Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.659
Filtrar
1.
Methods Mol Biol ; 2848: 187-196, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240524

RESUMEN

In several ocular diseases, degeneration of retinal neurons can lead to permanent blindness. Transplantation of stem cell (SC)-derived RGCs has been proposed as a potential therapy for RGC loss. Although there are reports of successful cases of SC-derived RGC transplantation, achieving long-distance regeneration and functional connectivity remains a challenge. To address these hurdles, retinal organoids are being used to study the regulatory mechanism of stem cell transplantation. Here we present a modified protocol for differentiating human embryonic stem cells (ESCs) into retinal organoids and transplanting organoid-derived RGCs into the murine eyes.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias Humanas , Células Ganglionares de la Retina , Humanos , Animales , Ratones , Células Madre Embrionarias Humanas/citología , Células Ganglionares de la Retina/citología , Trasplante de Células Madre/métodos , Organoides/citología , Organoides/trasplante , Técnicas de Cultivo de Célula/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Retina/citología , Células Madre Embrionarias/citología
2.
Sci Rep ; 14(1): 20327, 2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223177

RESUMEN

In female eutherian mammal development, X-chromosome inactivation (XCI) of one of the two X chromosomes is initiated early. Understanding the relationship between the initiation of XCI and cell fate is critical for understanding early female development and requires a system that can monitor XCI in single living cells. Traditional embryonic stem cells (ESCs) used for XCI studies often lose X chromosomes spontaneously during culture and differentiation, making accurate monitoring difficult. Additionally, most XCI assessment methods necessitate cell disruption, hindering cell fate tracking. We developed the Momiji (version 2) ESC line to address these difficulties, enabling real-time monitoring of X-chromosome activity via fluorescence. We inserted green and red fluorescent reporter genes and neomycin and puromycin resistance genes into the two X chromosomes of PGK12.1 ESCs, creating a female ESC line that retains two X chromosomes more faithfully during differentiation. Momiji (version 2) ESCs exhibit a more stable XX karyotype than other ESC lines, including the parental PGK12.1 line. This new tool offers valuable insights into the relationship between XCI and cell fate, improving our understanding of early female development.


Asunto(s)
Imagen de Lapso de Tiempo , Inactivación del Cromosoma X , Inactivación del Cromosoma X/genética , Animales , Femenino , Ratones , Imagen de Lapso de Tiempo/métodos , Diferenciación Celular/genética , Análisis de la Célula Individual/métodos , Línea Celular , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Cromosoma X/genética , Genes Reporteros
3.
Stem Cell Res Ther ; 15(1): 245, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113095

RESUMEN

BACKGROUND: The establishment of stable porcine embryonic stem cells (pESCs) can contribute to basic and biomedical research, including comparative developmental biology, as well as assessing the safety of stem cell-based therapies. Despite these advantages, most pESCs obtained from in vitro blastocysts require complex media and feeder layers, making routine use, genetic modification, and differentiation into specific cell types difficult. We aimed to establish pESCs with a single cell-passage ability, high proliferative potency, and stable in long-term culture from in vitro-derived blastocysts using a simplified serum-free medium. METHODS: We evaluated the establishment efficiency of pESCs from in vitro blastocysts using various basal media (DMEM/F10 (1:1), DMEM/F12, and a-MEM) and factors (FGF2, IWR-1, CHIR99021, and WH-4-023). The pluripotency and self-renewal capacity of the established pESCs were analyzed under feeder or feeder-free conditions. Ultimately, we developed a simplified culture medium (FIW) composed of FGF2, IWR-1, and WH-4-023 under serum-free conditions. RESULTS: The pESC-FIW lines were capable of single-cell passaging with short cell doubling times and expressed the pluripotency markers POU5F1, SOX2, and NANOG, as well as cell surface markers SSEA1, SSEA4, and TRA-1-60. pESC-FIW showed a stable proliferation rate and normal karyotype, even after 50 passages. Transcriptome analysis revealed that pESC-FIW were similar to reported pESC maintained in complex media and showed gastrulating epiblast cell characteristics. pESC-FIW were maintained for multiple passages under feeder-free conditions on fibronectin-coated plates using mTeSR™, a commercial medium used for feeder-free culture, exhibiting characteristics similar to those observed under feeder conditions. CONCLUSIONS: These results indicated that inhibition of WNT and SRC was sufficient to establish pESCs capable of single-cell passaging and feeder-free expansion under serum-free conditions. The easy maintenance of pESCs facilitates their application in gene editing technology for agriculture and biomedicine, as well as lineage commitment studies.


Asunto(s)
Células Madre Embrionarias , Animales , Medio de Cultivo Libre de Suero/farmacología , Porcinos , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Diferenciación Celular , Células Nutrientes/citología , Células Nutrientes/metabolismo , Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Blastocisto/citología , Blastocisto/metabolismo , Células Cultivadas
4.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39201503

RESUMEN

Repetitive sequences play an indispensable role in gene expression, transcriptional regulation, and chromosome arrangements through trans and cis regulation. In this review, focusing on recent advances, we summarize the epigenetic regulatory mechanisms of repetitive sequences in embryonic stem cells. We aim to bridge the knowledge gap by discussing DNA damage repair pathway choices on repetitive sequences and summarizing the significance of chromatin organization on repetitive sequences in response to DNA damage. By consolidating these insights, we underscore the critical relationship between the stability of repetitive sequences and early embryonic development, seeking to provide a deeper understanding of repetitive sequence stability and setting the stage for further research and potential therapeutic strategies in developmental biology and regenerative medicine.


Asunto(s)
Células Madre Embrionarias , Secuencias Repetitivas de Ácidos Nucleicos , Humanos , Animales , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Secuencias Repetitivas de Ácidos Nucleicos/genética , Epigénesis Genética , Cromatina/metabolismo , Cromatina/genética , Reparación del ADN , Daño del ADN , Inestabilidad Genómica
5.
Stem Cell Res Ther ; 15(1): 205, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982541

RESUMEN

Vascular tissue engineering is a promising approach for regenerating damaged blood vessels and developing new therapeutic approaches for heart disease treatment. To date, different sources of cells have been recognized that offer assistance within the recovery of heart supply routes and veins with distinctive capacities and are compelling for heart regeneration. However, some challenges still remain that need to be overcome to establish the full potential application of these cells. In this paper, we review the different cell sources used for vascular tissue engineering, focusing on extraembryonic tissue-derived cells (ESCs), and elucidate their roles in cardiovascular disease. In addition, we highlight the intricate interplay between mechanical and biochemical factors in regulating mesenchymal stem cell (MSC) differentiation, offering insights into optimizing their application in vascular tissues.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Regeneración , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Regeneración/fisiología , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/fisiología , Vasos Sanguíneos/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología
6.
Cell Mol Life Sci ; 81(1): 318, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073571

RESUMEN

Nerve regeneration and circuit reconstruction remain a challenge following spinal cord injury (SCI). Corticospinal pyramidal neurons possess strong axon projection ability. In this study, human induced pluripotent stem cells (iPSCs) were differentiated into pyramidal neuronal precursors (PNPs) by addition of small molecule dorsomorphin into the culture. iPSC-derived PNPs were transplanted acutely into a rat contusion SCI model on the same day of injury. Following engraftment, the SCI rats showed significantly improved motor functions compared with vehicle control group as revealed by behavioral tests. Eight weeks following engraftment, the PNPs matured into corticospinal pyramidal neurons and extended axons into distant host spinal cord tissues, mostly in a caudal direction. Host neurons rostral to the lesion site also grew axons into the graft. Possible synaptic connections as a bridging relay may have been formed between host and graft-derived neurons, as indicated by pre- and post-synaptic marker staining and the regulation of chemogenetic regulatory systems. PNP graft showed an anti-inflammatory effect at the injury site and could bias microglia/macrophages towards a M2 phenotype. In addition, PNP graft was safe and no tumor formation was detected after transplantation into immunodeficient mice and SCI rats. The potential to reconstruct a neuronal relay circuitry across the lesion site and to modulate the microenvironment in SCI makes PNPs a promising cellular candidate for treatment of SCI.


Asunto(s)
Diferenciación Celular , Modelos Animales de Enfermedad , Células Madre Pluripotentes Inducidas , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/trasplante , Células Madre Pluripotentes Inducidas/metabolismo , Ratas , Ratas Sprague-Dawley , Células Piramidales/metabolismo , Células Piramidales/patología , Ratones , Células-Madre Neurales/trasplante , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Regeneración Nerviosa , Axones/metabolismo
7.
Sci Rep ; 14(1): 13179, 2024 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849388

RESUMEN

Efficient, facile gene modification of cells has become an indispensable part of modern molecular biology. For the majority of cell lines and several primary populations, such modifications can be readily performed through a variety of methods. However, many primary cell lines such as stem cells frequently suffer from poor transfection efficiency. Though several physical approaches have been introduced to circumvent these issues, they often require expensive/specialized equipment and/or consumables, utilize substantial cell numbers and often still suffer from poor efficiency. Viral methods are capable of transducing difficult cellular populations, however such methods can be time consuming for large arrays of gene targets, present biohazard concerns, and result in expression of viral proteins; issues of concern for certain experimental approaches. We report here a widely applicable, low-cost (< $100 CAD) method of electroporation, applicable to small (1-10 µl) cell volumes and composed of equipment readily available to the average investigator. Using this system we observe a sixfold increase in transfection efficiency in embryonic stem cell lines compared to commercial devices. Due to efficiency gains and reductions in volume and applied voltage, this process improves the survival of sensitive stem cell populations while reducing reagent requirements for protocols such as Cas9/gRNAs transfections.


Asunto(s)
Electroporación , Transfección , Transfección/métodos , Electroporación/métodos , Animales , Ratones , Línea Celular , Humanos , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo
8.
Trends Cell Biol ; 34(9): 700-702, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38897887

RESUMEN

Embryonic and adult stem cells enable development and regeneration. Embryonic cells, like adult stem cells, can enter dormancy as part of their lifecycle. Recent evidence suggests that this cellular transition to dormancy requires active rewiring of metabolism. The dormancy-induced metabolic switches in embryonic and adult stem cells are explored here.


Asunto(s)
Células Madre Embrionarias , Animales , Humanos , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Células Madre Adultas/metabolismo , Células Madre Adultas/citología
9.
Genes Cells ; 29(7): 549-566, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38811355

RESUMEN

DNA methyltransferases and Ten-Eleven Translocation (TET) proteins regulate the DNA methylation and demethylation cycles during mouse embryonic development. Although DNMT1 mainly plays a role in the maintenance of DNA methylation after DNA replication, it is also reported to possess de novo methyltransferase capacity. However, its physiological significance remains unclear. Here, we demonstrate that full-length DNMT1 (FL) and a mutant lacking the N-terminus necessary for its maintenance activity (602) confer the differentiation potential of mouse Dnmt1, Dnmt3a, and Dnmt3b (Dnmts-TKO) embryonic stem cells (ESCs). Both FL and 602 inhibit the spontaneous differentiation of Dnmts-TKO ESCs in the undifferentiated state. Dnmts-TKO ESCs showed loss of DNA methylation and de-repression of primitive endoderm-related genes, but these defects were partially restored in Dnmts-TKO + FL and Dnmts-TKO + 602 ESCs. Upon differentiation, Dnmts-TKO + FL ESCs show increased 5mC and 5hmC levels across chromosomes, including pericentromeric regions. In contrast, Dnmts-TKO + 602 ESCs didn't accumulate 5mC, and sister chromatids showed 5hmC asynchronously. Furthermore, in comparison with DNMT1_602, DNMT1_FL effectively promoted commitment to the epiblast-like cells and beyond, driving cell-autonomous mesendodermal and germline differentiation through embryoid body-based methods. With precise target selectivity achieved by its N-terminal region, DNMT1 may play a role in gene regulation leading to germline development.


Asunto(s)
Diferenciación Celular , ADN (Citosina-5-)-Metiltransferasa 1 , Metilación de ADN , Animales , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Ratones , Estratos Germinativos/metabolismo , Estratos Germinativos/citología , ADN Metiltransferasa 3B , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , ADN Metiltransferasa 3A/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética
10.
Genes Dev ; 38(7-8): 308-321, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38719541

RESUMEN

The transcription factor Oct4/Pou5f1 is a component of the regulatory circuitry governing pluripotency and is widely used to induce pluripotency from somatic cells. Here we used domain swapping and mutagenesis to study Oct4's reprogramming ability, identifying a redox-sensitive DNA binding domain, cysteine residue (Cys48), as a key determinant of reprogramming and differentiation. Oct4 Cys48 sensitizes the protein to oxidative inhibition of DNA binding activity and promotes oxidation-mediated protein ubiquitylation. Pou5f1 C48S point mutation has little effect on undifferentiated embryonic stem cells (ESCs) but upon retinoic acid (RA) treatment causes retention of Oct4 expression, deregulated gene expression, and aberrant differentiation. Pou5f1 C48S ESCs also form less differentiated teratomas and contribute poorly to adult somatic tissues. Finally, we describe Pou5f1 C48S (Janky) mice, which in the homozygous condition are severely developmentally restricted after E4.5. Rare animals bypassing this restriction appear normal at birth but are sterile. Collectively, these findings uncover a novel Oct4 redox mechanism involved in both entry into and exit from pluripotency.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Factor 3 de Transcripción de Unión a Octámeros , Oxidación-Reducción , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Animales , Ratones , Diferenciación Celular/genética , Reprogramación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Tretinoina/farmacología , Tretinoina/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos
11.
J Extracell Vesicles ; 13(5): e12445, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711334

RESUMEN

Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Infarto del Miocardio , Miocitos Cardíacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Humanos , Animales , Ratones , Infarto del Miocardio/terapia , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Fibroblastos/metabolismo , Masculino , Daño por Reperfusión Miocárdica/terapia , Daño por Reperfusión Miocárdica/metabolismo , Modelos Animales de Enfermedad , Neovascularización Fisiológica , Células Cultivadas
12.
Int J Nanomedicine ; 19: 4181-4197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766656

RESUMEN

Purpose: The committed differentiation fate regulation has been a difficult problem in the fields of stem cell research, evidence showed that nanomaterials could promote the differentiation of stem cells into specific cell types. Layered double hydroxide (LDH) nanoparticles possess the regulation function of stem cell fate, while the underlying mechanism needs to be investigated. In this study, the process of embryonic stem cells (ESCs) differentiate to neural progenitor cells (NPCs) by magnesium aluminum LDH (MgAl-LDH) was investigated. Methods: MgAl-LDH with diameters of 30, 50, and 100 nm were synthesized and characterized, and their effects on the cytotoxicity and differentiation of NPCs were detected in vitro. Dot blot and MeRIP-qPCR were performed to detect the level of m6A RNA methylation in nanoparticles-treated cells. Results: Our work displayed that LDH nanoparticles of three different sizes were biocompatible with NPCs, and the addition of MgAl-LDH could significantly promote the process of ESCs differentiate to NPCs. 100 nm LDH has a stronger effect on promoting NPCs differentiation compared to 30 nm and 50 nm LDH. In addition, dot blot results indicated that the enhanced NPCs differentiation by MgAl-LDH was closely related to m6A RNA methylation process, and the major modification enzyme in LDH controlled NPCs differentiation may be the m6A RNA methyltransferase METTL3. The upregulated METTL3 by LDH increased the m6A level of Sox1 mRNA, enhancing its stability. Conclusion: This work reveals that MgAl-LDH nanoparticles can regulate the differentiation of ESCs into NPCs by increasing m6A RNA methylation modification of Sox1.


Asunto(s)
Diferenciación Celular , Nanopartículas , Células-Madre Neurales , Diferenciación Celular/efectos de los fármacos , Animales , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Ratones , Nanopartículas/química , Metilación/efectos de los fármacos , Hidróxidos/química , Hidróxidos/farmacología , Metiltransferasas/metabolismo , Metiltransferasas/genética , Tamaño de la Partícula , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/citología , Adenosina/farmacología , Adenosina/química , Adenosina/análogos & derivados , Hidróxido de Aluminio/química , Hidróxido de Aluminio/farmacología , Hidróxido de Magnesio/química , Hidróxido de Magnesio/farmacología
13.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732061

RESUMEN

Embryonic stem-like cells (ES-like cells) are promising for medical research and clinical applications. Traditional methods involve "Yamanaka" transcription (OSKM) to derive these cells from somatic cells in vitro. Recently, a novel approach has emerged, obtaining ES-like cells from spermatogonia stem cells (SSCs) in a time-related process without adding artificial additives to cell cultures, like transcription factors or small molecules such as pten or p53 inhibitors. This study aims to investigate the role of the Nanog in the conversion of SSCs to pluripotent stem cells through both in silico analysis and in vitro experiments. We used bioinformatic methods and microarray data to find significant genes connected to this derivation path, to construct PPI networks, using enrichment analysis, and to construct miRNA-lncRNA networks, as well as in vitro experiments, immunostaining, and Fluidigm qPCR analysis to connect the dots of Nanog significance. We concluded that Nanog is one of the most crucial differentially expressed genes during SSC conversion, collaborating with critical regulators such as Sox2, Dazl, Pou5f1, Dnmt3, and Cdh1. This intricate protein network positions Nanog as a pivotal factor in pathway enrichment for generating ES-like cells, including Wnt signaling, focal adhesion, and PI3K-Akt-mTOR signaling. Nanog expression is presumed to play a vital role in deriving ES-like cells from SSCs in vitro. Finding its pivotal role in this path illuminates future research and clinical applications.


Asunto(s)
Proteína Homeótica Nanog , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Animales , Masculino , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Diferenciación Celular , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Espermatogonias/citología , Espermatogonias/metabolismo , Simulación por Computador , Redes Reguladoras de Genes , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Perfilación de la Expresión Génica , Biología Computacional/métodos , Humanos
14.
Cell Stem Cell ; 31(5): 754-771.e6, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701759

RESUMEN

Development of embryonic stem cells (ESCs) into neurons requires intricate regulation of transcription, splicing, and translation, but how these processes interconnect is not understood. We found that polypyrimidine tract binding protein 1 (PTBP1) controls splicing of DPF2, a subunit of BRG1/BRM-associated factor (BAF) chromatin remodeling complexes. Dpf2 exon 7 splicing is inhibited by PTBP1 to produce the DPF2-S isoform early in development. During neuronal differentiation, loss of PTBP1 allows exon 7 inclusion and DPF2-L expression. Different cellular phenotypes and gene expression programs were induced by these alternative DPF2 isoforms. We identified chromatin binding sites enriched for each DPF2 isoform, as well as sites bound by both. In ESC, DPF2-S preferential sites were bound by pluripotency factors. In neuronal progenitors, DPF2-S sites were bound by nuclear factor I (NFI), while DPF2-L sites were bound by CCCTC-binding factor (CTCF). DPF2-S sites exhibited enhancer modifications, while DPF2-L sites showed promoter modifications. Thus, alternative splicing redirects BAF complex targeting to impact chromatin organization during neuronal development.


Asunto(s)
Empalme Alternativo , Diferenciación Celular , Cromatina , Ribonucleoproteínas Nucleares Heterogéneas , Neuronas , Proteína de Unión al Tracto de Polipirimidina , Factores de Transcripción , Empalme Alternativo/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Animales , Diferenciación Celular/genética , Cromatina/metabolismo , Ratones , Neuronas/metabolismo , Neuronas/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Transcripción Genética , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Exones/genética , Humanos , Autorrenovación de las Células/genética
15.
Stem Cell Rev Rep ; 20(5): 1357-1366, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38635127

RESUMEN

Purinergic signaling is an ancient primordial signaling system regulating tissue development and specification of various types of stem cells. Thus, functional purinergic receptors are present in several types of cells in the body, including multiple populations of stem cells. However, one stem cell type that has not been evaluated for expression of purinergic receptors is very small embryonic stem cells (VSELs) isolated from postnatal tissues. Herein, we report that human umbilical cord blood (UCB) and murine bone marrow (BM) purified VSELs express mRNA for P1 and P2 purinergic receptors and CD39 and CD73 ectonucleotidases converting extracellular ATP (eATP) into its signaling metabolite extracellular adenosine (eAdo), that antagonizes eATP effects. More importantly, we demonstrate that human and murine VSELs respond by chemotaxis to eATP, and eAdo inhibits this migration. These responses to eATP are mediated by activation of Nlrp3 inflammasome, and exposure of VSELs to its specific inhibitor MCC950 abolished the chemotactic response to ATP. We conclude that purinergic signaling plays an essential, underappreciated role in the biology of these cells and their potential role in response to tissue/organ injuries.


Asunto(s)
Adenosina Trifosfato , Apirasa , Movimiento Celular , Células Madre Embrionarias , Humanos , Adenosina Trifosfato/metabolismo , Animales , Ratones , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Apirasa/metabolismo , Receptores Purinérgicos/metabolismo , 5'-Nucleotidasa/metabolismo , 5'-Nucleotidasa/genética , Quimiotaxis , Antígenos CD/metabolismo , Antígenos CD/genética , Sangre Fetal/citología , Sangre Fetal/metabolismo , Adenosina/metabolismo , Transducción de Señal
16.
Stem Cell Reports ; 19(5): 618-628, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38579708

RESUMEN

SOX2 is a transcription factor involved in the regulatory network maintaining the pluripotency of embryonic stem cells in culture as well as in early embryos. In addition, SOX2 plays a pivotal role in neural stem cell formation and neurogenesis. How SOX2 can serve both processes has remained elusive. Here, we identified a set of SOX2-dependent neural-associated enhancers required for neural lineage priming. They form a distinct subgroup (1,898) among 8,531 OCT4/SOX2/NANOG-bound enhancers characterized by enhanced SOX2 binding and chromatin accessibility. Activation of these enhancers is triggered by neural induction of wild-type cells or by default in Smad4-ablated cells resistant to mesoderm induction and is antagonized by mesodermal transcription factors via Sox2 repression. Our data provide mechanistic insight into the transition from the pluripotency state to the early neural fate and into the regulation of early neural versus mesodermal specification in embryonic stem cells and embryos.


Asunto(s)
Elementos de Facilitación Genéticos , Mesodermo , Células-Madre Neurales , Factores de Transcripción SOXB1 , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Animales , Ratones , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Mesodermo/citología , Mesodermo/metabolismo , Neurogénesis , Regulación del Desarrollo de la Expresión Génica , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Diferenciación Celular/genética , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Linaje de la Célula/genética , Proteína Smad4/metabolismo , Proteína Smad4/genética , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Cromatina/metabolismo , Unión Proteica
17.
J Cell Biol ; 223(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38647453

RESUMEN

Migrasomes, organelles crucial for cell communication, undergo distinct stages of nucleation, maturation, and expansion. The regulatory mechanisms of migrasome formation, particularly through biological cues, remain largely unexplored. This study reveals that calcium is essential for migrasome formation. Furthermore, we identify that Synaptotagmin-1 (Syt1), a well-known calcium sensor, is not only enriched in migrasomes but also indispensable for their formation. The calcium-binding ability of Syt1 is key to initiating migrasome formation. The recruitment of Syt1 to migrasome formation sites (MFS) triggers the swelling of MFS into unstable precursors, which are subsequently stabilized through the sequential recruitment of tetraspanins. Our findings reveal how calcium regulates migrasome formation and propose a sequential interaction model involving Syt1 and Tetraspanins in the formation and stabilization of migrasomes.


Asunto(s)
Calcio , Vesículas Extracelulares , Sinaptotagmina I , Animales , Humanos , Calcio/metabolismo , Señalización del Calcio , Comunicación Celular , Orgánulos/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Tetraspaninas/metabolismo , Tetraspaninas/genética , Vesículas Extracelulares/metabolismo , Ratones , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo
18.
Curr Opin Genet Dev ; 86: 102196, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669774

RESUMEN

As the most well-studied modification in mRNA, m6A has been shown to regulate multiple biological processes, including RNA degradation, processing, and translation. Recent studies showed that m6A modification is enriched in chromatin-associated RNAs and nascent RNAs, suggesting m6A might play regulatory roles in chromatin contexts. Indeed, in the past several years, a number of studies have clarified how m6A and its modulators regulate different types of chromatin states. Specifically, in the past 2-3 years, several studies discovered the roles of m6A and/or its modulators in regulating constitutive and facultative heterochromatin, shedding interesting lights on RNA-dependent heterochromatin formation in mammalian cells. This review will summarize and discuss the mechanisms underlying m6A's regulation in different types of heterochromatin, with a specific emphasis on the regulation in mammalian embryonic stem cells, which exhibit distinct features of multiple heterochromatin marks.


Asunto(s)
Células Madre Embrionarias , Heterocromatina , Heterocromatina/genética , Heterocromatina/metabolismo , Animales , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mamíferos/genética
19.
Biol Open ; 13(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38656788

RESUMEN

Embryo development is an orchestrated process that relies on tight regulation of gene expression to guide cell differentiation and fate decisions. The Srrm2 splicing factor has recently been implicated in developmental disorders and diseases, but its role in early mammalian development remains unexplored. Here, we show that Srrm2 dosage is critical for maintaining embryonic stem cell pluripotency and cell identity. Srrm2 heterozygosity promotes loss of stemness, characterised by the coexistence of cells expressing naive and formative pluripotency markers, together with extensive changes in gene expression, including genes regulated by serum-response transcription factor (SRF) and differentiation-related genes. Depletion of Srrm2 by RNA interference in embryonic stem cells shows that the earliest effects of Srrm2 heterozygosity are specific alternative splicing events on a small number of genes, followed by expression changes in metabolism and differentiation-related genes. Our findings unveil molecular and cellular roles of Srrm2 in stemness and lineage commitment, shedding light on the roles of splicing regulators in early embryogenesis, developmental diseases and tumorigenesis.


Asunto(s)
Diferenciación Celular , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Diferenciación Celular/genética , Animales , Ratones , Desarrollo Embrionario/genética , Empalme Alternativo , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Humanos
20.
Stem Cell Res Ther ; 15(1): 116, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654389

RESUMEN

Haploid cells are a kind of cells with only one set of chromosomes. Compared with traditional diploid cells, haploid cells have unique advantages in gene screening and drug-targeted therapy, due to their phenotype being equal to the genotype. Embryonic stem cells are a kind of cells with strong differentiation potential that can differentiate into various types of cells under specific conditions in vitro. Therefore, haploid embryonic stem cells have the characteristics of both haploid cells and embryonic stem cells, which makes them have significant advantages in many aspects, such as reproductive developmental mechanism research, genetic screening, and drug-targeted therapy. Consequently, establishing haploid embryonic stem cell lines is of great significance. This paper reviews the progress of haploid embryonic stem cell research and briefly discusses the applications of haploid embryonic stem cells.


Asunto(s)
Células Madre Embrionarias , Haploidia , Humanos , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Animales , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA