Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.506
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2401579121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968123

RESUMEN

Iron is an essential element for life owing to its ability to participate in a diverse array of oxidation-reduction reactions. However, misregulation of iron-dependent redox cycling can also produce oxidative stress, contributing to cell growth, proliferation, and death pathways underlying aging, cancer, neurodegeneration, and metabolic diseases. Fluorescent probes that selectively monitor loosely bound Fe(II) ions, termed the labile iron pool, are potentially powerful tools for studies of this metal nutrient; however, the dynamic spatiotemporal nature and potent fluorescence quenching capacity of these bioavailable metal stores pose challenges for their detection. Here, we report a tandem activity-based sensing and labeling strategy that enables imaging of labile iron pools in live cells through enhancement in cellular retention. Iron green-1 fluoromethyl (IG1-FM) reacts selectively with Fe(II) using an endoperoxide trigger to release a quinone methide dye for subsequent attachment to proximal biological nucleophiles, providing a permanent fluorescent stain at sites of elevated labile iron. IG1-FM imaging reveals that degradation of the major iron storage protein ferritin through ferritinophagy expands the labile iron pool, while activation of nuclear factor-erythroid 2-related factor 2 (NRF2) antioxidant response elements (AREs) depletes it. We further show that lung cancer cells with heightened NRF2 activation, and thus lower basal labile iron, have reduced viability when treated with an iron chelator. By connecting labile iron pools and NRF2-ARE activity to a druggable metal-dependent vulnerability in cancer, this work provides a starting point for broader investigations into the roles of transition metal and antioxidant signaling pathways in health and disease.


Asunto(s)
Elementos de Respuesta Antioxidante , Hierro , Humanos , Hierro/metabolismo , Colorantes Fluorescentes/química , Factor 2 Relacionado con NF-E2/metabolismo , Ferritinas/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Línea Celular Tumoral , Antioxidantes/metabolismo
2.
Biomolecules ; 14(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38927029

RESUMEN

Encapsulins are self-assembling nano-compartments that naturally occur in bacteria and archaea. These nano-compartments encapsulate cargo proteins that bind to the shell's interior through specific recognition sequences and perform various metabolic processes. Encapsulation enables organisms to perform chemical reactions without exposing the rest of the cell to potentially harmful substances while shielding cargo molecules from degradation and other adverse effects of the surrounding environment. One particular type of cargo protein, the ferritin-like protein (FLP), is the focus of this review. Encapsulated FLPs are members of the ferritin-like protein superfamily, and they play a crucial role in converting ferrous iron (Fe+2) to ferric iron (Fe+3), which is then stored inside the encapsulin in mineralized form. As such, FLPs regulate iron homeostasis and protect organisms against oxidative stress. Recent studies have demonstrated that FLPs have tremendous potential as biosensors and bioreactors because of their ability to catalyze the oxidation of ferrous iron with high specificity and efficiency. Moreover, they have been investigated as potential targets for therapeutic intervention in cancer drug development and bacterial pathogenesis. Further research will likely lead to new insights and applications for these remarkable proteins in biomedicine and biotechnology.


Asunto(s)
Ferritinas , Ferritinas/química , Ferritinas/metabolismo , Humanos , Hierro/metabolismo , Hierro/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacterias/metabolismo
3.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928030

RESUMEN

Disruption of any stage of iron homeostasis, including uptake, utilization, efflux, and storage, can cause progressive damage to peripheral organs. The health hazards associated with occupational exposure to inhalation anesthetics (IA) in combination with chronic iron overload are not well documented. This study aimed to investigate changes in the concentration of essential metals in the peripheral organs of rats after iron overload in combination with IA. The aim was also to determine how iron overload in combination with IA affects tissue metal homeostasis, hepcidin-ferritin levels, and MMP levels according to physiological, functional, and tissue features. According to the obtained results, iron accumulation was most pronounced in the liver (19×), spleen (6.7×), lungs (3.1×), and kidneys (2.5×) compared to control. Iron accumulation is associated with elevated heavy metal levels and impaired essential metal concentrations due to oxidative stress (OS). Notably, the use of IA increases the iron overload toxicity, especially after Isoflurane exposure. The results show that the regulation of iron homeostasis is based on the interaction of hepcidin, ferritin, and other proteins regulated by inflammation, OS, free iron levels, erythropoiesis, and hypoxia. Long-term exposure to IA and iron leads to the development of numerous adaptation mechanisms in response to toxicity, OS, and inflammation. These adaptive mechanisms of iron regulation lead to the inhibition of MMP activity and reduction of oxidative stress, protecting the organism from possible damage.


Asunto(s)
Anestésicos por Inhalación , Hepcidinas , Complejo Hierro-Dextran , Hierro , Estrés Oxidativo , Animales , Ratas , Hepcidinas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hierro/metabolismo , Masculino , Anestésicos por Inhalación/efectos adversos , Anestésicos por Inhalación/toxicidad , Complejo Hierro-Dextran/administración & dosificación , Complejo Hierro-Dextran/toxicidad , Ferritinas/metabolismo , Sobrecarga de Hierro/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Bazo/efectos de los fármacos , Bazo/metabolismo , Bazo/patología , Ratas Wistar , Homeostasis/efectos de los fármacos , Isoflurano/efectos adversos
4.
Mol Biol Rep ; 51(1): 773, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904710

RESUMEN

Protein nanocages resemble natural biomimetic carriers and can be engineered to act as targeted delivery systems, making them an attractive option for various drug delivery and biomedical applications. Our research investigated the genetic link of a specific anti-HER2 peptide (LTVSPWY) to the exposed N-terminal region of the maize (Zea mays) ferritin 1 (ZmFer1) protein nanocage, employing either a 7-amino acid (for LTVS-ZmFer1) or 16-amino acid (for LTVS-L-ZmFer1) linker. We utilized a heat treatment method to load the chemotherapeutic drug doxorubicin into the protein nanocage. The construct with the longer linker (LTVS-L) produced a greater amount of soluble protein nanocage and was selected for further experiments. The average size, polydispersity index, and zeta potential of the engineered protein nanocage were 19.01 nm, 0.168, and - 2.13 mV, respectively. The LTVS-L-ZmFer1 protein nanocage exhibited excellent thermal stability, withstanding temperatures up to 100 °C with only partial denaturation. Furthermore, we observed that cellular uptake of the LTVS-L-ZmFer1 protein nanocages in HER2-positive breast cancer cells was significantly higher compared to ZmFer1 after labeling with FITC (fluorescein isothiocyanate) (P-value = 0.0001). In addition, we observed a significant decrease in the viability of SKBR3 cells when treated with DOX-loaded LTVS-L-ZmFer1 protein nanocages compared to cells treated with DOX-loaded ZmFer1 protein nanocages. Therefore, this new treatment strategy may prove to be an effective way to reduce both the side effects and toxicity associated with conventional cancer treatments in patients with HER2-positive breast cancer.


Asunto(s)
Doxorrubicina , Sistemas de Liberación de Medicamentos , Receptor ErbB-2 , Humanos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos/métodos , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ferritinas/química , Ferritinas/metabolismo , Ferritinas/genética , Zea mays/genética , Ingeniería de Proteínas/métodos , Femenino , Portadores de Fármacos/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
J Agric Food Chem ; 72(25): 14337-14348, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38867141

RESUMEN

Thymol has efficient bactericidal activity against a variety of pathogenic bacteria, but the bactericidal mechanism against Vibrio parahemolyticus (V. parahemolyticus) has rarely been reported. In the current study, we investigated the bactericidal mechanism of thymol against V. parahemolyticus. The Results revealed that 150 µg/mL of thymol had 99.9% bactericidal activity on V. parahemolyticus. Intracellular bursts of reactive oxygen species (ROS), Fe2+accumulation, lipid peroxidation, and DNA breakage were checked by cell staining. The exogenous addition of H2O2 and catalase promoted and alleviated thymol-induced cell death to a certain extent, respectively, and the addition of the ferroptosis inhibitor Liproxstatin-1 also alleviated thymol-induced cell death, confirming that thymol induced Fenton-reaction-dependent ferroptosis in V. parahemolyticus. Proteomic analysis revealed that relevant proteins involved in ROS production, lipid peroxidation accumulation, and DNA repair were significantly upregulated after thymol treatment. Molecular docking revealed two potential binding sites (amino acids 46H and 42F) between thymol and ferritin, and thymol could promote the release of Fe2+ from ferritin proteins through in vitro interactions analyzed. Therefore, we hypothesized that ferritin as a potential target may mediate thymol-induced ferroptosis in V. parahemolyticus. This study provides new ideas for the development of natural inhibitors for controlling V. parahemolyticus in aquatic products.


Asunto(s)
Antibacterianos , Ferroptosis , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Timol , Vibrio parahaemolyticus , Ferroptosis/efectos de los fármacos , Timol/farmacología , Timol/química , Especies Reactivas de Oxígeno/metabolismo , Vibrio parahaemolyticus/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Peroxidación de Lípido/efectos de los fármacos , Hierro/metabolismo , Simulación del Acoplamiento Molecular , Ferritinas/genética , Ferritinas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
6.
J Bioenerg Biomembr ; 56(4): 405-418, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38842666

RESUMEN

BACKGROUND: Ferritinophagy-mediated ferroptosis plays a crucial role in fighting pathogen aggression. The long non-coding RNA Mir22hg is involved in the regulation of ferroptosis and aberrantly overexpression in lipopolysaccharide (LPS)-induced sepsis mice, but whether it regulates sepsis through ferritinophagy-mediated ferroptosis is unclear. METHODS: Mir22hg was screened by bioinformatics analysis. Ferroptosis was assessed by assaying malondialdehyde (MDA), reactive oxygen species (ROS), and Fe2+ levels, glutathione (GSH) activity, as well as ferroptosis-related proteins GPX4 and SLC3A2 by using matched kits and performing western blot. Ferritinophagy was assessed by Lyso tracker staining and FerroOrange staining, immunofluorescence analysis of Ferritin and LC-3, and western blot analysis of LC-3II/I, p62, FTH1, and NCOA4. The bind of YTH domain containing 1 (YTHDC1) to Mir22hg or angiopoietin-like-4 (Angptl4) was verified by RNA pull-down and/or immunoprecipitation (RIP) assays. RESULTS: Mir22hg silencing lightened ferroptosis and ferritinophagy in LPS-induced MLE-12 cells and sepsis mouse models, as presented by the downregulated MDA, ROS, Fe2+, NCOA4, and SLC3A2 levels, upregulated GPX4, GSH, and FTH1 levels, along with a decrease in autophagy. Mir22hg could bind to the m6A reader YTHDC1 without affecting its expression. Mechanistically, Mir22hg enhanced Angptl4 mRNA stability through recruiting the m6A reader YTHDC1. Furthermore, Angptl4 overexpression partly overturned Mir22hg inhibition-mediated effects on ferroptosis and ferritinophagy in LPS-induced MLE-12 cells. CONCLUSION: Mir22hg contributed to in ferritinophagy-mediated ferroptosis in sepsis via recruiting the m6A reader YTHDC1 and strengthening Angptl4 mRNA stability, highlighting that Mir22hg may be a potential target for sepsis treatment based on ferroptosis.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina , Ferroptosis , MicroARNs , Sepsis , Sepsis/metabolismo , Ratones , Animales , MicroARNs/metabolismo , MicroARNs/genética , Proteína 4 Similar a la Angiopoyetina/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Estabilidad del ARN , Ferritinas/metabolismo , Ratones Endogámicos C57BL , Masculino , Humanos , Autofagia/fisiología
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124603, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38878720

RESUMEN

Iron-sulfur cluster conversion and nitrosyl modification are involved in regulating their functions and play critical roles in signaling for biological systems. Hereby, the photo-induced dynamic process of (Me4N)2[Fe2S2(NO)4] was monitored using time-resolved electron paramagnetic resonance (EPR) spectra, MS spectra and cellular imaging methods. Photo-irradiation and the solvent affect the reaction rates and products. Spectroscopic and kinetic studies have shown that the process involves at least three intermediates: spin-trapped NO free radical species with a gav at 2.040, and two other iron nitrosyl species, dinitrosyl iron units (DNICs) and mononitrosyl iron units (MNICs) with gav values at 2.031 and 2.024, respectively. Moreover, the [Fe2S2(NO)4]2- cluster could bind with ferritin and decompose gradually, and a binding state of dinitrosyl iron coordinated with Cys102 of the recombinant human heavy chain ferritin (rHuHF) was finally formed. This study provides insight into the photodynamic mechanism of nitrosyl iron - sulfur clusters to improve the understanding of physiological activity.


Asunto(s)
Hierro , Humanos , Espectroscopía de Resonancia por Spin del Electrón , Hierro/química , Hierro/metabolismo , Óxidos de Nitrógeno/química , Óxidos de Nitrógeno/metabolismo , Unión Proteica , Cinética , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/química , Azufre/química , Azufre/metabolismo , Ferritinas/química , Ferritinas/metabolismo , Luz
8.
Hum Brain Mapp ; 45(9): e26688, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38896001

RESUMEN

Quantitative susceptibility mapping (QSM) is an MRI modality used to non-invasively measure iron content in the brain. Iron exhibits a specific anatomically varying pattern of accumulation in the brain across individuals. The highest regions of accumulation are the deep grey nuclei, where iron is stored in paramagnetic molecule ferritin. This form of iron is considered to be what largely contributes to the signal measured by QSM in the deep grey nuclei. It is also known that QSM is affected by diamagnetic myelin contents. Here, we investigate spatial gene expression of iron and myelin related genes, as measured by the Allen Human Brain Atlas, in relation to QSM images of age-matched subjects. We performed multiple linear regressions between gene expression and the average QSM signal within 34 distinct deep grey nuclei regions. Our results show a positive correlation (p < .05, corrected) between expression of ferritin and the QSM signal in deep grey nuclei regions. We repeated the analysis for other genes that encode proteins thought to be involved in the transport and storage of iron in the brain, as well as myelination. In addition to ferritin, our findings demonstrate a positive correlation (p < .05, corrected) between the expression of ferroportin, transferrin, divalent metal transporter 1, several gene markers of myelinating oligodendrocytes, and the QSM signal in deep grey nuclei regions. Our results suggest that the QSM signal reflects both the storage and active transport of iron in the deep grey nuclei regions of the brain.


Asunto(s)
Ferritinas , Homeostasis , Hierro , Imagen por Resonancia Magnética , Vaina de Mielina , Humanos , Hierro/metabolismo , Masculino , Femenino , Vaina de Mielina/metabolismo , Vaina de Mielina/genética , Adulto , Homeostasis/fisiología , Ferritinas/metabolismo , Ferritinas/genética , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Expresión Génica , Persona de Mediana Edad , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Adulto Joven , Mapeo Encefálico/métodos
9.
Gut Microbes ; 16(1): 2361660, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38935764

RESUMEN

The microbiota significantly impacts digestive epithelium functionality, especially in nutrient processing. Given the importance of iron for both the host and the microbiota, we hypothesized that host-microbiota interactions fluctuate with dietary iron levels. We compared germ-free (GF) and conventional mice (SPF) fed iron-containing (65 mg/Kg) or iron-depleted (<6 mg/Kg) diets. The efficacy of iron privation was validated by iron blood parameters. Ferritin and Dmt1, which represent cellular iron storage and transport respectively, were studied in tissues where they are abundant: the duodenum, liver and lung. When the mice were fed an iron-rich diet, the microbiota increased blood hemoglobin and hepcidin and the intestinal ferritin levels, suggesting that the microbiota helps iron storage. When iron was limiting, the microbiota inhibited the expression of the intestinal Dmt1 transporter, likely via the pathway triggered by Hif-2α. The microbiota assists the host in storing intestinal iron when it is abundant and competes with the host by inhibiting Dmt1 in conditions of iron scarcity. Comparison between duodenum, liver and lung indicates organ-specific responses to microbiota and iron availability. Iron depletion induced temporal changes in microbiota composition and activity, reduced α-diversity of microbiota, and led to Lactobacillaceae becoming particularly more abundant after 60 days of privation. By inoculating GF mice with a simplified bacterial mixture, we show that the iron-depleted host favors the gut fitness of Bifidobacterium longum.


Asunto(s)
Proteínas de Transporte de Catión , Duodeno , Microbioma Gastrointestinal , Hepcidinas , Hierro de la Dieta , Hígado , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Hierro de la Dieta/metabolismo , Hierro de la Dieta/administración & dosificación , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Hígado/metabolismo , Hígado/microbiología , Duodeno/metabolismo , Duodeno/microbiología , Hepcidinas/metabolismo , Ferritinas/metabolismo , Vida Libre de Gérmenes , Interacciones Microbiota-Huesped , Pulmón/microbiología , Pulmón/metabolismo , Hierro/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Ratones Endogámicos C57BL , Hemoglobinas/metabolismo , Masculino
10.
ACS Nano ; 18(24): 15617-15626, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38850556

RESUMEN

Ferritin, a spherical protein shell assembled from 24 subunits, functions as an efficient iron storage and release system through its channels. Understanding how various chemicals affect the structural behavior of ferritin is crucial for unravelling the origins of iron-related diseases in living organisms including humans. In particular, the influence of chemicals on ferritin's dynamics and iron release is barely explored at the single-protein level. Here, by employing optical nanotweezers using double-nanohole (DNH) structures, we examined the effect of ascorbic acid (reducing reagent) and pH on individual ferritin's conformational dynamics. The dynamics of ferritin increased as the concentration of ascorbic acid approached saturation. At pH 2.0, ferritin exhibited significant structural fluctuations and eventually underwent a stepwise disassembly into fragments. This work demonstrated the disassembly pathway and kinetics of a single ferritin molecule in solution. We identified four critical fragments during its disassembly pathway, which are 22-mer, 12-mer, tetramer, and dimer subunits. Moreover, we present single-molecule evidence of the cooperative disassembly of ferritin. Interrogating ferritin's structural change in response to different chemicals holds importance for understanding their roles in iron metabolism, hence facilitating further development of medical treatments for its associated diseases.


Asunto(s)
Ácido Ascórbico , Ferritinas , Pinzas Ópticas , Ferritinas/química , Ferritinas/metabolismo , Cinética , Ácido Ascórbico/química , Concentración de Iones de Hidrógeno , Conformación Proteica , Hierro/química , Humanos
11.
ACS Nano ; 18(26): 16790-16807, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38869479

RESUMEN

The smaller size fraction of plastics may be more substantially existing and detrimental than larger-sized particles. However, reports on nanoplastics (NPs), especially their airborne occurrences and potential health hazards to the respiratory system, are scarce. Previous studies limit the understanding of their real respiratory effects, since sphere-type polystyrene (PS) nanoparticles differ from NPs occurring in nature with respect to their physicochemical properties. Here, we employ a mechanical breakdown method, producing NPs directly from bulk plastic, preserving NP properties in nature. We report that among four relatively high abundance NP materials PS, polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polyethylene (PE) with a size of 100 nm, PVC induced slightly more severe lung toxicity profiles compared to the other plastics. The lung cytotoxicity of NPs is higher than that of commercial PS NPs and comparable to natural particles silicon dioxide (SiO2) and anatase titanium dioxide (TiO2). Mechanistically, BH3-interacting domain death agonist (Bid) transactivation-mediated mitochondrial dysfunction and nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy or ferroptosis are likely common mechanisms of NPs regardless of their chemical composition. This study provides relatively comprehensive data for evaluating the risk of atmospheric NPs to lung health.


Asunto(s)
Mitocondrias , Nanopartículas , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Animales , Nanopartículas/química , Ferritinas/metabolismo , Ferritinas/química , Ratones , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Microplásticos/química , Tamaño de la Partícula , Poliestirenos/química , Ferroptosis/efectos de los fármacos
12.
J Biol Inorg Chem ; 29(4): 455-475, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38780762

RESUMEN

Ferritins are multimeric nanocage proteins that sequester/concentrate excess of free iron and catalytically synthesize a hydrated ferric oxyhydroxide bio-mineral. Besides functioning as the primary intracellular iron storehouses, these supramolecular assemblies also oversee the controlled release of iron to meet physiologic demands. By virtue of the reducing nature of the cytosol, reductive dissolution of ferritin-iron bio-mineral by physiologic reducing agents might be a probable pathway operating in vivo. Herein, to explore this reductive iron-release pathway, a series of quinone analogs differing in size, position/nature of substituents and redox potentials were employed to relay electrons from physiologic reducing agent, NADH, to the ferritin core. Quinones are well known natural electron/proton mediators capable of facilitating both 1/2 electron transfer processes and have been implicated in iron/nutrient acquisition in plants and energy transduction. Our findings on the structure-reactivity of quinone mediators highlight that iron release from ferritin is dictated by electron-relay capability (dependent on E1/2 values) of quinones, their molecular structure (i.e., the presence of iron-chelation sites and the propensity for H-bonding) and the type/amount of reactive oxygen species (ROS) they generate in situ. Juglone/Plumbagin released maximum iron due to their intermediate E1/2 values, presence of iron chelation sites, the ability to inhibit in situ generation of H2O2 and form intramolecular H-bonding (possibly promotes semiquinone formation). This study may strengthen our understanding of the ferritin-iron-release process and their significance in bioenergetics/O2-based cellular metabolism/toxicity while providing insights on microbial/plant iron acquisition and the dynamic host-pathogen interactions.


Asunto(s)
Ferritinas , Hierro , NAD , Oxidación-Reducción , Quinonas , Especies Reactivas de Oxígeno , Ferritinas/química , Ferritinas/metabolismo , Hierro/metabolismo , Hierro/química , NAD/metabolismo , NAD/química , Oxígeno/metabolismo , Oxígeno/química , Quinonas/química , Quinonas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mycobacterium
13.
Aging (Albany NY) ; 16(10): 8965-8979, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38787373

RESUMEN

BACKGROUND: Bone formation and homeostasis are greatly dependent on the osteogenic differentiation of human bone marrow stem cells (BMSCs). Therefore, revealing the mechanisms underlying osteogenic differentiation of BMSCs will provide new candidate therapeutic targets for osteoporosis. METHODS: The osteogenic differentiation of BMSCs was measured by analyzing ALP activity and expression levels of osteogenic markers. Cellular Fe and ROS levels and cell viability were applied to evaluate the ferroptosis of BMSCs. qRT-PCR, Western blotting, and co-immunoprecipitation assays were harnessed to study the molecular mechanism. RESULTS: The mRNA level of CRYAB was decreased in the plasma of osteoporosis patients. Overexpression of CRYAB increased the expression of osteogenic markers including OCN, OPN, RUNX2, and COLI, and also augmented the ALP activity in BMSCs, on the contrary, knockdown of CRYAB had opposite effects. IP-MS technology identified CRYAB-interacted proteins and further found that CRYAB interacted with ferritin heavy chain 1 (FTH1) and maintained the stability of FTH1 via the proteasome mechanism. Mechanically, we unraveled that CRYAB regulated FTH1 protein stability in a lactylation-dependent manner. Knockdown of FTH1 suppressed the osteogenic differentiation of BMSCs, and increased the cellular Fe and ROS levels, and eventually promoted ferroptosis. Rescue experiments revealed that CRYAB suppressed ferroptosis and promoted osteogenic differentiation of BMSCs via regulating FTH1. The mRNA level of FTH1 was decreased in the plasma of osteoporosis patients. CONCLUSIONS: Downregulation of CRYAB boosted FTH1 degradation and increased cellular Fe and ROS levels, and finally improved the ferroptosis and lessened the osteogenic differentiation of BMSCs.


Asunto(s)
Diferenciación Celular , Ferroptosis , Osteogénesis , Osteoporosis , Humanos , Osteogénesis/efectos de los fármacos , Osteoporosis/metabolismo , Osteoporosis/patología , Células Madre Mesenquimatosas/metabolismo , Cadena B de alfa-Cristalina/metabolismo , Cadena B de alfa-Cristalina/genética , Ferritinas/metabolismo , Estabilidad Proteica , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas , Células de la Médula Ósea/metabolismo , Femenino , Oxidorreductasas
14.
J Ethnopharmacol ; 332: 118363, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38763373

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum, a renowned tonic traditional Chinese medicine, is widely recognized for the exceptional activity in soothing nerves and nourishing the brain. It has been extensively employed to alleviate various neurological disorders, notably Parkinson's disease (PD). AIM OF THE STUDY: To appraise the antiparkinsonian effect of GAA, the main bioactive constituent of G. lucidum, and clarify the molecular mechanism through the perspective of ferritinophagy-mediated dopaminergic neuron ferroptosis. MATERIALS AND METHODS: PD mouse and cell models were established using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+), respectively. Cell viability, behavioral tests and immunofluorescence analysis were performed to evaluate the neurotoxicity, motor dysfunction and dopaminergic loss, respectively. Biochemical assay kits were used to determine the levels of iron, lipid reactive oxygen species (ROS), malondialdehyde (MDA), total ROS and glutathione (GSH). Western blot and immunofluorescence were applied to detect the expressions of nuclear receptor co-activator 4 (NCOA4), ferritin heavy chain 1 (FTH1), p62 and LC3B. Additionally, NCOA4-overexpressing plasmid vector was constructed to verify the inhibitory effect of GAA on the neurotoxicity and ferroptosis-related parameters in PD models. RESULTS: GAA significantly mitigated MPP+/MPTP-induced neurotoxicity, motor dysfunction and dopaminergic neuron loss (p<0.01 or p<0.05). In contrast to MPP+/MPTP treatment, GAA treatment decreased the levels of iron, MDA, lipid and total ROS, while increasing the GSH level. GAA also reduced the levels of NCOA4 and LC3B, and enhanced the expressions of FTH1 and p62 in PD models (p<0.01 or p<0.05). However, the protective effect of GAA against the neurotoxicity, NCOA4-mediated ferritinophagy and ferroptosis in PD model was abolished by the overexpression of NCOA4 (p<0.01). CONCLUSION: GAA exerted a protective effect on PD, and this effect was achieved by suppressing dopaminergic neuron ferroptosis through the inhibition of NCOA4-mediated ferritinophagy.


Asunto(s)
Neuronas Dopaminérgicas , Ferritinas , Ferroptosis , Ratones Endogámicos C57BL , Coactivadores de Receptor Nuclear , Animales , Ferroptosis/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Coactivadores de Receptor Nuclear/metabolismo , Ratones , Masculino , Ferritinas/metabolismo , Fármacos Neuroprotectores/farmacología , Autofagia/efectos de los fármacos , Antiparkinsonianos/farmacología , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Modelos Animales de Enfermedad
15.
Toxicology ; 505: 153831, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768701

RESUMEN

Cadmium (Cd) is a common pollutant with reproductive toxicity. Our previous study revealed that Cd triggered spermatogonia ferroptosis. However, the underlying mechanisms remain unclear. Nuclear receptor coactivator 4 (NCOA4) mediates ferritinophagy and specific degradation of ferritin through lysosomes, resulting in the release of ferrous ions. Excessive autophagy can lead to ferroptosis. This study investigated the role of autophagy in Cd-triggered ferroptosis using GC-1 spermatogonial (spg) cells which exposed to CdCl2 (5 µM, 10 µM, or 20 µM) for 24 without/with CQ. The cells which transfected with Ncoa4-siRNA were used to explore the role of NCOA4-mediated ferritinophagy in Cd-triggered ferroptosis. The results revealed that Cd caused mitochondrial swelling, rupture of cristae, and vacuolar-like changes. The Cd-treated cells exhibited more autophagosomes. Simultaneously, Cd increased intracellular iron, reactive oxygen species, and malondialdehyde concentrations while decreasing glutathione content and Superoxide Dismutase-2 activity. Moreover, Cd upregulated mRNA levels of ferritinophagy-associated genes (Ncoa4, Lc3b and Fth1), as well as enhanced protein expression of NCOA4, LC3B, and FTH1. While Cd decreased the mRNA and protein expression of p62/SQSTM1. These results showed that Cd caused ferritinophagy and ferroptosis. The use of chloroquine to inhibit autophagy ameliorated Cd-induced iron overload and ferroptosis. Moreover, Ncoa4 knockdown in spermatogonia significantly reduced intracellular iron concentration and alleviated Cd-triggered ferroptosis. In conclusion, our findings demonstrate that Cd activates the ferritinophagy pathway mediated by NCOA4, resulting in iron accumulation through ferritin degradation. This causes oxidative stress, ultimately initiating ferroptosis in spermatogonia. Our results may provide new perspectives and potential strategies for preventing and treating Cd-induced reproductive toxicity.


Asunto(s)
Autofagia , Cadmio , Ferritinas , Ferroptosis , Coactivadores de Receptor Nuclear , Espermatogonias , Ferroptosis/efectos de los fármacos , Coactivadores de Receptor Nuclear/metabolismo , Coactivadores de Receptor Nuclear/genética , Masculino , Espermatogonias/efectos de los fármacos , Espermatogonias/metabolismo , Ferritinas/metabolismo , Autofagia/efectos de los fármacos , Cadmio/toxicidad , Animales , Línea Celular , Ratones , Especies Reactivas de Oxígeno/metabolismo
16.
Redox Biol ; 73: 103190, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744191

RESUMEN

Parkinson's disease (PD) poses a significant challenge in neurodegenerative disorders, characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). The intricate mechanisms orchestrating DA neurodegeneration in PD are not fully understood, necessitating the exploration of innovative therapeutic approaches. Recent studies have implicated ferroptosis as a major contributor to the loss of DA neurons, revealing a complex interplay between iron accumulation and neurodegeneration. However, the sophisticated nature of this process challenges the conventional belief that mere iron removal could effectively prevent DA neuronal ferroptosis. Here, we report JWA, alternatively referred to as ARL6IP5, as a negative regulator of ferroptosis, capable of ameliorating DA neuronal loss in the context of PD. In this study, synchronized expression patterns of JWA and tyrosine hydroxylase (TH) in PD patients and mice were observed, underscoring the importance of JWA for DA neuronal survival. Screening of ferroptosis-related genes unraveled the engagement of iron metabolism in the JWA-dependent inhibition of DA neuronal ferroptosis. Genetic manipulation of JWA provided compelling evidence linking its neuroprotective effects to the attenuation of NCOA4-mediated ferritinophagy. Molecular docking, co-immunoprecipitation, and immunofluorescence studies confirmed that JWA mitigated DA neuronal ferroptosis by occupying the ferritin binding site of NCOA4. Moreover, the JWA-activating compound, JAC4, demonstrated promising neuroprotective effects in cellular and animal PD models by elevating JWA expression, offering a potential avenue for neuroprotection in PD. Collectively, our work establishes JWA as a novel regulator of ferritinophagy, presenting a promising therapeutic target for addressing DA neuronal ferroptosis in PD.


Asunto(s)
Neuronas Dopaminérgicas , Ferritinas , Ferroptosis , Coactivadores de Receptor Nuclear , Enfermedad de Parkinson , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/genética , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Animales , Ratones , Humanos , Coactivadores de Receptor Nuclear/metabolismo , Coactivadores de Receptor Nuclear/genética , Ferritinas/metabolismo , Ferritinas/genética , Hierro/metabolismo , Modelos Animales de Enfermedad , Unión Proteica , Autofagia , Masculino
17.
Oncogene ; 43(26): 2000-2014, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744953

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy of the digestive system. Hypoxia is a crucial player in tumor ferroptosis resistance. However, the molecular mechanism of hypoxia-mediated ferroptosis resistance in ESCC remains unclear. Here, USP2 expression was decreased in ESCC cell lines subjected to hypoxia treatment and was lowly expressed in clinical ESCC specimens. Ubiquitin-specific protease 2 (USP2) depletion facilitated cell growth, which was blocked in USP2-overexpressing cells. Moreover, USP2 silencing enhanced the iron ion concentration and lipid peroxidation accumulation as well as suppressed ferroptosis, while upregulating USP2 promoted ferroptotic cell death in ESCC cells. Furthermore, knockout of USP2 in ESCC models discloses the essential role of USP2 in promoting ESCC tumorigenesis and inhibiting ferroptosis. In contrast, overexpression of USP2 contributes to antitumor effect and ferroptosis events in vivo. Specifically, USP2 stably bound to and suppressed the degradation of nuclear receptor coactivator 4 (NCOA4) by eliminating the Lys48-linked chain, which in turn triggered ferritinophagy and ferroptosis in ESCC cells. Our findings suggest that USP2 plays a crucial role in iron metabolism and ferroptosis and that the USP2/NCOA4 axis is a promising therapeutic target for the management of ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ferroptosis , Ubiquitina Tiolesterasa , Humanos , Ferroptosis/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Animales , Ratones , Línea Celular Tumoral , Coactivadores de Receptor Nuclear/metabolismo , Coactivadores de Receptor Nuclear/genética , Regulación Neoplásica de la Expresión Génica , Ferritinas/metabolismo , Ferritinas/genética , Ratones Desnudos , Autofagia/genética , Hipoxia/metabolismo , Proliferación Celular/genética , Masculino
18.
Virology ; 596: 110113, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38801794

RESUMEN

Porcine epidemic diarrhea virus (PEDV), a highly virulent enteropathogenic coronavirus, is a significant threat to the pig industry. High frequency mutations in the PEDV genome have limited the effectiveness of current vaccines in providing immune protection. Developing efficient vaccines that can quickly adapt to mutant strains is a challenging but crucial task. In this study, we chose the pivotal protein heptad repeat (HR) responsible for coronavirus entry into host cells, as the vaccine antigen. HR-Fer nanoparticles prepared using ferritin were evaluated them as PEDV vaccine candidates. Nanoparticle vaccines elicited stronger neutralizing antibody responses in mice compared to monomer vaccines. Additionally, HR protein delivered via nanoparticles increased antigen uptake by antigen-presenting cells in vitro by 2.75-fold. The collective results suggest that HR can be used as antigens for vaccines, and the HR vaccine based on ferritin nanoparticles significantly enhances immunogenicity.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Coronavirus , Nanopartículas , Virus de la Diarrea Epidémica Porcina , Glicoproteína de la Espiga del Coronavirus , Enfermedades de los Porcinos , Vacunas Virales , Animales , Virus de la Diarrea Epidémica Porcina/inmunología , Virus de la Diarrea Epidémica Porcina/genética , Nanopartículas/química , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/administración & dosificación , Anticuerpos Antivirales/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/inmunología , Ratones , Anticuerpos Neutralizantes/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Porcinos , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Ratones Endogámicos BALB C , Ferritinas/inmunología , Ferritinas/genética , Ferritinas/metabolismo , Femenino , Chlorocebus aethiops , Nanovacunas
19.
J Nanobiotechnology ; 22(1): 297, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812019

RESUMEN

Chemotherapy, as a conventional strategy for tumor therapy, often leads to unsatisfied therapeutic effect due to the multi-drug resistance and the serious side effects. Herein, we genetically engineered a thermal-responsive murine Ferritin (mHFn) to specifically deliver mitoxantrone (MTO, a chemotherapeutic and photothermal agent) to tumor tissue for the chemotherapy and photothermal combined therapy of colorectal cancer, thanks to the high affinity of mHFn to transferrin receptor that highly expressed on tumor cells. The thermal-sensitive channels on mHFn allowed the effective encapsulation of MTO in vitro and the laser-controlled release of MTO in vivo. Upon irradiation with a 660 nm laser, the raised temperature triggered the opening of the thermal-sensitive channel in mHFn nanocage, resulting in the controlled and rapid release of MTO. Consequently, a significant amount of reactive oxygen species was generated, causing mitochondrial collapse and tumor cell death. The photothermal-sensitive controlled release, low systemic cytotoxicity, and excellent synergistic tumor eradication ability in vivo made mHFn@MTO a promising candidate for chemo-photothermal combination therapy against colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Ferritinas , Rayos Láser , Mitoxantrona , Terapia Fototérmica , Animales , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/tratamiento farmacológico , Ratones , Ferritinas/química , Ferritinas/metabolismo , Terapia Fototérmica/métodos , Humanos , Mitoxantrona/farmacología , Mitoxantrona/química , Mitoxantrona/uso terapéutico , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones Desnudos , Femenino
20.
Neurochem Res ; 49(7): 1806-1822, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713437

RESUMEN

Ischemic stroke presents a global health challenge, necessitating an in-depth comprehension of its pathophysiology and therapeutic strategies. While reperfusion therapy salvages brain tissue, it also triggers detrimental cerebral ischemia-reperfusion injury (CIRI). In our investigation, we observed the activation of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy in an oxygen-glucose deprivation/reoxygenation (OGD/R) model using HT22 cells (P < 0.05). This activation contributed to oxidative stress (P < 0.05), enhanced autophagy (P < 0.05) and cell death (P < 0.05) during CIRI. Silencing NCOA4 effectively mitigated OGD/R-induced damage (P < 0.05). These findings suggested that targeting NCOA4-mediated ferritinophagy held promise for preventing and treating CIRI. Subsequently, we substantiated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway effectively regulated the NCOA4-mediated ferritinophagy, by applying the cGAS inhibitor RU.521 and performing NCOA4 overexpression (P < 0.05). Suppressing the cGAS-STING pathway efficiently curtailed ferritinophagy (P < 0.05), oxidative stress (P < 0.05), and cell damage (P < 0.05) of CIRI, while NCOA4 overexpression could alleviate this effect (P < 0.05). Finally, we elucidated the specific molecular mechanism underlying the protective effect of the iron chelator deferoxamine (DFO) on CIRI. Our findings revealed that DFO alleviated hypoxia-reoxygenation injury in HT22 cells through inhibiting NCOA4-mediated ferritinophagy and reducing ferrous ion levels (P < 0.05). However, the protective effects of DFO were counteracted by cGAS overexpression (P < 0.05). In summary, our results indicated that the activation of the cGAS-STING pathway intensified cerebral damage during CIRI by inducing NCOA4-mediated ferritinophagy. Administering the iron chelator DFO effectively attenuated NCOA4-induced ferritinophagy, thereby alleviating CIRI. Nevertheless, the role of the cGAS-STING pathway in CIRI regulation likely involves intricate mechanisms, necessitating further validation in subsequent investigations.


Asunto(s)
Autofagia , Ferritinas , Coactivadores de Receptor Nuclear , Daño por Reperfusión , Coactivadores de Receptor Nuclear/metabolismo , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Ferritinas/metabolismo , Ratones , Autofagia/efectos de los fármacos , Autofagia/fisiología , Línea Celular , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...