Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.684
Filtrar
1.
Luminescence ; 39(7): e4825, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961763

RESUMEN

Herein, we have reported a red-emitting 4-methyl coumarin fused barbituric acid azo dye (4-MCBA) synthesized by conventional method. Density functional theory (DFT) studies of tautomer compounds were done using (B3LYP) with a basis set of 6-31G(d,p). NLO analysis has shown that tautomer has mean first-order hyperpolarisabilities (ß) value of 1.8188 × 10-30 esu and 1.0470 × 10-30 esu for azo and hydrazone forms, respectively, which is approximately nine and five times greater than the magnitude of urea. 4-MCBA exhibited two absorption peaks in the range of 290-317 and 379-394 nm, and emission spectra were observed at 536 nm. CV study demonstrated that the modified 4-MCBA/MGC electrode exhibited excellent electrochemical sensitivity towards the detection of catechol and the detection limit is 9.39 µM under optimum conditions. The 4-MCBA employed as a fluorescent probe for the visualisation of LFPs on various surfaces exhibited Level-I to level-II LFPs, with low background interference.


Asunto(s)
Barbitúricos , Catecoles , Cumarinas , Técnicas Electroquímicas , Barbitúricos/química , Catecoles/química , Catecoles/análisis , Técnicas Electroquímicas/instrumentación , Cumarinas/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Estructura Molecular , Teoría Funcional de la Densidad , Electrodos
2.
Mikrochim Acta ; 191(8): 449, 2024 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967877

RESUMEN

A family of inorganic-organic hybrid crystalline materials made up of organic ligands and metal cations or clusters is known as metal-organic frameworks (MOFs). Because of their unique stability, intriguing characteristics, and structural diversity, zirconium-based MOFs (Zr-MOFs) are regarded as one of the most interesting families of MOF materials for real-world applications. Zr-MOFs that have the ligands, metal nodes, and guest molecules enclosed show distinct electrochemical reactions. They can successfully and sensitively identify a wide range of substances, which is important for both environmental preservation and human health. The rational design and synthesis of Zr-MOF electrochemical sensors and biosensors, as well as their applications in the detection of drugs, biomarkers, pesticides, food additives, hydrogen peroxide, and other materials, are the main topics of this comprehensive review. We also touch on the current issues and potential future paths for Zr-MOF electrochemical sensor research.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Estructuras Metalorgánicas , Circonio , Circonio/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Estructuras Metalorgánicas/química , Humanos
3.
Anal Chim Acta ; 1316: 342818, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969402

RESUMEN

Interdigitated electrodes (IDEs) enable electrochemical signal enhancement through repeated reduction and oxidation of the analyte molecule. Porosity on these electrodes is often used to lower the impedance background. However, their high capacitive current and signal interferences with oxygen reduction limit electrochemical detection ability. We present utilization of alkanethiol modification on nanoporous gold (NPG) electrodes to lower their background capacitance and chemically passivate them from interferences due to oxygen reduction, while maintaining their fast electron transfer rates, as validated by lower separation between anodic and cathodic peaks (ΔE) and lower charge transfer resistance (Rct) values in comparison to planar gold electrodes. Redox amplification based on this modification enables sensitive detection of various small molecules, including pyocyanin, p-aminophenol, and selective detection of dopamine in the presence of ascorbic acid. Alkanethiol NPG arrays are applied as a multiplexed sensor testbed within a well plate to screen binding of various peptide receptors to the SARS COV2 S-protein by using a sandwich assay for conversion of PAPP (4-aminophenyl phosphate) to PAP (p-aminophenol), by the action of AP (alkaline phosphatase), which is validated against optical ELISA screens of the peptides. Such arrays are especially of interest in small volume analytical settings with complex samples, wherein optical methods are unsuitable.


Asunto(s)
Aminofenoles , Técnicas Electroquímicas , Oro , Microelectrodos , Nanoporos , Oxidación-Reducción , Oro/química , Técnicas Electroquímicas/instrumentación , Aminofenoles/química , Compuestos de Sulfhidrilo/química , Dopamina/análisis , Dopamina/química , Técnicas Biosensibles , Límite de Detección , SARS-CoV-2/aislamiento & purificación , Humanos
4.
Anal Chim Acta ; 1316: 342882, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969418

RESUMEN

BACKGROUND: Transition metal phosphides with properties similar to platinum metal have received increasing attention for the non-enzymatic detection of glucose. However, the requirement of highly corrosive reagent during sample pretreatment would impose a potential risk to the human body, limiting their practical applications. RESULTS: In this study, we report a self-powered microfluidic device for the non-enzymatic detection of glucose using nickel phosphide (Ni2P) hybrid as the catalyst. The Ni2P hybrid is synthesized by pyrolysis of metal-organic framework (MOF)-based precursor and in-situ phosphating process, showing two linear detection ranges (1 µM-1 mM, 1 mM-6 mM) toward glucose with the detection limit of 0.32 µM. The good performance of Ni2P hybrid for glucose is attributed to the synergistic effect of Ni2P active sites and N-doped porous carbon matrix. The microchip is integrated with a NaOH-loaded paper pad and a capillary-based micropump, enabling the automatic NaOH redissolution and delivery of sample solution into the detection chamber. Under the optimized condition, the Ni2P hybrid-based microchip realized the detection of glucose in a user-friendly way. Besides, the feasibility of using this microchip for glucose detection in real serum samples has also been validated. SIGNIFICANCE: This article presents a facile fabrication method utilizing a MOF template to synthesize a Ni2P hybrid catalyst. By leveraging the synergy between the Ni2P active sites and the N-doped carbon matrix, an exceptional electrochemical detection performance for glucose has been achieved. Additionally, a self-powered chip device has been developed for convenient glucose detection based on the pre-established high pH environment on the chip.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Níquel , Níquel/química , Técnicas Electroquímicas/instrumentación , Humanos , Glucosa/análisis , Fosfinas/química , Estructuras Metalorgánicas/química , Límite de Detección , Dispositivos Laboratorio en un Chip , Glucemia/análisis , Catálisis
5.
Anal Chim Acta ; 1316: 342875, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969433

RESUMEN

BACKGROUND: Indole-3-acetic acid (IAA) and salicylic acid (SA), pivotal regulators in plant growth, are integral to a variety of plant physiological activities. The ongoing and simultaneous monitoring of these hormones in vivo enhances our comprehension of their interactive and regulatory roles. Traditional detection methods, such as liquid chromatography-mass spectrometry, cannot obtain precise and immediate information on IAA and SA due to the complexity of sample processing. In contrast, the electrochemical detection method offers high sensitivity, rapid response times, and compactness, making it well-suited for in vivo or real-time detection applications. RESULTS: A microneedle electrochemical sensor system crafted from disposable stainless steel (SS) wire was specifically designed for the real-time assessment of IAA and SA in plant in situ. This sensor system included a SS wire (100 µm diameter) coated with carbon cement and multi-walled carbon nanotubes, a plain platinum wire (100 µm diameter), and an Ag/AgCl wire (100 µm diameter). Differential pulse voltammetry and amperometry were adopted for detecting SA and IAA within the range of 0.1-20 µM, respectively. This sensor was applied to track IAA and SA fluctuations in tomato leaves during PstDC3000 infection, offering continuous data. Observations indicated an uptick in SA levels following infection, while IAA production was suppressed. The newly developed disposable SS wire-based microneedle electrochemical sensor system is economical, suitable for mass production, and inflicts minimal damage during the monitoring of SA and IAA in plant tissues. SIGNIFICANCE: This disposable microneedle electrochemical sensor facilitates in vivo detection of IAA and SA in smaller plant tissues and allows for long-time monitoring of their concentrations, which not only propels research into the regulatory and interaction mechanisms of IAA and SA but also furnishes essential tools for advancing precision agriculture.


Asunto(s)
Técnicas Electroquímicas , Ácidos Indolacéticos , Hojas de la Planta , Ácido Salicílico , Solanum lycopersicum , Acero Inoxidable , Solanum lycopersicum/química , Ácidos Indolacéticos/análisis , Ácido Salicílico/análisis , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Acero Inoxidable/química , Técnicas Electroquímicas/instrumentación , Agujas , Enfermedades de las Plantas/microbiología
6.
J Environ Sci (China) ; 146: 118-126, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969440

RESUMEN

With the increasing demand of recycling disposal of industrial wastewater, oil-in-water (O/W) emulsion has been paid much attention in recent years owing to its high oil content. However, due to the presence of surfactant and salt, the emulsion was usually stable with complex physicochemical interfacial properties leading to increased processing difficulty. Herein, a novel flow-through electrode-based demulsification reactor (FEDR) was well designed for the treatment of saline O/W emulsion. In contrast to 53.7% for electrical demulsification only and 80.3% for filtration only, the COD removal efficiency increased to 92.8% under FEDR system. Moreover, the pore size of electrode and the applied voltage were two key factors that governed the FEDR demulsification performance. By observing the morphology of oil droplets deposited layer after different operation conditions and the behavior of oil droplets at the electrode surface under different voltage conditions, the mechanism was proposed that the oil droplets first accumulated on the surface of flow-through electrode by sieving effect, subsequently the gathered oil droplets could further coalesce with the promoting effect of the anode, leading to a high-performing demulsification. This study offers an attractive option of using flow-through electrode to accomplish the oil recovery with simultaneous water purification.


Asunto(s)
Electrodos , Filtración , Eliminación de Residuos Líquidos , Purificación del Agua , Purificación del Agua/métodos , Filtración/métodos , Eliminación de Residuos Líquidos/métodos , Aceites/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Emulsiones/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación
7.
Mikrochim Acta ; 191(7): 435, 2024 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-38949689

RESUMEN

A novel scaffold for in situ electrochemical detection of cell biomarkers was developed using electrospun nanofibers and commercial adhesive polymeric membranes. The electrochemical sensing of cell biomarkers requires the cultivation of the cells on/near the (bio)sensor surface in a manner to preserve an appropriate electroactive available surface and to avoid the surface passivation and sensor damage. This can be achieved by employing biocompatible nanofiber meshes that allow the cells to have a normal behavior and do not alter the electrochemical detection. For a better mechanical stability and ease of handling, nylon 6/6 nanofibers were collected on commercial polymeric membranes, at an optimal fiber density, obtaining a double-layered platform. To demonstrate the functionality of the fabricated scaffold, the screening of cellular stress has been achieved integrating melanoma B16-F10 cells and the (bio)sensor components on the transducer whereas the melanin exocytosis was successfully quantified using a commercial electrode. Either directly on the surface of the (bio)sensor or spatially detached from it, the integration of cell cultures in biosensing platforms based on electrospun nanofibers represents a powerful bioanalytical tool able to provide real-time information about the biomarker release, enzyme activity or inhibition, and monitoring of various cellular events.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Nanofibras , Nanofibras/química , Animales , Ratones , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Biosensibles/métodos , Línea Celular Tumoral , Melaninas , Biomarcadores/análisis , Andamios del Tejido/química , Exocitosis , Melanoma Experimental/patología , Melanoma Experimental/diagnóstico
8.
Mikrochim Acta ; 191(8): 443, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955844

RESUMEN

CoFe@C was first prepared by calcining the precursor of CoFe-metal-organic framework-74 (CoFe-MOF-74), then an electrochemical sensor for the determination of neohesperidin dihydrochalcone (NHDC) was constructed, which was stemmed from the novel CoFe@C/Nafion composite film modified glassy carbon electrode (GCE). The CoFe@C/Nafion composite was verified by field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Electrochemical impedance spectroscopy (EIS) was used to evaluate its electrical properties as a modified material for an electrochemical sensor. Compared with CoFe-MOF-74 precursor modified electrode, CoFe@C/Nafion electrode exhibited a great synergic catalytic effect and extremely increased the oxidation peak signal of NHDC. The effects of various experimental conditions on the oxidation of NHDC were investigated and the calibration plot was tested. The results bespoken that CoFe@C/Nafion GCE has good reproducibility and anti-interference under the optimal experimental conditions. In addition, the differential pulse current response of NHDC was linear with its concentration within the range 0.08 ~ 20 µmol/L, and the linear regression coefficient was 0.9957. The detection limit was as low as 14.2 nmol/L (S/N = 3). In order to further verify the feasibility of the method, it was successfully used to determine the content of NHDC in Chinese medicine, with a satisfactory result, good in accordance with that of high performance liquid chromatography (HPLC).


Asunto(s)
Chalconas , Cobalto , Técnicas Electroquímicas , Electrodos , Límite de Detección , Estructuras Metalorgánicas , Cobalto/química , Estructuras Metalorgánicas/química , Chalconas/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Hesperidina/análogos & derivados , Hesperidina/análisis , Hesperidina/química , Polímeros de Fluorocarbono/química , Oxidación-Reducción , Carbono/química , Reproducibilidad de los Resultados , Hierro/química
9.
Mikrochim Acta ; 191(8): 453, 2024 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970675

RESUMEN

An electrochemical biosensor has been developed for detection of Escherichia coli O157 by integrating lateral flow with screen-printed electrodes. The screen-printed electrodes were attached under the lateral flow detection line, and organic-inorganic nanoflowers prepared from E. coli O157-specific antibodies as an organic component were attached to the lateral flow detection line. In the presence of E. coli O157, an organic-inorganic nanoflower-E. coli O157-antimicrobial peptide-labelled ferrocene sandwich structure is formed on the lateral flow detection line. Differential pulse voltammetry is applied using a smartphone-based device to monitor ferrocene on the detection line. The resulting electrochemical biosensor could specifically detect E. coli O157 with a limit of detection of 25 colony-forming units mL-1. Through substitution of antibodies of organic components in organic-inorganic nanoflowers, biosensors have great potential for the detection of other pathogens in biomedical research and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Escherichia coli O157 , Escherichia coli O157/aislamiento & purificación , Escherichia coli O157/inmunología , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Límite de Detección , Nanoestructuras/química , Electrodos , Compuestos Ferrosos/química , Anticuerpos Inmovilizados/inmunología , Metalocenos/química , Anticuerpos Antibacterianos/química , Anticuerpos Antibacterianos/inmunología , Péptidos Antimicrobianos/química
10.
Mikrochim Acta ; 191(8): 451, 2024 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970693

RESUMEN

Ti3C2Tx MXene/CuxO composites were prepared by acid etching combined with electrochemical technique. The abundant active sites on the surface of MXene greatly increase the loading of CuxO nanoparticles, and the synergistic effect between the different components of the composite can accelerate the oxidation reaction of glucose. The results indicate that at the working potential of 0.55 V (vs. Ag/AgCl), the glucose sensor based on Ti3C2Tx MXene/CuxO composite presents large linear concentration ranges from 1 µM to 4.655 mM (sensitivity of 361 µA mM-1 cm-2) and from 5.155 mM to 16.155 mM (sensitivity of 133 µA mM-1 cm-2). The limit of detection is 0.065 µM. In addition, the sensor effectively avoids the oxidative interference of common interfering species such as ascorbic acid, dopamine and uric acid. The sensor has good reproducibility, stability and acceptable recoveries for the detection of glucose in human sweat sample (97.5-103.3%) with RSD values less than 4%. Based on these excellent properties it has great potential for the detection of glucose in real samples.


Asunto(s)
Cobre , Técnicas Electroquímicas , Glucosa , Límite de Detección , Titanio , Cobre/química , Humanos , Titanio/química , Glucosa/análisis , Glucosa/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Sudor/química , Electrodos , Oxidación-Reducción , Reproducibilidad de los Resultados , Técnicas Biosensibles/métodos , Nanocompuestos/química
11.
Biosens Bioelectron ; 261: 116502, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38896980

RESUMEN

Oxidative stress is widely recognized as a pivotal factor contributing to numerous Central Nervous System (CNS) ailments. The concentrations of hydrogen peroxide (H2O2) and phosphorylated proteins within the human body serve as crucial indicators of oxidative stress. As such, the real-time monitoring of H2O2 and phosphorylated proteins in sweat is vital for the early identification, diagnosis, and management of diseases linked to oxidative stress. In this context, we present a novel microfluidic wearable electrochemical sensor by modifying the electrode with Prussian blue (PB) and loading sulfur-rich vacancy-containing molybdenum disulfide (MoS2-X) onto Multi-walled carbon nanotube (CNTs) to form coaxially layered CNTs/MoS2-X, which was then synthesized with highly dispersed titanium dioxide nanoparticles (TiO2) to synthesize CNTs/MoS2-X/TiO2 composites for the detection of human sweat H2O2 and phosphorylated proteins, respectively. This structure, with its sulfur vacancies and coaxial layering, significantly improved sensitivity of electrochemical sensors, allowing it to detect H2O2 in a range of 0.01-1 mM with a detection limit of 4.80 µM, and phosphoproteins in a range of 0.01-1 mg/mL with a threshold of 0.917 µg/mL. Furthermore, the miniature sensor demonstrates outstanding performance in detecting analytes in both simulated and real sweat. Comprehensive biosafety assessments have validated the compatibility of the electrode material, underscoring the potential of sensor as a reliable and non-invasive method for tracking biomarkers linked to CNS disorders. This microfluidic wearable electrochemical biosensor with high performance and biosafety features shows great promise for the development of cutting-edge wearable technology devices for tracking CNS disease indicators.


Asunto(s)
Biomarcadores , Técnicas Biosensibles , Técnicas Electroquímicas , Peróxido de Hidrógeno , Nanotubos de Carbono , Estrés Oxidativo , Sudor , Titanio , Dispositivos Electrónicos Vestibles , Humanos , Técnicas Biosensibles/instrumentación , Biomarcadores/análisis , Nanotubos de Carbono/química , Sudor/química , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Titanio/química , Molibdeno/química , Ferrocianuros/química , Disulfuros/química , Límite de Detección , Diseño de Equipo
12.
Mikrochim Acta ; 191(7): 418, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914884

RESUMEN

An electrochemical immunoassay system was developed to detect CA-125 using a glassy carbon electrode (GCE) modified with MXene, graphene quantum dots (GQDs), and gold nanoparticles (AuNPs). The combined MXene-GQD/AuNPs modification displayed advantageous electrochemical properties due to the synergistic effects of MXene, GQDs, and AuNPs. The MXene-GQD composite in the modified layer provided strong mechanical properties and a large specific surface area. Furthermore, the presence of AuNPs significantly improved conductivity and facilitated the binding of anti-CA-125 on the modified GCE, thereby enhancing sensitivity. Various analytical techniques such as FE-SEM and EDS were utilized to investigate the structural and morphological characteristics as well as the elemental composition. The performance of the developed immunosensor was assessed using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), square wave voltammetry (SWV), and differential pulse voltammetry (DPV). Under optimized conditions in a working potential range of -0.2 to 0.6 V (vs. Ag/AgCl), the sensitivity, linear range (LR), limit of detection (LOD), and correlation coefficient (R2) were determined to be 315.250 µA pU.mL-1/cm2, 0.1 to 1 nU/mL, 0.075 nU/mL, and 0.9855, respectively. The detection of CA-125 in real samples was investigated using the developed immunoassay platform, demonstrating satisfactory results including excellent selectivity and reproducibility.


Asunto(s)
Antígeno Ca-125 , Técnicas Electroquímicas , Oro , Grafito , Límite de Detección , Nanopartículas del Metal , Neoplasias Ováricas , Puntos Cuánticos , Antígeno Ca-125/sangre , Antígeno Ca-125/análisis , Oro/química , Nanopartículas del Metal/química , Humanos , Neoplasias Ováricas/sangre , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Inmunoensayo/métodos , Femenino , Puntos Cuánticos/química , Grafito/química , Anticuerpos Inmovilizados/inmunología , Técnicas Biosensibles/métodos , Electrodos , Proteínas de la Membrana
13.
Anal Methods ; 16(25): 4136-4142, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38860551

RESUMEN

The ivermectin (IVM), as a broad-spectrum antiparasitic drug, was widely prescribed to treat COVID-19 during the pandemic, despite lacking proven efficacy in combating this disease. Therefore, it is important to establish affordable devices in laboratories with minimal infrastructure. The laser engraving technology has been revolutionary in sensor manufacturing, primarily attributed to the diversity of substrates that can be employed and the freedom it provides in creating sensor models. In this work, electrochemical sensors based on graphene were developed using the laser engraving technology for IVM sensing. Through, the studies that used the techniques of cyclic voltammetry and differential pulse voltammetry, following parameter optimization, for the laser-induced graphene electrode demonstrated a mass transport governed by adsorption of the species and exhibited a linear working range of 10-100 (µmol L-1), a limit of detection (LOD) of 1.6 × 10-6 (mol L-1), a limit of quantification (LOQ) of 4.8 × 10-6 (mol L-1), and a sensitivity of 0.139 (µA µmol L-1). The developed method was successfully applied to direct analysis of pharmaceutical tablets, tap water (recovery of 94%) and synthetic urine samples (recovery between 97% and 113%). These results demonstrate the feasibility of the method for routine analyses involving environmental samples.


Asunto(s)
Técnicas Electroquímicas , Grafito , Ivermectina , Rayos Láser , Ivermectina/análisis , Ivermectina/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Grafito/química , Humanos , Límite de Detección , Antiparasitarios/orina , Antiparasitarios/análisis , Antiparasitarios/química , Electrodos , COVID-19 , SARS-CoV-2
14.
ACS Appl Mater Interfaces ; 16(25): 32794-32811, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38860871

RESUMEN

This paper reports a microfluidic device for the electrochemical and plasmonic detection of cardiac myoglobin (cMb) and cardiac troponin I (cTnI) with noticeable limits of detection (LoD) as low as a few picograms per milliliter (pg/mL) ranges, achieved in a short detection time. The device features two working electrodes, each with a mesoporous Ni3V2O8 nanoscaffold grafted with reduced graphene oxide (rGO) that improves the interaction of diffusing analyte molecules with the sensing surface by providing a high surface area and reaction kinetics. Electrochemical studies reveal sensitivities as high as 9.68 µA ng/mL and a LoD of 2.0 pg/mL for cTnI, and 8.98 µA ng/mL and 4.7 pg/mL for cMb. Additionally, the surface plasmon resonance (SPR) studies demonstrate a low-level LoD of 8.8 pg/mL for cMb and 7.3 pg/mL for cTnI. The dual-modality sensor enables dynamic tracking of kinetic antigen-antibody interactions during sensing, self-verification through providing signals of two modes, and reduced false readout. This study demonstrates the complementary nature of the electrochemical and SPR modes in biosensing, with the electrochemical mode being highly sensitive and the SPR mode providing superior tracking of molecular recognition behaviors. The presented sensor represents a significant innovation in cardiovascular disease management and can be applied to monitor other clinically important biomolecules.


Asunto(s)
Técnicas Electroquímicas , Grafito , Infarto del Miocardio , Mioglobina , Resonancia por Plasmón de Superficie , Troponina I , Infarto del Miocardio/diagnóstico , Troponina I/análisis , Troponina I/sangre , Grafito/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Mioglobina/análisis , Resonancia por Plasmón de Superficie/instrumentación , Humanos , Porosidad , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Límite de Detección , Dispositivos Laboratorio en un Chip , Nanoestructuras/química
15.
ACS Sens ; 9(6): 3296-3306, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38829039

RESUMEN

As a facile substitute for the invasive technique of blood testing, wearable electrochemical sensors exhibit high potential for the noninvasive and real-time monitoring of biomarkers in human sweat. However, owing to enzyme specificity, the simultaneous detection of multiple biomarkers by enzymatic analysis is challenging. Moreover, sweat accumulation under sensors causes sweat contamination, which hinders real-time biomarker detection from sweat. This study reports the design and fabrication of flexible wearable electrochemical sensors containing a composite comprising Au nanorods (AuNRs) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) for the nonenzymatic detection of levodopa (LD) and uric acid (UA) in sweat. Each sensor was integrated with a flexible three-electrode system and a microfluidic patch for sweat sampling. AuNRs immobilized by PEG-doped PEDOT:PSS showed excellent analytical performance for LD and UA at different potentials. Thus, the newly fabricated sensors could detect LD and UA over a broad detection range with high sensitivity and showed a low limit of detection for both species. On-body assessments confirmed the ability of these sensors to simultaneously detect LD and UA in real time. Therefore, this study could open new frontiers in the fabrication of wearable electrochemical sensors for the pharmacokinetic profile tracking of LD and gout management.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Técnicas Electroquímicas , Oro , Levodopa , Polímeros , Poliestirenos , Sudor , Ácido Úrico , Dispositivos Electrónicos Vestibles , Ácido Úrico/análisis , Humanos , Levodopa/análisis , Levodopa/sangre , Sudor/química , Poliestirenos/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Oro/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Polímeros/química , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Nanotubos/química , Límite de Detección
16.
ACS Sens ; 9(6): 3403-3412, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38830812

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) pose a significant threat to the environment due to their persistence, ability to bioaccumulate, and harmful effects. Methods to quantify PFAS rapidly and effectively are essential to analyze and track contamination, but measuring PFAS down to the ultralow regulatory levels is extremely challenging. Here, we describe the development of a low-cost sensor that can measure a representative PFAS, perfluorooctanesulfonic acid (PFOS), at the parts per quadrillion (ppq) level within 5 min. The method combines the ability of PFOS to bind to silver nanoparticles (AgNPs) embedded within a fluorine-rich Ti3C2-based multilayered MXene, which provides a large surface area and accessible binding sites for direct impedimetric detection. Fundamentally, we show that MXene-AgNPs are capable of binding PFOS and other long-chain PFAS compounds, though the synergistic action of AgNPs and MXenes via electrostatic and F-F interactions. This binding induced concentration-dependent changes in the charge-transfer resistance, enabling rapid and direct quantification with extremely high sensitivity and no response to interferences. The sensor displayed a linear range from 50 ppq to 1.6 ppt (parts per trillion) with an impressively low limit of detection of 33 ppq and a limit of quantification of 99 ppq, making this sensor a promising candidate for low-cost screening of the PFAS content in water samples, using a simple and inexpensive procedure.


Asunto(s)
Ácidos Alcanesulfónicos , Técnicas Electroquímicas , Fluorocarburos , Nanopartículas del Metal , Plata , Fluorocarburos/química , Fluorocarburos/análisis , Nanopartículas del Metal/química , Plata/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Ácidos Alcanesulfónicos/análisis , Ácidos Alcanesulfónicos/química , Límite de Detección , Contaminantes Químicos del Agua/análisis
17.
ACS Sens ; 9(6): 3066-3074, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38877998

RESUMEN

Point-of-care testing (POCT) devices play a crucial role as tools for disease diagnostics, and the integration of biorecognition elements with electronic components into these devices widens their functionalities and facilitates the development of complex quantitative assays. Unfortunately, biosensors that exploit large conventional IgG antibodies to capture relevant biomarkers are often limited in terms of sensitivity, selectivity, and storage stability, considerably restricting the use of POCT in real-world applications. Therefore, we used nanobodies as they are more suitable for fabricating electrochemical biosensors with near-field communication (NFC) technology. Moreover, a flow-through microfluidic device was implemented in this system for the detection of C-reactive protein (CRP), an inflammation biomarker, and a model analyte. The resulting sensors not only have high sensitivity and portability but also retain automated sequential flow properties through capillary transport without the need for an external pump. We also compared the accuracy of CRP quantitative analyses between commercial PalmSens4 and NFC-based potentiostats. Furthermore, the sensor reliability was evaluated using three biological samples (artificial serum, plasma, and whole blood without any pretreatment). This platform will streamline the development of POCT devices by combining operational simplicity, low cost, fast analysis, and portability.


Asunto(s)
Técnicas Biosensibles , Proteína C-Reactiva , Técnicas Electroquímicas , Dispositivos Laboratorio en un Chip , Anticuerpos de Dominio Único , Teléfono Inteligente , Proteína C-Reactiva/análisis , Proteína C-Reactiva/inmunología , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Humanos , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Técnicas Analíticas Microfluídicas/instrumentación
18.
Anal Methods ; 16(26): 4381-4386, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38896043

RESUMEN

The abundant bio-markers in saliva provide a new option for non-invasive testing. However, due to the presence of impurities in the saliva background, most of the existing saliva testing methods rely on pre-processing, which limits the application of saliva testing as a convenient means of testing in daily life. Herein, a disposable-gate AlGaN/GaN high electron mobility transistor (HEMT) biosensor integrated with a micro-sieve was introduced to solve the problem of signal interference caused by charged impurities in saliva for HEMT based biosensors, where the micro-sieve was utilized as a pre-treatment unit to remove large particles of impurities from saliva through the size effect and thus greatly improving the accuracy of detection. The experimental results showed that the HEMT based biosensor has excellent linearity (R2 = 0.9977) and a high sensitivity of 6.552 µA dec-1 for urea sensing from 1 fM to 100 mM in 0.1× PBS solution. When it comes to artificial saliva detection, compared to the HEMT sensor without the micro-sieve (sensitivity = 3.07432 µA dec-1), the sensitivity of the HEMT sensor integrated with the micro-sieve showed almost no change. Moreover, to verify that urea can be detected in actual saliva, urea is sensed directly in human saliva. The addition of the microsieve module provides a new way for biosensors to detect specific markers in saliva in real time, and the designed HEMT biosensor with the microsieve function has a wide range of application potential in rapid saliva detection.


Asunto(s)
Técnicas Biosensibles , Galio , Saliva , Transistores Electrónicos , Urea , Galio/química , Galio/análisis , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Urea/análisis , Urea/química , Saliva/química , Humanos , Compuestos de Aluminio/química , Compuestos de Aluminio/análisis , Límite de Detección , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Diseño de Equipo
19.
Sensors (Basel) ; 24(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38894053

RESUMEN

The advancement of flexible electrodes triggered research on wearables and health monitoring applications. Metal-based bioelectrodes encounter low mechanical strength and skin discomfort at the electrode-skin interface. Thus, recent research has focused on the development of flexible surface electrodes with low electrochemical resistance and high conductivity. This study investigated the development of a novel, flexible, surface electrode based on a MXene/polydimethylsiloxane (PDMS)/glycerol composite. MXenes offer the benefit of featuring highly conductive transition metals with metallic properties, including a group of carbides, nitrides, and carbonitrides, while PDMS exhibits inherent biostability, flexibility, and biocompatibility. Among the various MXene-based electrode compositions prepared in this work, those composed of 15% and 20% MXene content were further evaluated for their potential in electrophysiological sensing applications. The samples underwent a range of characterization techniques, including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), as well as mechanical and bio-signal sensing from the skin. The experimental findings indicated that the compositions demonstrated favorable bulk impedances of 280 and 111 Ω, along with conductivities of 0.462 and 1.533 mS/cm, respectively. Additionally, they displayed promising electrochemical stability, featuring charge storage densities of 0.665 mC/cm2 and 1.99 mC/cm2, respectively. By conducting mechanical tests, Young's moduli were determined to be 2.61 MPa and 2.18 MPa, respectively. The composite samples exhibited elongation of 139% and 144%, respectively. Thus, MXene-based bioelectrodes show promising potential for flexible and wearable electronics and bio-signal sensing applications.


Asunto(s)
Electrodos , Dispositivos Electrónicos Vestibles , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Humanos , Dimetilpolisiloxanos/química , Espectroscopía Dieléctrica , Conductividad Eléctrica , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Impedancia Eléctrica , Glicerol/química , Fenómenos Electrofisiológicos , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos
20.
ACS Appl Mater Interfaces ; 16(24): 30890-30899, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38843539

RESUMEN

Multimodal sensing platforms may offer reliable, fast results, but it is still challenging to incorporate biosensors with high discriminating ability in complex biological samples. Herein, we established a highly sensitive dual colorimetric/electrochemical monitoring approach for the detection of hydrogen sulfide (H2S) utilizing Cu-doped In-based metal-organic frameworks (Cu/In-MOFs) combined with a versatile color selector software-based smartphone imaging device. H2S can result in the enhancement of the electrochemical signal because of the electroactive substance copper sulfide (CuxS), the decrease of the colorimetric signal of the characteristic absorption response caused by the strong coordination effect on Cu/In-MOFs, and the obvious changes of red-green-blue (RGB) values of images acquired via an intelligent smartphone. Attractively, the Cu/In-MOFs-based multimodal detection guarantees precise and sensitive detection of H2S with triple-signal detection limits of 0.096 µM (electrochemical signals), 0.098 µM (colorimetric signals), and 0.099 µM (smartphone signals) and an outstanding linear response. This analytical toolkit provides an idea for fabricating a robust, sensitive, tolerant matrix and reliable sensing platform for rapidly monitoring H2S in clinical disease diagnosis and visual supervision.


Asunto(s)
Colorimetría , Cobre , Técnicas Electroquímicas , Sulfuro de Hidrógeno , Estructuras Metalorgánicas , Teléfono Inteligente , Sulfuro de Hidrógeno/análisis , Cobre/química , Estructuras Metalorgánicas/química , Colorimetría/métodos , Colorimetría/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Límite de Detección , Indio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...