Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.816
1.
Front Public Health ; 12: 1378444, 2024.
Article En | MEDLINE | ID: mdl-38846604

Introduction: An increasing body of research has demonstrated a correlation between pollutants from the environment and the development of cardiovascular diseases (CVD). However, the impact of volatile organic chemicals (VOC) on CVD remains unknown and needs further investigation. Objectives: This study assessed whether exposure to VOC was associated with CVD in the general population. Methods: A cross-sectional analysis was conducted utilizing data from five survey cycles (2005-2006, 2011-2012, 2013-2014, 2015-2016, and 2017-2018) of the National Health and Nutrition Examination Survey (NHANES) program. We analyzed the association between urinary VOC metabolites (VOCs) and participants by multiple logistic regression models, further Bayesian Kernel Machine Regression (BKMR) models and Weighted Quantile Sum (WQS) regression were performed for mixture exposure analysis. Results: Total VOCs were found to be positively linked with CVD in multivariable-adjusted models (p for trend = 0.025), independent of established CVD risk variables, such as hypertension, diabetes, drinking and smoking, and total cholesterol levels. Compared with the reference quartile of total VOCs levels, the multivariable-adjusted odds ratios in increasing quartiles were 1.01 [95% confidence interval (CI): 0.78-1.31], 1.26 (95% CI: 1.05-1.21) and 1.75 (95% CI: 1.36-1.64) for total CVD. Similar positive associations were found when considering individual VOCs, including AAMA, CEMA, CYMA, 2HPMA, 3HPMA, IPM3 and MHBMA3 (acrolein, acrylamide, acrylonitrile, propylene oxide, isoprene, and 1,3-butadiene). In BKMR analysis, the overall effect of a mixture is significantly related to VOCs when all chemicals reach or exceed the 75th percentile. Moreover, in the WQS models, the most influential VOCs were found to be CEMA (40.30%), DHBMA (21.00%), and AMCC (19.70%). Conclusion: The results of our study indicated that VOC was all found to have a significant association with CVD when comparing results from different models. These findings hold significant potential for public health implications and offer valuable insights for future research directions.


Cardiovascular Diseases , Environmental Exposure , Nutrition Surveys , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Cardiovascular Diseases/epidemiology , Cross-Sectional Studies , Male , Female , Middle Aged , Adult , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Risk Factors , Air Pollutants/analysis , United States/epidemiology , Aged
2.
Front Public Health ; 12: 1382368, 2024.
Article En | MEDLINE | ID: mdl-38846609

Introduction: The COVID-19 pandemic has globally influenced the exposure of populations to chemical substances through various channels. This study aims to evaluate the tendencies of the use of chemical products in Latvia amidst the pandemic. Answers from 597 respondents (26.6% male, 73.4% female, mean age 46.0 ± 12.2) which were gathered as part of the HBM4EU (Human Biomonitoring Initiative) citizen survey and 8 focus group participants were used. Methods: The study utilized data from the HBM4EU citizen survey and conducted focus group discussions to understand the impact of the COVID-19 pandemic on chemical product usage in Latvia. Survey responses were analyzed to identify changes in exposure to chemicals, particularly in relation to disinfection agents and household products. Results: More than two-thirds of survey participants reported increased exposure to chemicals during the COVID-19 pandemic, mainly related to the use of disinfection agents and household products. About 2-in-5 (39.8%) of survey respondents considered that the COVID-19 pandemic has increased their interest in exposure to chemicals. The excessive use of disinfectant products is the main concern of citizens (mentioned by 66.7%, n = 389). Also, two focus group participants noted that the use of disinfectant products is too widespread and should be minimized. Discussion: The findings suggest that the COVID-19 pandemic has not only increased the use of chemical products in Latvia but also promoted an interest in safe and healthy use of chemicals which could be useful to raise the awareness of the general public.


COVID-19 , Focus Groups , Humans , Latvia/epidemiology , Female , Male , COVID-19/epidemiology , Middle Aged , Adult , Surveys and Questionnaires , Environmental Exposure/statistics & numerical data , Disinfectants , SARS-CoV-2 , Household Products , Pandemics
3.
Front Public Health ; 12: 1396147, 2024.
Article En | MEDLINE | ID: mdl-38846618

Introduction: Ever since the use of bisphenol A (BPA) has been restricted, concerns have been raised regarding the use of its substitutes, such as bisphenol S (BPS) and bisphenol F (BPF). Meanwhile, the EU European Food Safety Authority (EFSA) issued the new tolerable daily intake (TDI) after the latest re-risk assessment for BPA, which enforced the need for cumulative risk assessment in the population. This study was conducted to identify BPA and its substitute's exposure characteristics of the general Taiwanese population and estimate the cumulative risk of bisphenol exposure. Methods: Urine samples (N = 366 [adult, 271; minor, 95]) were collected from individuals who participated in the Taiwan Environmental Survey for Toxicants 2013. The samples were analyzed for BPA, BPS, and BPF through ultraperformance liquid chromatography-tandem mass spectrometry. Daily intake (DI) levels were calculated for each bisphenol. Hazard quotients (HQs) were calculated with the consideration of tolerable DI and a reference dose. Additionally, hazard index (HI; sum of HQs for each bisphenol) values were calculated. Results: Our study found that the median level of BPA was significantly higher in adults (9.63 µg/g creatinine) than in minors (6.63 µg/g creatinine) (p < 0.001). The DI of BPS was higher in female (0.69 ng/kg/day) than in male (0.49 ng/kg/day); however, the DIs of BPF and BPS were higher in boys (1.15 and 0.26 ng/kg/day, respectively) than in girls (0.57 and 0.20 ng/kg/day, respectively). Most HI values exceeded 1 (99% of the participants) after EFSA re-establish the TDI of BPA. Discussion: Our study revealed that the exposure profiles and risk of BPA and its substitute in Taiwanese varied by age and sex. Additionally, the exposure risk of BPA was deemed unacceptable in Taiwan according to new EFSA regulations, and food contamination could be the possible source of exposure. We suggest that the risk of exposure to BPA and its substitutes in most human biomonitoring studies should be reassessed based on new scientific evidence.


Benzhydryl Compounds , Environmental Exposure , Phenols , Sulfones , Humans , Phenols/urine , Phenols/analysis , Phenols/toxicity , Benzhydryl Compounds/urine , Benzhydryl Compounds/toxicity , Female , Male , Taiwan , Adult , Risk Assessment , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Child , Middle Aged , Adolescent , Sulfones/analysis , Young Adult , Aged , Child, Preschool , Tandem Mass Spectrometry , Environmental Monitoring , Surveys and Questionnaires , Environmental Pollutants/analysis
4.
Environ Health Perspect ; 132(6): 67002, 2024 Jun.
Article En | MEDLINE | ID: mdl-38829734

BACKGROUND: While limited studies have evaluated the health impacts of thunderstorms and power outages (POs) separately, few have assessed their joint effects. We aimed to investigate the individual and joint effects of both thunderstorms and POs on respiratory diseases, to identify disparities by demographics, and to examine the modifications and mediations by meteorological factors and air pollution. METHODS: Distributed lag nonlinear models were used to examine exposures during three periods (i.e., days with both thunderstorms and POs, thunderstorms only, and POs only) in relation to emergency department visits for respiratory diseases (2005-2018) compared to controls (no thunderstorm/no PO) in New York State (NYS) while controlling for confounders. Interactions between thunderstorms and weather factors or air pollutants on health were assessed. The disparities by demographics and seasons and the mediative effects by particulate matter with aerodynamic diameter ≤2.5µm (PM2.5) and relative humidity (RH) were also evaluated. RESULTS: Thunderstorms and POs were independently associated with total and six subtypes of respiratory diseases in NYS [highest risk ratio (RR) = 1.12; 95% confidence interval (CI): 1.08, 1.17], but the impact was stronger when they co-occurred (highest RR = 1.44; 95% CI: 1.22, 1.70), especially during grass weed, ragweed, and tree pollen seasons. The stronger thunderstorm/PO joint effects were observed on chronic obstructive pulmonary diseases, bronchitis, and asthma (lasted 0-10 d) and were higher among residents who lived in rural areas, were uninsured, were of Hispanic ethnicity, were 6-17 or over 65 years old, and during spring and summer. The number of comorbidities was significantly higher by 0.299-0.782/case. Extreme cold/heat, high RH, PM2.5, and ozone concentrations significantly modified the thunderstorm-health effect on both multiplicative and additive scales. Over 35% of the thunderstorm effects were mediated by PM2.5 and RH. CONCLUSION: Thunderstorms accompanied by POs showed the strongest respiratory effects. There were large disparities in thunderstorm-health associations by demographics. Meteorological factors and air pollution levels modified and mediated the thunderstorm-health effects. https://doi.org/10.1289/EHP13237.


Air Pollutants , Air Pollution , Emergency Service, Hospital , Environmental Exposure , Particulate Matter , Respiratory Tract Diseases , Weather , Humans , New York/epidemiology , Air Pollutants/analysis , Emergency Service, Hospital/statistics & numerical data , Particulate Matter/analysis , Air Pollution/statistics & numerical data , Air Pollution/adverse effects , Respiratory Tract Diseases/epidemiology , Male , Female , Environmental Exposure/statistics & numerical data , Middle Aged , Adult , Aged , Adolescent , Child , Young Adult , Seasons
6.
Environ Int ; 188: 108770, 2024 Jun.
Article En | MEDLINE | ID: mdl-38821016

BACKGROUND: The menopausal transition involves significant sex hormone changes. Environmental chemicals, such as urinary phthalate metabolites, are associated with sex hormone levels in cross-sectional studies. Few studies have assessed longitudinal associations between urinary phthalate metabolite concentrations and sex hormone levels during menopausal transition. METHODS: Pre- and perimenopausal women from the Midlife Women's Health Study (MWHS) (n = 751) contributed data at up to 4 annual study visits. We quantified 9 individual urinary phthalate metabolites and 5 summary measures (e.g., phthalates in plastics (∑Plastic)), using pooled annual urine samples. We measured serum estradiol, testosterone, and progesterone collected at each study visit, unrelated to menstrual cycling. Linear mixed-effects models and hierarchical Bayesian kernel machine regression analyses evaluated adjusted associations between individual and phthalate mixtures with sex steroid hormones longitudinally. RESULTS: We observed associations between increased concentrations of certain phthalate metabolites and lower testosterone and higher sub-ovulatory progesterone levels, e.g., doubling of monoethyl phthalate (MEP), monobenzyl phthalate (MBzP), di-2-ethylhexyl phthalate (∑DEHP) metabolites, ∑Plastic, and ∑Phthalates concentrations were associated with lower testosterone (e.g., for ∑DEHP: -4.51%; 95% CI: -6.72%, -2.26%). For each doubling of MEP, certain DEHP metabolites, and summary measures, we observed higher mean sub-ovulatory progesterone (e.g., ∑AA (metabolites with anti-androgenic activity): 6.88%; 95% CI: 1.94%, 12.1%). Higher levels of the overall time-varying phthalate mixture were associated with lower estradiol and higher progesterone levels, especially for 2nd year exposures. CONCLUSIONS: Phthalates were longitudinally associated with sex hormone levels during the menopausal transition. Future research should assess such associations and potential health impacts during this understudied period.


Environmental Pollutants , Perimenopause , Phthalic Acids , Humans , Phthalic Acids/urine , Female , Middle Aged , Longitudinal Studies , Perimenopause/blood , Environmental Pollutants/blood , Environmental Pollutants/urine , Estradiol/blood , Adult , Gonadal Steroid Hormones/blood , Progesterone/blood , Progesterone/urine , Environmental Exposure/statistics & numerical data , Women's Health , Testosterone/blood
7.
Environ Int ; 188: 108779, 2024 Jun.
Article En | MEDLINE | ID: mdl-38821015

BACKGROUND: We aimed to assess evidence of long-term effects of exposure to radiofrequency (RF) electromagnetic fields (EMF) on indicators of cognition, including domains of learning and memory, executive function, complex attention, language, perceptual motor ability and social cognition, and of an exposure-response relationship between RF-EMF and cognition. METHODS: We searched PubMed, Embase, PsycInfo and the EMF-Portal on September 30, 2022 without limiting by date or language of publication. We included cohort or case-control studies that evaluated the effects of RF exposure on cognitive function in one or more of the cognitive domains. Studies were rated for risk of bias using the OHAT tool and synthesised using fixed effects meta-analysis. We assessed the certainty of the evidence using the GRADE approach and considered modification by OHAT for assessing evidence of exposures. RESULTS: We included 5 studies that reported analyses of data from 4 cohorts with 4639 participants consisting of 2808 adults and 1831 children across three countries (Australia, Singapore and Switzerland) conducted between 2006 and 2017. The main source of RF-EMF exposure was mobile (cell) phone use measured as calls per week or minutes per day. For mobile phone use in children, two studies (615 participants) that compared an increase in mobile phone use to a decrease or no change were included in meta-analyses. Learning and memory. There was little effect on accuracy (mean difference, MD -0.03; 95% CI -0.07 to 0.02) or response time (MD -0.01; 95% CI -0.04 to 0.02) on the one-back memory task; and accuracy (MD -0.02; 95%CI -0.04 to 0.00) or response time (MD -0.01; 95%CI -0.04 to 0.03) on the one card learning task (low certainty evidence for all outcomes). Executive function. There was little to no effect on the Stroop test for the time ratio ((B-A)/A) response (MD 0.02; 95% CI -0.01 to 0.04, very low certainty) or the time ratio ((D-C)/C) response (MD 0.00; 95% CI -0.06 to 0.05, very low certainty), with both tests measuring susceptibility to interference effects. Complex attention. There was little to no effect on detection task accuracy (MD 0.02; 95% CI -0.04 to 0.08), or response time (MD 0.02;95% CI 0.01 to 0.03), and little to no effect on identification task accuracy (MD 0.00; 95% CI -0.04 to 0.05) or response time (MD 0.00;95% CI -0.01 to 0.02) (low certainty evidence for all outcomes). No other cognitive domains were investigated in children. A single study among elderly people provided very low certainty evidence that more frequent mobile phone use may have little to no effect on the odds of a decline in global cognitive function (odds ratio, OR 0.81; 95% CI 0.42 to 1.58, 649 participants) or a decline in executive function (OR 1.07; 95% CI 0.37 to 3.05, 146 participants), and may lead to a small, probably unimportant, reduction in the odds of a decline in complex attention (OR 0.67;95%CI 0.27 to 1.68, 159 participants) and a decline in learning and memory (OR 0.75; 95% CI 0.29 to 1.99, 159 participants). An exposure-response relationship was not identified for any of the cognitive outcomes. DISCUSSION: This systematic review and meta-analysis found only a few studies that provided very low to low certainty evidence of little to no association between RF-EMF exposure and learning and memory, executive function and complex attention. None of the studies among children reported on global cognitive function or other domains of cognition. Only one study reported a lack of an effect for all domains in elderly persons but this was of very low certainty evidence. Further studies are needed to address all types of populations, exposures and cognitive outcomes, particularly studies investigating environmental and occupational exposure in adults. Future studies also need to address uncertainties in the assessment of exposure and standardise testing of specific domains of cognitive function to enable synthesis across studies and increase the certainty of the evidence. OTHER: This review was partially funded by the WHO radioprotection programme and prospectively registered on PROSPERO CRD42021257548.


Cognition , Radio Waves , Humans , Cognition/radiation effects , Radio Waves/adverse effects , Electromagnetic Fields/adverse effects , Observational Studies as Topic , Child , Cell Phone , Environmental Exposure/statistics & numerical data , Adult , Memory
8.
Environ Monit Assess ; 196(6): 543, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740673

In India, railway is the major transportation mode for carrying goods and people. The tracks for the movement of the rail were initially constructed in the city for the pre-eminence and expediency of the vantage of the people. Rapid modernization and increasing population in the city crammed the area around the railway tracks. Moving rail on the tracks passing through the city is not compatible, which is creating problems for the nearby residents. In the urban and suburban regions, the railway noise has become a major problem. This study was conducted to examine the perception of the physiological and psychological effects of railway noise in the nearby areas of railway stations in Delhi, India. For this purpose, 10 sites near the railway station were selected for the study. To assess the impact of railway noise pollution on the health of humans, a questionnaire survey was conducted. The data of 344 individuals were collected through the questionnaire survey and analyzed to get the perception towards railway noise. Noise level was monitored by a Sound Level Meter (SLM) and the equivalent noise level (Leq) in dB(A) was used to compute the noise pollution in three shifts, i.e., morning, noon, and evening time. Results showed that 57.65% of female and 86.11% of male respondents in the survey reported the disturbance due to railway noise. The level of noise pollution was found higher in the evening time as compared to the noon and morning period, which exceeds the limit set by the Central Pollution Control Board (CPCB) at all the monitored locations. Findings of the study show that the primary cause of the health problems is railroad noise, which is negatively impacting the health of the residents, who are living in the proximity of the rail track region. The perception survey reported that headache, sleep disturbance, irritation, and stress are common health issues among the locals residing around the railway track proximity in Delhi.


Environmental Monitoring , Noise, Transportation , Railroads , Humans , India , Environmental Monitoring/methods , Adult , Male , Female , Environmental Exposure/statistics & numerical data , Surveys and Questionnaires , Middle Aged
9.
Front Public Health ; 12: 1295643, 2024.
Article En | MEDLINE | ID: mdl-38756895

Leukemia is the most common cancer in children. Its incidence has been increasing worldwide since 1910th, suggesting the presence of common sources of the disease, most likely related to people's lifestyle and environment. Understanding the relationship between childhood leukemia and environmental conditions is critical to preventing the disease. This discussion article examines established potentially-carcinogenic environmental factors, such as vehicle emissions and fires, alongside space weather-related parameters like cosmic rays and the geomagnetic field. To discern the primary contributor, we analyze trends and annual variations in leukemia incidence among 0-14-year-olds in the United States, Canada, Australia, and Russia from 1990 to 2018. Comparisons are drawn with the number of vehicles (representing gasoline emissions) and fire-affected land areas (indicative of fire-related pollutants), with novel data for Russia introduced for the first time. While childhood leukemia incidence is rising in all countries under study, the rate of increase in Russia is twice that of other nations, possibly due to a delayed surge in the country's vehicle fleet compared to others. This trend in Russia may offer insights into past leukemia levels in the USA, Canada, and Australia. Our findings highlight vehicular emissions as the most substantial environmental hazard for children among the factors examined. We also advocate for the consideration of potential modulation of carcinogenic effects arising from variations in cosmic ray intensity, as well as the protective role of the geomagnetic field. To support the idea, we provide examples of potential space weather effects at both local and global scales. The additional analysis includes statistical data from 49 countries and underscores the significance of the magnetic field dip in the South Atlantic Anomaly in contributing to a peak in childhood leukemia incidence in Peru, Ecuador and Chile. We emphasize the importance of collectively assessing all potentially carcinogenic factors for the successful future predictions of childhood leukemia risk in each country.


Leukemia , Weather , Humans , Incidence , Leukemia/epidemiology , Leukemia/etiology , Russia/epidemiology , Child , Child, Preschool , United States/epidemiology , Australia/epidemiology , Canada/epidemiology , Infant , Adolescent , Environmental Exposure/statistics & numerical data , Environmental Exposure/adverse effects , Infant, Newborn , Vehicle Emissions , Male , Female , Urban Population/statistics & numerical data , Cosmic Radiation/adverse effects
10.
Environ Int ; 187: 108714, 2024 May.
Article En | MEDLINE | ID: mdl-38718674

BACKGROUND: Ultrafine particle (UFP) has been linked with higher risks of cardiovascular diseases; however, the biological mechanisms remain to be fully elucidated. OBJECTIVES: This study aims to investigate the cardiovascular responses to short-term UFP exposure and the biological pathways involved. METHODS: A longitudinal panel study was conducted among 32 healthy, non-smoking young adults in Shanghai, China, who were engaged in five rounds of follow-ups between December 2020 and November 2021. Individual exposures were calculated based on the indoor and outdoor real-time measurements. Blood pressure, arterial stiffness, targeted biomarkers, and untargeted proteomics and metabolomics were examined during each follow-up. Linear mixed-effect models were applied to analyze the exposure and health data. The differential proteins and metabolites were used for pathway enrichment analyses. RESULTS: Short-term UFP exposure was associated with significant increases in blood pressure and arterial stiffness. For example, systolic blood pressure increased by 2.10 % (95 % confidence interval: 0.63 %, 3.59 %) corresponding to each interquartile increase in UFP concentrations at lag 0-3 h, while pulse wave velocity increased by 2.26 % (95 % confidence interval: 0.52 %, 4.04 %) at lag 7-12 h. In addition, dozens of molecular biomarkers altered significantly. These effects were generally present within 24 h after UFP exposure, and were robust to the adjustment of co-pollutants. Molecular changes detected in proteomics and metabolomics analyses were mainly involved in systemic inflammation, oxidative stress, endothelial dysfunction, coagulation, and disturbance in lipid transport and metabolism. DISCUSSION: This study provides novel and compelling evidence on the detrimental subclinical cardiovascular effects in response to short-term UFP exposure. The multi-omics profiling further offers holistic insights into the underlying biological pathways.


Air Pollutants , Cardiovascular Diseases , Particulate Matter , Humans , Longitudinal Studies , China , Male , Adult , Young Adult , Female , Blood Pressure , Biomarkers/blood , Environmental Exposure/statistics & numerical data , Vascular Stiffness/drug effects , Proteomics
11.
Sci Total Environ ; 932: 173085, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38729377

The presence of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in various everyday products has raised concerns about their potential impact on prostate health. This study aimed to investigate the effects of different types of PFAS on prostate health, including PFDeA, PFOA, PFOS, PFHxS, and PFNA. To assess the relationship between PFAS exposure and prostate injury, machine learning algorithms were employed to analyze prostate-specific antigen (PSA) metrics. The analysis revealed a linear and positive dose-dependent association between PFOS and the ratio of free PSA to total PSA (f/tPSA). Non-linear dose-response relationships were observed between the other four types of PFAS and the f/tPSA ratio. Additionally, the analysis showed a positive association between the mixture of PFAS and prostate hyperplasia, with PFNA having the highest impact followed by PFOS. These findings suggest that elevated serum levels of PFDeA, PFOA, PFOS, and PFNA are linked to prostate hyperplasia. Therefore, this study utilized advanced machine learning techniques to uncover potential hazardous effects of PFAS exposure on prostate health, specifically the positive association between PFAS and prostate hyperplasia.


Fluorocarbons , Prostatic Hyperplasia , Male , Fluorocarbons/blood , Humans , Environmental Exposure/statistics & numerical data , Environmental Pollutants/blood , Machine Learning , Alkanesulfonic Acids/blood , Prostate-Specific Antigen/blood
12.
Sci Total Environ ; 932: 172987, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38734084

Liquid crystal monomers (LCMs) are emerging contaminants characterized by their persistence, bioaccumulation potential, and toxicity. They have been observed in several environmental matrices associated with electronic waste (e-waste) dismantling activities, particularly in China. However, there is currently no information on the pollution caused by LCMs in other developing countries, such as Pakistan. In this study, we collected soil samples (n = 59) from e-waste dismantling areas with different functions in Pakistan for quantification analysis of 52 target LCMs. Thirty out of 52 LCMs were detected in the soil samples, with the concentrations ranging from 2.14 to 191 ng/g (median: 16.3 ng/g), suggesting widespread contamination by these emerging contaminants. Fluorinated LCMs (median: 10.4 ng/g, range: 1.27-116 ng/g) were frequently detected and their levels were significantly (P < 0.05) higher than those of non-fluorinated LCMs (median: 6.11 ng/g, range: not detected (ND)-76.7 ng/g). The concentrations and profiles of the observed LCMs in the soil samples from the four functional areas varied. The informal dismantling of e-waste poses a potential exposure risk to adults and infants, with median estimated daily intake (EDI, ng/kg bw/day) values of 0.0420 and 0.1013, respectively. Calculation of the hazard quotient (HQ) suggested that some LCMs (e.g., ETFMBC (1.374) and EDFPB (1.257)) may pose potential health risks to occupational workers and their families. Considering the widespread contamination and risks associated with LCMs, we strongly recommend enhancing e-waste management and regulation in Pakistan.


Electronic Waste , Environmental Monitoring , Liquid Crystals , Soil Pollutants , Pakistan , Electronic Waste/analysis , Environmental Monitoring/methods , Soil Pollutants/analysis , Humans , Environmental Exposure/statistics & numerical data , Risk Assessment
13.
Environ Health Perspect ; 132(5): 57009, 2024 May.
Article En | MEDLINE | ID: mdl-38775486

BACKGROUND: More frequent and intense exposure to extreme heat conditions poses a serious threat to public health. However, evidence on the association between heat and specific diagnoses of morbidity is still limited. We aimed to comprehensively assess the short-term association between cause-specific hospital admissions and high temperature, including the added effect of temperature variability and heat waves and the effect modification by humidity and air pollution. METHODS: We used data on cause-specific hospital admissions, weather (i.e., temperature and relative humidity), and air pollution [i.e., fine particulate matter with aerodynamic diameter ≤2.5µm (PM2.5), fine particulate matter with aerodynamic diameter ≤10µm (PM10), NO2, and ozone (O3)] for 48 provinces in mainland Spain and the Balearic Islands between 1 January 2006 and 31 December 2019. The statistical analysis was performed for the summer season (June-September) and consisted of two steps. We first applied quasi-Poisson generalized linear regression models in combination with distributed lag nonlinear models (DLNM) to estimate province-specific temperature-morbidity associations, which were then pooled through multilevel univariate/multivariate random-effect meta-analysis. RESULTS: High temperature had a generalized impact on cause-specific hospitalizations, while the added effect of temperature variability [i.e., diurnal temperature range (DTR)] and heat waves was limited to a reduced number of diagnoses. The strongest impact of heat was observed for metabolic disorders and obesity [relative risk (RR) = 1.978; 95% empirical confidence interval (eCI): 1.772, 2.208], followed by renal failure (1.777; 95% eCI: 1.629, 1.939), urinary tract infection (1.746; 95% eCI: 1.578, 1.933), sepsis (1.543; 95% eCI: 1.387, 1.718), urolithiasis (1.490; 95% eCI: 1.338, 1.658), and poisoning by drugs and nonmedicinal substances (1.470; 95% eCI: 1.298, 1.665). We also found differences by sex (depending on the diagnosis of hospitalization) and age (very young children and the elderly were more at risk). Humidity played a role in the association of heat with hospitalizations from acute bronchitis and bronchiolitis and diseases of the muscular system and connective tissue, which were higher in dry days. Moreover, heat-related effects were exacerbated on high pollution days for metabolic disorders and obesity (PM2.5) and diabetes (PM10, O3). DISCUSSION: Short-term exposure to heat was found to be associated with new diagnoses (e.g., metabolic diseases and obesity, blood diseases, acute bronchitis and bronchiolitis, muscular and connective tissue diseases, poisoning by drugs and nonmedicinal substances, complications of surgical and medical care, and symptoms, signs, and ill-defined conditions) and previously identified diagnoses of hospital admissions. The characterization of the vulnerability to heat can help improve clinical and public health practices to reduce the health risks posed by a warming planet. https://doi.org/10.1289/EHP13254.


Hospitalization , Hot Temperature , Spain/epidemiology , Humans , Hospitalization/statistics & numerical data , Cross-Sectional Studies , Hot Temperature/adverse effects , Air Pollution/statistics & numerical data , Air Pollution/adverse effects , Environmental Exposure/statistics & numerical data , Air Pollutants/analysis , Female , Male
14.
Ecotoxicol Environ Saf ; 278: 116414, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38714086

BACKGROUND: Organophosphate esters (OPEs) are used extensively as flame retardants and plasticizers. Laboratory studies have shown that OPEs exhibit osteotoxicity by inhibiting osteoblast differentiation; however, little is known about how OPEs exposure is associated with bone health in humans. OBJECTIVES: We conducted a cross-sectional study to investigate the association between OPEs exposure and bone mineral density (BMD) in adults in the United States using data from the 2011-2018 National Health and Nutrition Examination Survey (NHANES). METHODS: Multivariate linear regression models were used to assess the association between concentrations of individual OPE metabolites and BMDs. We also used the Bayesian kernel machine regression (BKMR) and quantile g-computation (qgcomp) models to estimate joint associations between OPE mixture exposure and BMDs. All the analyses were stratified according to gender. RESULTS: A total of 3546 participants (median age, 40 years [IQR, 30-50 years]; 50.11% male) were included in this study. Five urinary OPE metabolites with a detection rate of > 50% were analyzed. After adjusting for the potential confounders, OPE metabolite concentrations were associated with decreased total-body BMD and lumbar spine BMD in males, although some associations only reached significance for bis(1-chloro-2-propyl) phosphate (BCPP), dibutyl phosphate (DBUP), and bis(2-chloroethyl) phosphate (BCEP) (ß = -0.013, 95% CI: -0.026, -0.001 for BCPP and total-body BMD; ß = -0.022, 95% CI: -0.043, -0.0001 for DBUP and lumbar spine BMD; ß=-0.018, 95% CI: -0.034, -0.002 for BCEP and lumbar spine BMD). OPE mixture exposure was also inversely associated with BMD in males, as demonstrated in the BMKR and qgcomp models. CONCLUSIONS: This study provides preliminary evidence that urinary OPE metabolite concentrations are inversely associated with BMD. The results also suggested that males were more vulnerable than females. However, further studies are required to confirm these findings.


Bone Density , Nutrition Surveys , Organophosphates , Humans , Adult , Male , Bone Density/drug effects , Female , Middle Aged , United States , Cross-Sectional Studies , Organophosphates/urine , Organophosphates/toxicity , Esters , Flame Retardants/toxicity , Environmental Exposure/statistics & numerical data , Environmental Pollutants/urine
15.
Ecotoxicol Environ Saf ; 278: 116400, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38718725

Evidence increasingly suggests molybdenum exposure at environmental levels is still associated with adverse human health, emphasizing the necessity to establish a more protective reference dose (RfD). Herein, we conducted a study measuring 15 urinary metals and 30 clinical health indicators in 2267 participants residing near chemical enterprises across 11 Chinese provinces to investigate their relationships. The kidney and cystatin-C emerged as the most sensitive organ and critical effect indicator of molybdenum exposure, respectively. Odds of cystatin-C-defined chronic kidney disease (CKD) in the highest quantile of molybdenum exposure significantly increased by 133.5% (odds ratio [OR]: 2.34, 95% CI: 1.78, 3.11) and 75.8% (OR: 1.76, 95% CI: 1.24, 2.49) before and after adjusting for urinary 14 metals, respectively. Intriguingly, cystatin-C significantly mediated 15.9-89.5% of molybdenum's impacts on liver and lung function, suggesting nephrotoxicity from molybdenum exposure may trigger hepatotoxicity and pulmonary toxicity. We derived a new RfD for molybdenum exposure (0.87 µg/kg-day) based on cystatin-C-defined estimated glomerular filtration rate by employing Bayesian Benchmark Dose modeling analysis. This RfD is significantly lower than current exposure guidance values (5-30 µg/kg-day). Remarkably, >90% of participants exceeded the new RfD, underscoring the significant health impacts of environmental molybdenum exposure on populations in industrial regions of China.


Molybdenum , Molybdenum/urine , Molybdenum/toxicity , Molybdenum/analysis , Humans , China/epidemiology , Female , Male , Adult , Middle Aged , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Cystatin C , Risk Assessment , Environmental Pollutants/urine , Environmental Pollutants/analysis , Young Adult , Bayes Theorem , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/chemically induced , Aged , Chemical Industry , Kidney/drug effects , Glomerular Filtration Rate/drug effects
16.
Ecotoxicol Environ Saf ; 278: 116428, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38723384

BACKGROUND: Phthalates (PAEs) are endocrine-disrupting chemicals ubiquitously found in the environment. This study aimed to examine the association between exposure of PAEs and subfecundity in preconception couples. METHODS: This is a nested case-control study based on preconception cohort. Preconception couples with intention to conceive were enrolled and followed up until a clinically confirmed pregnancy or 12 menstrual cycles of preparation for conception. A total of 107 couples with subfecundity- time to pregnancy (TTP) more than 12 menstrual cycles, and 144 couples ≤12 cycles were included in the analysis. The levels of PAE metabolites in one spot urine samples were detected and compared between the groups. The weighted quantile sum (WQS) regression model and Bayesian kernel machine regression (BKMR) model were used to examine the joint effects of couples' exposure to PAEs on subfecundity. RESULTS: Using the multivariate binary logistic regression model, compared to the lowest quartile of urinary ∑PAEs concentration group, both preconception females (aOR=2.42, 95% CI: 1.10-5.30, p=0.027) and males (aOR=2.99, 95% CI: 1.36-6.58, p=0.006) in the highest quartile group had an increased risk of subfecundity, and a dose-response relationship was observed between PAEs and the risk of subfecundity. The WQS analyses found that co-exposure to PAE mixture was a risk factor for subfecundity in preconception female (aOR=1.76, 95% CI: 1.38-2.26, p<0.001), male (aOR=1.58, 95% CI: 1.20-2.08, p=0.001), and couple (aOR=2.39, 95% CI: 1.61-3.52, p<0.001). The BKMR model found a positive combined effect of mixed exposure to PAEs on the risk of subfecundity. CONCLUSIONS: PAEs increase the risk of subfecundity in preconception couples. Our research reinforced the need of monitoring PAE exposure for the purpose of improving human reproductive health.


Endocrine Disruptors , Environmental Exposure , Environmental Pollutants , Phthalic Acids , Humans , Phthalic Acids/urine , Case-Control Studies , Female , Male , Adult , Endocrine Disruptors/urine , Environmental Pollutants/urine , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Pregnancy , Infertility/chemically induced , Bayes Theorem , Time-to-Pregnancy/drug effects
17.
Ecotoxicol Environ Saf ; 278: 116438, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38744065

Phthalates are positioned as potential risk factors for health-related diseases. However, the effects of exposure to phthalates on accelerated aging and the potential modifications of physical activity remain unclear. A total of 2317 participants containing complete study-related information from the National Health and Nutrition Examination Survey 2007-2010 were included in the current study. We used two indicators, the Klemera-Doubal method biological age acceleration (BioAgeAccel) and phenotypic age acceleration (PhenoAgeAccel), to assess the accelerated aging status of the subjects. Multiple linear regression (single pollutant models), weighted quantile sum (WQS) regression, Quantile g-computation, and Bayesian kernel machine regression (BKMR) models were utilized to explore the associations between urinary phthalate metabolites and accelerated aging. Three groups of physical activity with different intensities were used to evaluate the modifying effects on the above associations. Results indicated that most phthalate metabolites were significantly associated with BioAgeAccel and PhenoAgeAccel, with effect values (ß) ranging from 0.16 to 0.21 and 0.16-0.37, respectively. The WQS indices were positively associated with BioAgeAccel (0.33, 95% CI: 0.11, 0.54) and PhenoAgeAccel (0.50, 95% CI: 0.19, 0.82). Quantile g-computation indicated that phthalate mixtures were associated with accelerated aging, with effect values of 0.15 (95% CI: 0.02, 0.28) for BioAgeAccel and 0.39 (95% CI: 0.12, 0.67) for PhenoAgeAccel respectively. The BKMR models indicated a significant positive association between the concentrations of urinary phthalate mixtures with the two indicators. In addition, we found that most phthalate metabolites showed the strongest effects on accelerated aging in the no physical activity group and that the effects decreased gradually with increasing levels of physical activity (P < 0.05 for trend). Similar results were also observed in the mixed exposure models (WQS and Quantile g-computation). This study indicates that phthalates exposure is associated with accelerated aging, while physical activity may be a crucial barrier against phthalates exposure-related aging.


Aging , Environmental Exposure , Environmental Pollutants , Exercise , Phthalic Acids , Phthalic Acids/urine , Humans , Male , Female , Middle Aged , Environmental Exposure/statistics & numerical data , Adult , Nutrition Surveys , Aged , Bayes Theorem
18.
Ecotoxicol Environ Saf ; 278: 116452, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38744066

The aim of this research was to examine the correlation between the exposure to bisphenol analogues (BPs), such as bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS), and the risk of developing systemic lupus erythematosus (SLE). Ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was utilized to measure the levels of BPA, BPF, and BPS in the urine of 168 female participants diagnosed with SLE and 175 female participants who were deemed healthy controls. Logistic regression models were utilized to assess the connections between levels of bisphenol and the risk of SLE. The findings indicated that levels of BPA and BPF in the urine of individuals with SLE were markedly elevated compared to those in the control group. Higher exposure to BPA and BPF exhibited positive dose-response relationships with increased SLE risk. No significant associations were identified between BPS and the risk of SLE. These findings suggest exposure to BPA and BPF may be implicated as novel environmental triggers in the development of autoimmunity such as SLE. The significantly increased levels of these bisphenol analogues detected in SLE patients versus healthy controls, along with the associations between higher exposures and elevated SLE risk, which offers crucial hints for comprehending how endocrine-disrupting substances contribute to the genesis of autoimmune illnesses. Further research using robust longitudinal assessments of bisphenol analogue exposures is warranted to corroborate these epidemiological findings. Overall, this study highlights potential environmental risk factors for SLE while calling for additional investigation into the impact of bisphenol exposures on autoimmunity development.


Benzhydryl Compounds , Lupus Erythematosus, Systemic , Phenols , Sulfones , Lupus Erythematosus, Systemic/chemically induced , Phenols/urine , Humans , Benzhydryl Compounds/urine , Female , Adult , Environmental Exposure/statistics & numerical data , Tandem Mass Spectrometry , Environmental Pollutants , Middle Aged , Endocrine Disruptors , Autoimmunity/drug effects , Case-Control Studies , Young Adult
19.
Environ Health Perspect ; 132(5): 57010, 2024 May.
Article En | MEDLINE | ID: mdl-38780454

BACKGROUND: Manganese (Mn) plays a significant role in both human health and global industries. Epidemiological studies of exposed populations demonstrate a dose-dependent association between Mn and neuromotor effects ranging from subclinical effects to a clinically defined syndrome. However, little is known about the relationship between early life Mn biomarkers and adolescent postural balance. OBJECTIVES: This study investigated the associations between childhood and adolescent Mn biomarkers and adolescent postural balance in participants from the longitudinal Marietta Communities Actively Researching Exposures Study (CARES) cohort. METHODS: Participants were recruited into CARES when they were 7-9 y old, and reenrolled at 13-18 years of age. At both time points, participants provided samples of blood, hair, and toenails that were analyzed for blood Mn and lead (Pb), serum cotinine, hair Mn, and toenail Mn. In adolescence, participants completed a postural balance assessment. Greater sway indicates postural instability (harmful effect), whereas lesser sway indicates postural stability (beneficial effect). Multivariable linear regression models were conducted to investigate the associations between childhood and adolescent Mn biomarkers and adolescent postural balance adjusted for age, sex, height-weight ratio, parent/caregiver intelligence quotient, socioeconomic status, blood Pb, and serum cotinine. RESULTS: CARES participants who completed the adolescent postural balance assessment (n=123) were 98% White and 54% female and had a mean age of 16 y (range: 13-18 y). In both childhood and adolescence, higher Mn biomarker concentrations were significantly associated with greater adolescent sway measures. Supplemental analyses revealed sex-specific associations; higher childhood Mn biomarker concentrations were significantly associated with greater sway in females compared with males. DISCUSSION: This study found childhood and adolescent Mn biomarkers were associated with subclinical neuromotor effects in adolescence. This study demonstrates postural balance as a sensitive measure to assess the association between Mn biomarkers and neuromotor function. https://doi.org/10.1289/EHP13381.


Biomarkers , Hair , Manganese , Nails , Postural Balance , Humans , Adolescent , Biomarkers/blood , Manganese/blood , Manganese/analysis , Female , Male , Child , Postural Balance/physiology , Hair/chemistry , Nails/chemistry , Cohort Studies , Environmental Exposure/statistics & numerical data , Lead/blood , Longitudinal Studies , Cotinine/blood , Environmental Pollutants/blood
20.
Sci Total Environ ; 933: 172988, 2024 Jul 10.
Article En | MEDLINE | ID: mdl-38710391

Pesticide exposure is emerging as a risk factor for various human diseases. Breast cancer (BC) is a multifactorial disease with known genetic and non-genetic risk factors. Most BC cases are attibutable to non-genetic risk factors, with a history of adverse environmental exposures playing a significant role. Pesticide exposure can occur at higher levels in female populations participating in rural activities such as spraying of pesticides in the field, unprotected handling of pesticides at home, and washing of contaminated clothes. Exposure can also be significant in the drinking water of certain populations. Here, we reviewed the literature on women's exposure to pesticides and the risk of BC. We summarize the main links between pesticide exposure and BC and discuss the role of dose and exposure context, as well as potential mechanisms of toxicity. Overall, reports reviewed here have documented stronger associations between higher levels of exposure and BC risk, including documenting direct and acute pesticide exposure in certain female populations. However, discrepancies among studies regarding dose and mode of exposure may result in misunderstandings about the risks posed by pesticide exposure. Plausible mechanisms linking pesticides to breast cancer risk include their impacts as endocrine disruptors, as well as their roles as genotoxic agents, and modulators of the epigenome. Besides establishing links between pesticide exposure and breast cancer, the literature also highlights the critical need to understand the routes and doses of women's exposure to pesticides and the specific associations and mechanisms that are determinants of disease etiology and prognosis.


Breast Neoplasms , Environmental Exposure , Pesticides , Breast Neoplasms/epidemiology , Breast Neoplasms/chemically induced , Humans , Female , Environmental Exposure/statistics & numerical data , Risk Factors
...