , Brachyura/physiology , Oceans and Seas
...