Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.906
1.
Sci Rep ; 14(1): 14380, 2024 06 22.
Article En | MEDLINE | ID: mdl-38909058

Inherited and developmental eye diseases are quite diverse and numerous, and determining their genetic cause is challenging due to their high allelic and locus heterogeneity. New molecular approaches, such as whole exome sequencing (WES), have proven to be powerful molecular tools for addressing these cases. The present study used WES to identify the genetic etiology in ten unrelated Mexican pediatric patients with complex ocular anomalies and other systemic alterations of unknown etiology. The WES approach allowed us to identify five clinically relevant variants in the GZF1, NFIX, TRRAP, FGFR2 and PAX2 genes associated with Larsen, Malan, developmental delay with or without dysmorphic facies and autism, LADD1 and papillorenal syndromes. Mutations located in GZF1 and NFIX were classified as pathogenic, those in TRRAP and FGFR2 were classified as likely pathogenic variants, and those in PAX2 were classified as variants of unknown significance. Protein modeling of the two missense FGFR2 p.(Arg210Gln) and PAX2 p.(Met3Thr) variants showed that these changes could induce potential structural alterations in important functional regions of the proteins. Notably, four out of the five variants were not previously reported, except for the TRRAP gene. Consequently, WES enabled the identification of the genetic cause in 40% of the cases reported. All the syndromes reported herein are very rare, with phenotypes that may overlap with other genetic entities.


Exome Sequencing , Eye Abnormalities , PAX2 Transcription Factor , Receptor, Fibroblast Growth Factor, Type 2 , Humans , Male , Female , Child , Receptor, Fibroblast Growth Factor, Type 2/genetics , PAX2 Transcription Factor/genetics , Child, Preschool , Eye Abnormalities/genetics , Infant , Mutation , Adolescent , Genetic Predisposition to Disease
2.
Neuromuscul Disord ; 39: 30-32, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723581

LAMB2 gene disorders present with different phenotypes. Pierson syndrome (PS) is a common phenotype associated with LAMB2 variants. Neuromuscular phenotype has been reported including hypotonia and developmental delay. However, neuromuscular junction abnormalities represented as congenital myasthenic syndrome (CMS) was reported in one adult patient only. Here, in this paper, we present two pediatric cases with a severe presentation of PS and have CMS so expanding the knowledge of LAMB2 related phenotypes. The first patient had hypotonia and global developmental delay. Targeted genetic testing panel demonstrated homozygous pathogenic variant in the LAMB2 gene (c.5182C>T, pGln1728*) which was reported by Maselli et al. 2009. Repetitive nerve stimulation (RNS) showed a decremental response at low frequency of 3 Hz. On the other hand, the second patient had profound weakness since birth. Tri-Whole exome sequencing showed homozygous pathogenic variant in the LAMB2 gene c.2890C>T, pArg964*. A trial of salbutamol did not improve the symptoms. Both patients passed away from sequala of PS. The spectrum of phenotypic changes associated with LAMB2 mutations is still expanding, and further investigation into the various clinical and morphologic presentations associated with these mutations is important to better identify and manage affected individuals.


Myasthenic Syndromes, Congenital , Humans , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/physiopathology , Myasthenic Syndromes, Congenital/diagnosis , Male , Female , Eye Abnormalities/genetics , Eye Abnormalities/complications , Laminin/genetics , Phenotype , Mutation , Abnormalities, Multiple/genetics , Infant , Neuromuscular Junction Diseases/genetics , Child, Preschool , Nephrotic Syndrome , Pupil Disorders
3.
BMC Med Genomics ; 17(1): 106, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671463

BACKGROUND: Syndromic ciliopathies are a group of congenital disorders characterized by broad clinical and genetic overlap, including obesity, visual problems, skeletal anomalies, mental retardation, and renal diseases. The hallmark of the pathophysiology among these disorders is defective ciliary functions or formation. Many different genes have been implicated in the pathogenesis of these diseases, but some patients still remain unclear about their genotypes. METHODS: The aim of this study was to identify the genetic causes in patients with syndromic ciliopathy. Patients suspected of or meeting clinical diagnostic criteria for any type of syndromic ciliopathy were recruited at a single diagnostic medical center in Southern Taiwan. Whole exome sequencing (WES) was employed to identify their genotypes and elucidate the mutation spectrum in Taiwanese patients with syndromic ciliopathy. Clinical information was collected at the time of patient enrollment. RESULTS: A total of 14 cases were molecularly diagnosed with syndromic ciliopathy. Among these cases, 10 had Bardet-Biedl syndrome (BBS), comprising eight BBS2 patients and two BBS7 patients. Additionally, two cases were diagnosed with Alström syndrome, one with Oral-facial-digital syndrome type 14, and another with Joubert syndrome type 10. A total of 4 novel variants were identified. A recurrent splice site mutation, BBS2: c.534 + 1G > T, was present in all eight BBS2 patients, suggesting a founder effect. One BBS2 patient with homozygous c.534 + 1G > T mutations carried a third ciliopathic allele, TTC21B: c.264_267dupTAGA, a nonsense mutation resulting in a premature stop codon and protein truncation. CONCLUSIONS: Whole exome sequencing (WES) assists in identifying molecular pathogenic variants in ciliopathic patients, as well as the genetic hotspot mutations in specific populations. It should be considered as the first-line genetic testing for heterogeneous disorders characterized by the involvement of multiple genes and diverse clinical manifestations.


Cerebellum/abnormalities , Ciliopathies , Kidney Diseases, Cystic , Proteins , Retina/abnormalities , Humans , Male , Female , Taiwan , Ciliopathies/genetics , Child , Child, Preschool , Mutation , Exome Sequencing , Bardet-Biedl Syndrome/genetics , Adolescent , Infant , Abnormalities, Multiple/genetics , Retina/pathology , Syndrome , Cilia/pathology , Cilia/genetics , Eye Abnormalities/genetics
4.
Invest Ophthalmol Vis Sci ; 65(4): 20, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38587439

Purpose: Axenfeld-Rieger syndrome (ARS) is characterized by ocular anomalies including posterior embryotoxon, iridocorneal adhesions, corectopia/iris hypoplasia, and developmental glaucoma. Although anterior segment defects and glaucoma contribute to decreased visual acuity, the role of potential posterior segment abnormalities has not been explored. We used high-resolution retinal imaging to test the hypothesis that individuals with ARS have posterior segment pathology. Methods: Three individuals with FOXC1-ARS and 10 with PITX2-ARS completed slit-lamp and fundus photography, optical coherence tomography (OCT), OCT angiography, and adaptive optics scanning light ophthalmoscopy (AOSLO). Quantitative metrics were compared to previously published values for individuals with normal vision. Results: All individuals demonstrated typical anterior segment phenotypes. Average ganglion cell and inner plexiform layer thickness was lower in PITX2-ARS, consistent with the glaucoma history in this group. A novel phenotype of foveal hypoplasia was noted in 40% of individuals with PITX2-ARS (but none with FOXC1-ARS). Moreover, the depth and volume of the foveal pit were significantly lower in PITX2-ARS compared to normal controls, even excluding individuals with foveal hypoplasia. Analysis of known foveal hypoplasia genes failed to identify an alternative explanation. Foveal cone density was decreased in one individual with foveal hypoplasia and normal in six without foveal hypoplasia. Two individuals (one from each group) demonstrated non-foveal retinal irregularities with regions of photoreceptor anomalies on OCT and AOSLO. Conclusions: These findings implicate PITX2 in the development of the posterior segment, particularly the fovea, in humans. The identified posterior segment phenotypes may contribute to visual acuity deficits in individuals with PITX2-ARS.


Anterior Eye Segment/abnormalities , Corneal Diseases , Eye Abnormalities , Eye Diseases, Hereditary , Glaucoma , Humans , Retina , Eye Abnormalities/diagnostic imaging , Eye Abnormalities/genetics , Eye Diseases, Hereditary/diagnosis , Eye Diseases, Hereditary/genetics , Glaucoma/diagnosis , Glaucoma/genetics
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 606-611, 2024 May 10.
Article Zh | MEDLINE | ID: mdl-38684310

OBJECTIVE: To explore the genetic etiology of a fetus with cryptophthalmos detected by prenatal ultrasonography. METHODS: A fetus undergoing induced labor at 32nd gestational week due to absence of bilateral eye fissures detected by prenatal ultrasonography in January 2017 was selected as the study subject. Umbilical cord blood sample from the fetus and peripheral blood samples from its parents were collected for the extraction of genomic DNA. Pathogenic variants were screened through whole exome sequencing (WES) and verified by Sanger sequencing. Pathogenicity of candidate variants was verified by bioinformatic analysis and protein structure simulation. Based on the results of genetic testing, prenatal diagnosis was provided to the couple upon their subsequent pregnancy. RESULTS: The couple had four adverse pregnancies previously. The aborted fetus was the fifth, with fused bilateral upper and lower eyelids, poorly developed eyeballs, adhesion of the cornea with the upper eyelid, low-set ears, and abnormal plantar creases, and was diagnosed with cryptophthalmos. WES and Sanger sequencing revealed that the fetus has harbored compound heterozygous variants of the FREM2 gene, namely c.4537G>A (p.D1513N) and c.7292C>T (p.T2431M). Both variants were unreported associated with cryptophthalmos previously. Protein structure simulation showed that they may lead to loss of hydrogen bonds in the protein product. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were predicted to be likely pathogenic (PM1_Supporting+PM2_Supporting+PM5+PP3+PP4; PM2_Supporting+PM3+PP3+PP4). The mother was performed prenatal diagnosis in her sixth pregnancy based on the variants detected in this family, and delivered a daughter with normal phenotype. CONCLUSION: The FREM2: c.4537G>A and c.7292C>T compound heterozygous variants probably underlay the pathogenesis of cryptophthalmos in this fetus. Above finding has enriched the mutational spectrum of the FREM2 gene.


Fetus , Humans , Female , Pregnancy , Fetus/abnormalities , Exome Sequencing , Adult , Genetic Testing , Ultrasonography, Prenatal , Mutation , Prenatal Diagnosis , Eye Abnormalities/genetics
6.
JCI Insight ; 9(9)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38592784

Recent studies have uncovered that noncoding sequence variants may relate to Axenfeld-Rieger syndrome (ARS), a rare developmental anomaly with genetic heterogeneity. However, how these genomic regions are functionally and structurally associated with ARS is still unclear. In this study, we performed genome-wide linkage analysis and whole-genome sequencing in a Chinese family with ARS and identified a heterozygous deletion of about 570 kb (termed LOH-1) in the intergenic sequence between paired-like homeodomain transcription factor 2 (PITX2) and family with sequence similarity 241 member A. Knockout of LOH-1 homologous sequences caused ARS phenotypes in mice. RNA-Seq and real-time quantitative PCR revealed a significant reduction in Pitx2 gene expression in LOH-1-/- mice, while forkhead box C1 expression remained unchanged. ChIP-Seq and bioinformatics analysis identified a potential enhancer region (LOH-E1) within LOH-1. Deletion of LOH-E1 led to a substantial downregulation of the PITX2 gene. Mechanistically, we found a sequence (hg38 chr4:111,399,594-111,399,691) that is on LOH-E1 could regulate PITX2 by binding to RAD21, a critical component of the cohesin complex. Knockdown of RAD21 resulted in reduced PITX2 expression. Collectively, our findings indicate that a potential enhancer sequence that is within LOH-1 may regulate PITX2 expression remotely through cohesin-mediated loop domains, leading to ARS when absent.


Anterior Eye Segment , Eye Abnormalities , Eye Diseases, Hereditary , Homeobox Protein PITX2 , Homeodomain Proteins , Transcription Factors , Animals , Female , Humans , Male , Mice , Anterior Eye Segment/abnormalities , Anterior Eye Segment/metabolism , DNA, Intergenic/genetics , Enhancer Elements, Genetic/genetics , Eye Abnormalities/genetics , Eye Diseases, Hereditary/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice, Knockout , Pedigree , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Medicine (Baltimore) ; 103(17): e37987, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669389

RATIONALE: Joubert syndrome (JS) is a rare genetic disorder that presents with various neurological symptoms, primarily involving central nervous system dysfunction. Considering the etiology of JS, peripheral nervous system abnormalities cannot be excluded; however, cases of JS accompanied by peripheral nervous system abnormalities have not yet been reported. Distinct radiological findings on brain magnetic resonance imaging were considered essential for the diagnosis of JS. However, recently, cases of JS with normal or nearly normal brain morphology have been reported. To date, there is no consensus on the most appropriate diagnostic method for JS when imaging-based diagnostic approach is challenging. This report describes the case of an adult patient who exhibited bilateral peroneal neuropathies and was finally diagnosed with JS through genetic testing. PATIENT CONCERNS AND DIAGNOSIS: A 27-year-old man visited our outpatient clinic due to a gait disturbance that started at a very young age. The patient exhibited difficulty maintaining balance, especially when walking slowly. Oculomotor apraxia was observed on ophthalmic evaluation. During diagnostic workups, including brain imaging and direct DNA sequencing, no conclusive findings were detected. Only nerve conduction studies revealed profound bilateral peroneal neuropathies. We performed whole genome sequencing to obtain a proper diagnosis and identify the gene mutation responsible for JS. LESSONS: This case represents the first instance of peripheral nerve dysfunction in JS. Further research is needed to explore the association between JS and peripheral nervous system abnormalities. Detailed genetic testing may serve as a valuable tool for diagnosing JS when no prominent abnormalities are detected in brain imaging studies.


Abnormalities, Multiple , Cerebellum , Cerebellum/abnormalities , Eye Abnormalities , Kidney Diseases, Cystic , Peroneal Neuropathies , Retina , Retina/abnormalities , Humans , Male , Adult , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/complications , Cerebellum/diagnostic imaging , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Peroneal Neuropathies/diagnosis , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Retina/diagnostic imaging , Magnetic Resonance Imaging
8.
Int J Mol Sci ; 25(5)2024 Feb 25.
Article En | MEDLINE | ID: mdl-38473917

Ocular malformations (OMs) arise from early defects during embryonic eye development. Despite the identification of over 100 genes linked to this heterogeneous group of disorders, the genetic cause remains unknown for half of the individuals following Whole-Exome Sequencing. Diagnosis procedures are further hampered by the difficulty of studying samples from clinically relevant tissue, which is one of the main obstacles in OMs. Whole-Genome Sequencing (WGS) to screen for non-coding regions and structural variants may unveil new diagnoses for OM individuals. In this study, we report a patient exhibiting a syndromic OM with a de novo 3.15 Mb inversion in the 6p25 region identified by WGS. This balanced structural variant was located 100 kb away from the FOXC1 gene, previously associated with ocular defects in the literature. We hypothesized that the inversion disrupts the topologically associating domain of FOXC1 and impairs the expression of the gene. Using a new type of samples to study transcripts, we were able to show that the patient presented monoallelic expression of FOXC1 in conjunctival cells, consistent with the abolition of the expression of the inverted allele. This report underscores the importance of investigating structural variants, even in non-coding regions, in individuals affected by ocular malformations.


Eye Abnormalities , Microphthalmos , Humans , Transcription Factors/genetics , Microphthalmos/genetics , Anterior Eye Segment/abnormalities , Eye Abnormalities/genetics , Alleles , Forkhead Transcription Factors/genetics , Mutation
9.
Cell Tissue Res ; 396(2): 255-267, 2024 May.
Article En | MEDLINE | ID: mdl-38502237

Joubert syndrome (JS) is a recessively inherited congenital ataxia characterized by hypotonia, psychomotor delay, abnormal ocular movements, intellectual disability, and a peculiar cerebellar and brainstem malformation, the "molar tooth sign." Over 40 causative genes have been reported, all encoding for proteins implicated in the structure or functioning of the primary cilium, a subcellular organelle widely present in embryonic and adult tissues. In this paper, we developed an in vitro neuronal differentiation model using patient-derived induced pluripotent stem cells (iPSCs), to evaluate possible neurodevelopmental defects in JS. To this end, iPSCs from four JS patients harboring mutations in distinct JS genes (AHI1, CPLANE1, TMEM67, and CC2D2A) were differentiated alongside healthy control cells to obtain mid-hindbrain precursors and cerebellar granule cells. Differentiation was monitored over 31 days through the detection of lineage-specific marker expression by qRT-PCR, immunofluorescence, and transcriptomics analysis. All JS patient-derived iPSCs, regardless of the mutant gene, showed a similar impairment to differentiate into mid-hindbrain and cerebellar granule cells when compared to healthy controls. In addition, analysis of primary cilium count and morphology showed notable ciliary defects in all differentiating JS patient-derived iPSCs compared to controls. These results confirm that patient-derived iPSCs are an accessible and relevant in vitro model to analyze cellular phenotypes connected to the presence of JS gene mutations in a neuronal context.


Abnormalities, Multiple , Cell Differentiation , Cerebellum , Cerebellum/abnormalities , Eye Abnormalities , Induced Pluripotent Stem Cells , Kidney Diseases, Cystic , Neurons , Retina , Retina/abnormalities , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Cerebellum/pathology , Cerebellum/metabolism , Neurons/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Retina/metabolism , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Kidney Diseases, Cystic/metabolism , Male , Female , Mutation/genetics , Cilia/metabolism
10.
J Hum Genet ; 69(6): 271-282, 2024 Jun.
Article En | MEDLINE | ID: mdl-38459225

Phenotypic and genotypic heterogeneity in congenital ocular diseases, especially in anterior segment dysgenesis (ASD), have created challenges for proper diagnosis and classification of diseases. Over the last decade, genomic research has indeed boosted our understanding in the molecular basis of ASD and genes associated with both autosomal dominant and recessive patterns of inheritance have been described with a wide range of expressivity. Here we describe the molecular characterization of a cohort of 162 patients displaying isolated or syndromic congenital ocular dysgenesis. Samples were analyzed with diverse techniques, such as direct sequencing, multiplex ligation-dependent probe amplification, and whole exome sequencing (WES), over 20 years. Our data reiterate the notion that PAX6 alterations are primarily associated with ASD, mostly aniridia, since the majority of the cohort (66.7%) has a pathogenic or likely pathogenic variant in the PAX6 locus. Unexpectedly, a high fraction of positive samples (20.3%) displayed deletions involving the 11p13 locus, either partially/totally involving PAX6 coding region or abolishing its critical regulatory region, underlying its significance. Most importantly, the use of WES has allowed us to both assess variants in known ASD genes (i.e., CYP1B1, ITPR1, MAB21L1, PXDN, and PITX2) and to identify rarer phenotypes (i.e., MIDAS, oculogastrointestinal-neurodevelopmental syndrome and Jacobsen syndrome). Our data clearly suggest that WES allows expanding the analytical portfolio of ocular dysgenesis, both isolated and syndromic, and that is pivotal for the differential diagnosis of those conditions in which there may be phenotypic overlaps and in general in ASD.


Exome Sequencing , PAX6 Transcription Factor , Humans , PAX6 Transcription Factor/genetics , Male , Female , Eye Abnormalities/genetics , Eye Abnormalities/diagnosis , Eye Abnormalities/pathology , Phenotype , Anterior Eye Segment/abnormalities , Anterior Eye Segment/pathology , Mutation , Eye Diseases/genetics , Eye Diseases/diagnosis , Eye Diseases/congenital
11.
Radiologie (Heidelb) ; 64(3): 176-181, 2024 Mar.
Article De | MEDLINE | ID: mdl-38345621

Many neuroradiologists focus primarily on the central nervous system and give little attention to other regions like the eye/orbit. It is easy to be deceived by the pitfall called satisfaction of search (also abbreviated SOS), despite most congenital eye diseases being easily recognized if one is aware of them. In this article, the most common congenital orbital abnormalities are described, and their basic prenatal causes are summarized.


Eye Abnormalities , Optic Nerve , Humans , Optic Nerve/abnormalities , Orbit , Eye Abnormalities/genetics , Embryonic Development
12.
Acta Paediatr ; 113(6): 1420-1425, 2024 Jun.
Article En | MEDLINE | ID: mdl-38363039

AIM: This study reports the bilateral association of Peters' anomaly and congenital aniridia in monozygotic twins subsequently diagnosed with Wilms tumour (WAGR syndrome). METHODS: Two monozygotic female twins were referred at age 2 months with bilateral corneal opacity. A diagnosis of Peters' anomaly associated to aniridia was made in both eyes of both twins. Physical examination and ultrasonography were carried out at 12 months of age to explore the possibility of WAGR-related anomalies, specifically Wilms tumour. DNA were isolated and subjected to whole exome sequencing. RESULTS: Peters' anomaly associated to aniridia in both eyes as well as bilateral Wilms tumour in both children were diagnosed. Exome analyses showed a large heterozygous deletion encompassing 6 648 473 bp in chromosome 11p13, using Integrative Genomics Viewer and AnnotSV software. CONCLUSION: WAGR syndrome is a rare contiguous gene deletion syndrome with a greater risk of developing Wilms tumour associated with Peters' anomaly and congenital aniridia. However, co-occurrence of both anomalies was rarely reported in twins, and never in both eyes of monozygotic twins. Here, we report the bilateral association of Peters' anomaly and congenital aniridia in monozygotic twins with WAGR syndrome.


Aniridia , Corneal Opacity , Twins, Monozygotic , WAGR Syndrome , Wilms Tumor , Humans , Female , Twins, Monozygotic/genetics , WAGR Syndrome/genetics , Aniridia/genetics , Aniridia/complications , Wilms Tumor/genetics , Wilms Tumor/complications , Infant , Corneal Opacity/genetics , Anterior Eye Segment/abnormalities , Anterior Eye Segment/diagnostic imaging , Eye Abnormalities/genetics , Eye Abnormalities/diagnostic imaging , Eye Abnormalities/complications , Diseases in Twins/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/complications
14.
Balkan Med J ; 41(2): 97-104, 2024 03 01.
Article En | MEDLINE | ID: mdl-38351681

Background: The fetal monogenic causes of early pregnancy losses (EPLs) are mainly unknown, with only a few articles on the subject published. In our previous study of EPLs using whole-exome sequencing analysis, we confirmed a genetic diagnosis of CPLANE1-related Joubert syndrome (JS) in three EPLs from two couples and identified a relatively common CPLANE1 allele among our population (NM_001384732.1:c.1819delT;c.7817T>A, further after referred as "complex allele"). Pathogenic variants in the CPLANE1 (C5orf42) gene are reported to cause JS type 17, a primary ciliopathy with various system defects. Aims: To examine the hypothesis that the CPLANE1 "complex allele," whether homozygous or compound heterozygous, is a common cause of EPLs in our population. Study Design: Cohort study/case-control study.ontrol study. Methods: In this study, we used polymerase chain reaction-based methods to screen for CPLANE1 "complex allele" presence among 246 euploid EPLs (< 12 gestational weeks) from families in North Macedonia. We also investigated the impact of this allele in 650 women with EPLs versus 646 women with no history of pregnancy loss and at least one livebirth, matched by ethnic origin. Results: We found a high incidence of JS in the total study group of EPLs (2.03%), with a considerably higher incidence among Albanian families (6.25%). Although not statistically significant, women with EPLs had a higher allele frequency of the CPLANE1 "complex allele" (AF = 1.38%) than the controls (AF = 0.85%; p = 0.2). Albanian women had significantly higher frequency of the "complex allele" than the Macedonians (AF = 1.65% and 0.39%, respectively; p = 0.003). Conclusion: To the best of our knowledge, this is the highest reported incidence of fetal monogenic disease that might cause EPLs. Targeted screening for the CPLANE1 "complex allele" would be warranted in Albanian ethnic couples because it would detect one JS in every 16 euploid EPLs. Our findings have a larger impact on the pathogenesis of pregnancy loss and contribute to a better understanding of the pathogenicity of the variants in the CPLANE1 gene.


Abnormalities, Multiple , Abortion, Spontaneous , Cerebellum , Eye Abnormalities , Kidney Diseases, Cystic , Retina , Female , Humans , Pregnancy , Abnormalities, Multiple/epidemiology , Abnormalities, Multiple/genetics , Abortion, Spontaneous/etiology , Abortion, Spontaneous/genetics , Case-Control Studies , Cerebellum/abnormalities , Cohort Studies , European People , Eye Abnormalities/epidemiology , Eye Abnormalities/genetics , Incidence , Kidney Diseases, Cystic/epidemiology , Kidney Diseases, Cystic/genetics , Retina/abnormalities
15.
Exp Brain Res ; 242(3): 619-637, 2024 Mar.
Article En | MEDLINE | ID: mdl-38231387

Cilia are organelles extend from cells to sense external signals for tuning intracellular signaling for optimal cellular functioning. They have evolved sensory and motor roles in various cells for tissue organization and homeostasis in development and post-development. More than a thousand genes are required for cilia function. Mutations in them cause multisystem disorders termed ciliopathies. The null mutations in CC2D2A result in Meckel syndrome (MKS), which is embryonic lethal, whereas patients who have missense mutations in the C2 domain of CC2D2A display Joubert syndrome (JBTS). They survive with blindness and mental retardation. How C2 domain defects cause disease conditions is not understood. To answer this question, C2 domain of Cc2d2a (mice gene) was knocked down (KD) in IMCD-3 cells by shRNA. This resulted in defective cilia morphology observed by immunofluorescence analysis. To further probe the cellular signaling alteration in affected cells, gene expression profiling was done by RNAseq and compared with the controls. Bioinformatics analysis revealed that the differentially expressed genes (DEGs) have functions in cilia. Among the 61 cilia DEGs identified, 50 genes were downregulated and 11 genes were upregulated. These cilia genes are involved in cilium assembly, protein trafficking to the cilium, intraflagellar transport (IFT), cellular signaling like polarity patterning, and Hedgehog signaling pathway. This suggests that the C2 domain of CC2D2A plays a critical role in cilia assembly and molecular signaling hosted in cilia for cellular homeostasis. Taken together, the missense mutations in the C2 domain of CC2D2A seen in JBTS might have affected cilia-mediated signaling in neurons of the retina and brain.


Abnormalities, Multiple , Cerebellum , Eye Abnormalities , Kidney Diseases, Cystic , Polycystic Kidney Diseases , Retina , Animals , Mice , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , C2 Domains , Cerebellum/metabolism , Cerebellum/abnormalities , Cilia/genetics , Cilia/metabolism , Cytoskeletal Proteins/genetics , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Mutation/genetics , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/metabolism , Retina/abnormalities
16.
Neurol Sci ; 45(6): 2853-2857, 2024 Jun.
Article En | MEDLINE | ID: mdl-38253744

OBJECTIVES: Oculodentodigital dysplasia (ODDD) is a rare autosomal dominant congenital malformation syndrome characterized by high penetrance and great phenotypic heterogeneity. Neurological manifestations are thought to occur in about one third of cases, but systematic studies are not available. We performed deep neurological phenotyping of 10 patients in one ODDD pedigree. METHODS: Retrospective case series. We analyzed in depth the neurological phenotype of a three-generation family segregating the heterozygous c.416 T > C, p.(Ile139Thr) in GJA1. Clinical and neuroradiological features were retrospectively evaluated. Brain MRI and visual evoked potentials were performed in 8 and 6 cases, respectively. RESULTS: Central nervous system manifestations occurred in 5 patients, the most common being isolated ataxia either in isolation or combined with spasticity. Furthermore, sphincteric disturbances (neurogenic bladder and fecal incontinence) were recognized as the first manifestation in most of the patients. Subclinical electrophysiological alteration of the optic pathway occurred in all the examined patients. Neuroimaging was significant for supratentorial hypomyelination pattern and hyperintense superior cerebellar peduncle in all examined patients. CONCLUSION: The neurological involvement in ODDD carriers is often missed but peculiar clinical and radiological patterns can be recognized. Deep neurological phenotyping is needed to help untangle ODDD syndrome complexity and find genotype-phenotype correlations.


Phenotype , Humans , Female , Male , Retrospective Studies , Adult , Adolescent , Evoked Potentials, Visual/physiology , Pedigree , Young Adult , Child , Magnetic Resonance Imaging , Eye Abnormalities/genetics , Eye Abnormalities/diagnostic imaging , Eye Abnormalities/physiopathology , Middle Aged , Brain/diagnostic imaging , Brain/physiopathology , Brain/pathology
17.
Am J Ophthalmol ; 262: 73-85, 2024 Jun.
Article En | MEDLINE | ID: mdl-38280677

PURPOSE: This study aimed to ascertain the occurrence of foveal hypoplasia (FH) in individuals diagnosed with familial exudative vitreoretinopathy (FEVR). DESIGN: Retrospective cohort study. METHODS: In this study, FEVR families and sporadic cases were diagnosed at the Eye and ENT Hospital, Fudan University, between 2017 and 2023. All patients attended routine ophthalmologic examinations and genetic screenings. The classification of FH was determined using optical coherence tomography (OCT) scans. The FH condition was classified into 2 subgroups: group A (FH being limited to the inner layers) and group B (FH affecting the outer layers). A total of 102 eyes from 58 patients were suitable for analysis. RESULTS: Forty-nine mutations in LRP5, FZD4, NDP, TSPAN12, KIF11, CTNNB1, and ZNF408 were examined and detected, with 26 of them being novel. Forty-seven eyes (46.1%) revealed FH. The majority (53.2%) were due to the typical grade 1 FH. Patients with mutations in LRP5 and KIF11 were found to exhibit a higher prevalence of FH (P = .0088). Group B displayed the lowest visual acuity compared with group A (P = .048) and the group without FH (P < .001). The retinal arteriolar angle in group B was significantly smaller than in group A (P = .001) and those without FH (P < .001). CONCLUSIONS: This study offers a new diagnostic approach and expands the spectrum of FEVR mutations. LRP5 and KIF11 were found to be more susceptible to causing FH in patients with FEVR. FEVR eyes with FH exhibited both greater visual impairment and reduced retinal arteriolar angles. The assessment of foveal status in patients with FEVR should be valued.


Eye Diseases, Hereditary , Eye Proteins , Familial Exudative Vitreoretinopathies , Fovea Centralis , Frizzled Receptors , Kinesins , Low Density Lipoprotein Receptor-Related Protein-5 , Mutation , Tetraspanins , Tomography, Optical Coherence , Visual Acuity , Humans , Male , Familial Exudative Vitreoretinopathies/diagnosis , Female , Retrospective Studies , Fovea Centralis/abnormalities , Kinesins/genetics , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Adult , Eye Proteins/genetics , Visual Acuity/physiology , Child , Frizzled Receptors/genetics , Adolescent , Tetraspanins/genetics , Eye Diseases, Hereditary/diagnosis , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/physiopathology , Young Adult , Retinal Diseases/genetics , Retinal Diseases/diagnosis , Retinal Diseases/physiopathology , DNA Mutational Analysis , Pedigree , Fluorescein Angiography/methods , Child, Preschool , Middle Aged , Eye Abnormalities/genetics , Eye Abnormalities/diagnosis , DNA-Binding Proteins , Nerve Tissue Proteins , Transcription Factors
18.
J Cell Physiol ; 239(4): e31189, 2024 Apr.
Article En | MEDLINE | ID: mdl-38219074

Joubert syndrome (JBTS) is a systematic developmental disorder mainly characterized by a pathognomonic mid-hindbrain malformation. All known JBTS-associated genes encode proteins involved in the function of antenna-like cellular organelle, primary cilium, which plays essential roles in cellular signal transduction and development. Here, we identified four unreported variants in ARL13B in two patients with the classical features of JBTS. ARL13B is a member of the Ras GTPase family and functions in ciliogenesis and cilia-related signaling. The two missense variants in ARL13B harbored the substitutions of amino acids at evolutionarily conserved positions. Using model cell lines, we found that the accumulations of the missense variants in cilia were impaired and the variants showed attenuated functions in ciliogenesis or the trafficking of INPP5E. Overall, these findings expanded the ARL13B pathogenetic variant spectrum of JBTS.


ADP-Ribosylation Factors , Abnormalities, Multiple , Cerebellum , Eye Abnormalities , Kidney Diseases, Cystic , Retina , Humans , Abnormalities, Multiple/genetics , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Cerebellum/abnormalities , Cilia/genetics , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Eye Abnormalities/pathology , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/pathology , Phosphoric Monoester Hydrolases/metabolism , Retina/metabolism , Retina/abnormalities , Male , Female , Infant
19.
Am J Med Genet A ; 194(5): e63542, 2024 May.
Article En | MEDLINE | ID: mdl-38234180

Axenfeld-Rieger Syndrome (ARS) type 1 is a rare autosomal dominant condition characterized by anterior chamber anomalies, umbilical defects, dental hypoplasia, and craniofacial anomalies, with Meckel's diverticulum in some individuals. Here, we describe a clinically ascertained female of childbearing age with ARS for whom clinical targeted sequencing and deletion/duplication analysis followed by clinical exome and genome sequencing resulted in no pathogenic variants or variants of unknown significance in PITX2 or FOXC1. Advanced bioinformatic analysis of the genome data identified a complex, balanced rearrangement disrupting PITX2. This case is the first reported intrachromosomal rearrangement leading to ARS, illustrating that for patients with compelling clinical phenotypes but negative genomic testing, additional bioinformatic analysis are essential to identify subtle genomic abnormalities in target genes.


Anterior Eye Segment , Eye Abnormalities , Eye Diseases, Hereditary , Homeobox Protein PITX2 , Female , Humans , Anterior Eye Segment/abnormalities , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Eye Diseases, Hereditary/diagnosis , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/pathology , Forkhead Transcription Factors/genetics , Homeodomain Proteins/genetics
20.
Eur J Ophthalmol ; 34(1): 11-17, 2024 Jan.
Article En | MEDLINE | ID: mdl-37073081

It concerns three siblings (two 28 year old twin boys and a 25 year old woman) who presented a previous history of rupture of eyeball in one eye and very poor vision in the other. At the first ophthalmoscopic and instrumental evaluation, three patients presented with bluish sclera and keratoglobus in the intact eye. A genetic analysis with whole exome sequencing was then performed on the three siblings, identifying a biallelic variant of the PRDM5 gene that led to the diagnosis of Brittle Cornea Syndrome (BCS), a rare autosomal recessive disorder characterized by corneal thinning and blue sclera. To preserve the only intact eye from possible breakage, the three siblings were trained in using protective measures (polycarbonate goggles etc.) to carry out close monitoring of symptoms and were asked to continue with follow-up visits for ocular and systemic diseases associated with BCS. Given the poor best corrected visual acuity achievable with glasses and contact lenses, penetrating keratoplasty was performed, achieving good visual acuity maintained in the 2-year follow-up in two of the three patients. Knowledge of this pathology and its clinical manifestations is essential for early diagnosis and correct management of this rare but very debilitating pathology. To our knowledge, this is the first case series of BCS reported in an Albanian population.


Eye Abnormalities , Joint Instability , Skin Abnormalities , Male , Female , Humans , Adult , Keratoplasty, Penetrating , Skin Abnormalities/diagnosis , Skin Abnormalities/genetics , Skin Abnormalities/surgery , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Eye Abnormalities/surgery , Joint Instability/diagnosis , Joint Instability/genetics , Joint Instability/surgery , Cornea/pathology
...