Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.974
Filtrar
1.
Mycoses ; 67(8): e13776, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39086009

RESUMEN

OBJECTIVES: The investigation of Candida auris outbreaks is needed to provide insights into its population structure and transmission dynamics. We genotypically and phenotypically characterised a C. auris nosocomial outbreak occurred in Consorcio Hospital General Universitario de Valencia (CHGUV), Spain. METHODS: Data and isolates were collected from CHGUV from September 2017 (first case) until September 2021. Thirty-five isolates, including one from an environmental source, were randomly selected for whole genome sequencing (WGS), and the genomes were analysed along with a database with 335 publicly available genomes, assigning them to one of the five major clades. In order to identify polymorphisms associated with drug resistance, we used the fully susceptible GCA_003014415.1 strain as reference sequence. Known mutations in genes ERG11 and FKS1 conferring resistance to fluconazole and echinocandins, respectively, were investigated. Isolates were classified into aggregating or non-aggregating. RESULTS: All isolates belonged to clade III and were from an outbreak with a single origin. They clustered close to three publicly available genomes from a hospital from where the first patient was transferred, being the probable origin. The mutation VF125AL in the ERG11 gene, conferring resistance to fluconazole, was present in all the isolates and one isolate also carried the mutation S639Y in the FKS1 gene. All the isolates had a non-aggregating phenotype (potentially more virulent). CONCLUSIONS: Isolates are genotypically related and phenotypically identical but one with resistance to echinocandins, which seems to indicate that they all belong to an outbreak originated from a single isolate, remaining largely invariable over the years. This result stresses the importance of implementing infection control practices as soon as the first case is detected or when a patient is transferred from a setting with known cases.


Asunto(s)
Antifúngicos , Candida auris , Candidiasis , Infección Hospitalaria , Brotes de Enfermedades , Farmacorresistencia Fúngica , Genotipo , Fenotipo , Secuenciación Completa del Genoma , Humanos , España/epidemiología , Infección Hospitalaria/microbiología , Infección Hospitalaria/epidemiología , Candidiasis/microbiología , Candidiasis/epidemiología , Antifúngicos/farmacología , Candida auris/genética , Candida auris/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana , Mutación , Masculino , Fluconazol/farmacología , Femenino , Equinocandinas/farmacología , Persona de Mediana Edad , Candida/genética , Candida/efectos de los fármacos , Candida/clasificación , Candida/aislamiento & purificación
2.
Sci Rep ; 14(1): 17093, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107358

RESUMEN

Terbinafine, fluconazole, and amorolfine inhibit fungal ergosterol synthesis by acting on their target enzymes at different steps in the synthetic pathway, causing the accumulation of various intermediates. We found that the effects of these three in- hibitors on yeast morphology were different. The number of morphological parameters commonly altered by these drugs was only approximately 6% of the total. Using a rational strategy to find commonly changed parameters,we focused on hidden essential similarities in the phenotypes possibly due to decreased ergosterol levels. This resulted in higher apparent morphological similarity. Improvements in morphological similarity were observed even when canonical correlation analysis was used to select biologically meaningful morphological parameters related to gene function. In addition to changes in cell morphology, we also observed differences in the synergistic effects among the three inhibitors and in their fungicidal effects against pathogenic fungi possibly due to the accumulation of different intermediates. This study provided a comprehensive understanding of the properties of inhibitors acting in the same biosynthetic pathway.


Asunto(s)
Antifúngicos , Ergosterol , Fenotipo , Ergosterol/metabolismo , Ergosterol/biosíntesis , Antifúngicos/farmacología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Fluconazol/farmacología , Vías Biosintéticas/efectos de los fármacos , Terbinafina/farmacología
3.
BMC Infect Dis ; 24(1): 822, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138408

RESUMEN

BACKGROUND: Cryptococcosis is an infectious disease caused by encapsulated heterobasidiomycete yeasts. As an opportunistic pathogen, cryptococcal inhalation infection is the most common. While Primary cutaneous cryptococcosis is extremely uncommon. CASE PRESENTATION: A 61-year-old woman with a history of rheumatoid arthritis on long-term prednisone developed a red plaque on her left thigh. Despite initial antibiotic treatment, the erythema worsened, leading to rupture and fever. Microbiological analysis of the lesion's secretion revealed Candida albicans, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus epidermidis. Skin biopsy showed thick-walled spores, and culture confirmed primary cutaneous infection with Cryptococcus neoformans. Histopathological stains were positive, and mass spectrometry identified serotype A of the pathogen. The patient was treated with oral fluconazole and topical nystatin, resulting in significant improvement and near-complete healing of the skin lesion within 2.5 months. CONCLUSIONS: Primary cutaneous cryptococcosis was a primary skin infection exclusively located on the skin. It has no typical clinical manifestation of cutaneous infection of Cryptococcus, and culture and histopathology remain the gold standard for diagnosing. The recommended medication for Primary cutaneous cryptococcosis is fluconazole. When patients at risk for opportunistic infections develop skin ulcers that are unresponsive to antibiotic, the possibility of primary cutaneous cryptococcosis needs to be considered.


Asunto(s)
Antifúngicos , Criptococosis , Cryptococcus neoformans , Fluconazol , Humanos , Femenino , Persona de Mediana Edad , Cryptococcus neoformans/aislamiento & purificación , Cryptococcus neoformans/efectos de los fármacos , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología , Criptococosis/diagnóstico , Criptococosis/patología , Antifúngicos/uso terapéutico , Fluconazol/uso terapéutico , Dermatomicosis/tratamiento farmacológico , Dermatomicosis/microbiología , Dermatomicosis/diagnóstico , Dermatomicosis/patología , Piel/patología , Piel/microbiología , Resultado del Tratamiento , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/complicaciones
4.
PLoS One ; 19(8): e0308665, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39121069

RESUMEN

Development of resistance and tolerance to antifungal drugs in Candida albicans can compromise treatment of infections caused by this pathogenic yeast species. The uniquely expanded C. albicans TLO gene family is comprised of 14 paralogous genes which encode Med2, a subunit of the multiprotein Mediator complex which is involved in the global control of transcription. This study investigates the acquisition of fluconazole tolerance in a mutant in which the entire TLO gene family has been deleted. This phenotype was reversed to varying degrees upon reintroduction of representative members of the alpha- and beta-TLO clades (i.e. TLO1 and TLO2), but not by TLO11, a gamma-clade representative. Comparative RNA sequencing analysis revealed changes in the expression of genes involved in a range of cellular functions, including ergosterol biosynthesis, mitochondrial function, and redox homeostasis. This was supported by the results of mass spectrometry analysis, which revealed alterations in sterol composition of the mutant cell membrane. Our data suggest that members of the C. albicans TLO gene family are involved in the control of ergosterol biosynthesis and mitochondrial function and may play a role in the responses of C. albicans to azole antifungal agents.


Asunto(s)
Antifúngicos , Candida albicans , Farmacorresistencia Fúngica , Fluconazol , Proteínas Fúngicas , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/metabolismo , Fluconazol/farmacología , Antifúngicos/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Farmacorresistencia Fúngica/genética , Esteroles/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Ergosterol/biosíntesis , Ergosterol/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Familia de Multigenes , Pruebas de Sensibilidad Microbiana , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética
5.
PLoS One ; 19(8): e0303878, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39137202

RESUMEN

The limited arsenal of antifungal drugs have prompted the search for novel molecules with biological activity. This study aimed to characterize the antifungal mechanism of action of Eugenia uniflora extract and its synergistic activity with commercially available antifungal drugs on the following Candida species: C. albicans, C. tropicalis, C. glabrata, C. parapsilosis and C. dubliniensis. In silico analysis was performed to predict antifungal activity of the major compounds present in the extract. Minimal inhibitory concentrations (MICs) were determined in the presence of exogenous ergosterol and sorbitol. Yeast cells were grown in the presence of stressors. The loss of membrane integrity was assessed using propidium iodide staining (fluorescence emission). Synergism between the extract and antifungal compounds (in addition to time kill-curves) was determined. Molecular docking revealed possible interactions between myricitrin and acid gallic and enzymes involved in ergosterol and cell wall biosynthesis. Candida cells grown in the presence of the extract with addition of exogenous ergosterol and sorbitol showed 2 to 8-fold increased MICs. Strains treated with the extract revealed greater loss of membrane integrity when compared to their Fluconazole counterparts, but this effect was less pronounced than the membrane damage caused by Amphotericin B. The extract also made the strains more susceptible to Congo red and Calcofluor white. A synergistic action of the extract with Fluconazole and Micafungin was observed. The E. uniflora extract may be a viable option for the treatment of Candida infections.


Asunto(s)
Antifúngicos , Candida , Sinergismo Farmacológico , Eugenia , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Eugenia/química , Antifúngicos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Candida/efectos de los fármacos , Ergosterol , Simulación del Acoplamiento Molecular , Fluconazol/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo
6.
J Trop Pediatr ; 70(5)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39142804

RESUMEN

Candidemia is emerging as a significant concern in children, particularly among those with underlying conditions like malignancies or prematurity. The interpretation of epidemiological data on candidemias and their antifungal resistance plays a vital role in aiding diagnosis and guiding clinicians in treatment decisions. From 2014 to 2021, a retrospective analysis was conducted in Istanbul, Turkey; comparing Candida albicans and non-albicans (NAC) spp in both surviving and deceased groups. Furthermore, an examination of Candida parapsilosis and other species was performed, assessing various clinical and laboratory parameters. Among 93 patients, with a median age of 17 months, C. parapsilosis emerged as the predominant isolated species (44%), followed by C. albicans (34.4%). Resistance to fluconazole, voricanozole, and echinocandins, along with a history of broad-spectrum antibiotic use were found to be significantly higher in the non-albicans Candida group compared to C. albicans group. In the C. parapsilosis group, statistically lower age was identified in comparison to the other groups (P = .018). In addition, high fluconazole and voriconazole resistance was detected in Candida parapsilosis spp. Our study highlights a notable prevalence of C. parapsilosis, particularly in younger children, which is different from similar studies in childhood. This trend may be attributed to the common use of total parenteral nutrition and central venous catheter in gastrointestinal disorders and metabolic diseases. Furthermore, as anticipated, high azole resistance is noted in C. parapsilosis and other non-albicans Candida species. Interestingly, resistance to both amphotericin B and echinocandins within this group has been notably high. It is crucial to emphasize the considerable antifungal resistance seen in C. parapsilosis isolates.


Asunto(s)
Antifúngicos , Candida parapsilosis , Candidemia , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana , Humanos , Candidemia/epidemiología , Candidemia/tratamiento farmacológico , Candidemia/microbiología , Turquía/epidemiología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Masculino , Estudios Retrospectivos , Femenino , Lactante , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/aislamiento & purificación , Preescolar , Incidencia , Niño , Candida/efectos de los fármacos , Candida/aislamiento & purificación , Recién Nacido , Fluconazol/uso terapéutico , Fluconazol/farmacología , Adolescente , Prevalencia
7.
Front Cell Infect Microbiol ; 14: 1416509, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39077431

RESUMEN

The limited number of available antifungal drugs and the increasing number of fungal isolates that show drug or multidrug resistance pose a serious medical threat. Several yeast pathogens, such as Nakaseomyces glabratus (Candida glabrata), show a remarkable ability to develop drug resistance during treatment through the acquisition of genetic mutations. However, how stable this resistance and the underlying mutations are in non-selective conditions remains poorly characterized. The stability of acquired drug resistance has fundamental implications for our understanding of the appearance and spread of drug-resistant outbreaks and for defining efficient strategies to combat them. Here, we used an in vitro evolution approach to assess the stability under optimal growth conditions of resistance phenotypes and resistance-associated mutations that were previously acquired under exposure to antifungals. Our results reveal a remarkable stability of the resistant phenotype and the underlying mutations in a significant number of evolved populations, which conserved their phenotype for at least two months in the absence of drug-selective pressure. We observed a higher stability of anidulafungin resistance over fluconazole resistance, and of resistance-conferring point mutations as compared with aneuploidies. In addition, we detected accumulation of novel mutations in previously altered resistance-associated genes in non-selective conditions, which suggest a possible compensatory role. We conclude that acquired resistance, particularly to anidulafungin, is a long-lasting phenotype, which has important implications for the persistence and propagation of drug-resistant clinical outbreaks.


Asunto(s)
Antifúngicos , Candida glabrata , Farmacorresistencia Fúngica , Fluconazol , Pruebas de Sensibilidad Microbiana , Mutación , Candida glabrata/genética , Candida glabrata/efectos de los fármacos , Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Anidulafungina/farmacología , Fenotipo , Farmacorresistencia Fúngica Múltiple/genética
8.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063009

RESUMEN

Candida albicans is one of the agents of invasive candidiasis, a life-threatening disease strongly associated with hospitalization, particularly among patients in intensive care units with central venous catheters. This study aimed to evaluate the synergistic activity of the antifungal peptide ToAP2 combined with fluconazole against C. albicans biofilms grown on various materials. We tested combinations of different concentrations of the peptide ToAP2 with fluconazole on C. albicans biofilms. These biofilms were generated on 96-well plates, intravenous catheters, and infusion tubes in RPMI medium at two maturation stages. Scanning electron microscopy and atomic force microscopy were employed to assess the biofilm structure. We also evaluated the expression of genes previously proven to be involved in C. albicans biofilm formation in planktonic and biofilm cells after treatment with the peptide ToAP2 using qPCR. ToAP2 demonstrated a synergistic effect with fluconazole at concentrations up to 25 µM during both the early and mature stages of biofilm formation in 96-well plates and on medical devices. Combinations of 50, 25, and 12.5 µM of ToAP2 with 52 µM of fluconazole significantly reduced the biofilm viability compared to individual treatments and untreated controls. These results were supported by substantial structural changes in the biofilms observed through both scanning and atomic force microscopy. The gene expression analysis of C. albicans cells treated with 25 µM of ToAP2 revealed a decrease in the expression of genes associated with membrane synthesis, along with an increase in the expression of genes involved in efflux pumps, adhesins, and filamentation. Our results highlight the efficacy of the combined ToAP2 and fluconazole treatment against C. albicans biofilms. This combination not only shows therapeutic potential but also suggests its utility in developing preventive biofilm tools for intravenous catheters.


Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Sinergismo Farmacológico , Fluconazol , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Fluconazol/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Antifúngicos/farmacología , Péptidos Antimicrobianos/farmacología , Pruebas de Sensibilidad Microbiana , Humanos , Microscopía de Fuerza Atómica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
9.
Microbiol Spectr ; 12(8): e0072524, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39007718

RESUMEN

Cryptococcal meningitis (CM), a common and serious opportunistic infection mostly caused by Cryptococcus neoformans, is primarily treated with fluconazole. Nevertheless, Cryptococcus neoformans strains that undergo repeated exposure to azoles can gradually acquire heteroresistance to fluconazole. The management of this specific CM infection poses a substantial challenge. Determining a globally accepted definition for fluconazole heteroresistance and developing effective and prompt methods for identifying heteroresistance is of utmost importance. We collected data on the clinical and epidemiological characteristics of patients diagnosed with CM. All the available Cryptococcus neoformans strains isolated from these patients were collected and subjected to antifungal susceptibility testing and evaluation of fluconazole heteroresistance. AIDS was present in 40.5% of the patients, whereas 24.1% did not have any underlying diseases. Patients with chronic diseases or impaired immune systems are susceptible to infection by Cryptococcus neoformans, a fungus that frequently (39.6%, 19/48) shows heteroresistance to fluconazole, as confirmed by population analysis profile (PAP).IMPORTANCEFluconazole heteroresistance poses a significant threat to the efficacy of fluconazole in treating cryptococcal meningitis (CM). Unfortunately, the standard broth microdilution method often misses the subtle percentages of subpopulations exhibiting heteroresistance. While the population analysis profile (PAP) method is esteemed as the gold standard, its time-consuming and labor-intensive nature makes it impractical for routine clinical use. In contrast, the Kirby-Bauer (KB) disk diffusion method offers a simple and effective screening solution. Our study highlights the value of KB over PAP and minimum inhibitory concentration (MIC) by demonstrating that when adjusting the inoculum concentration to 1.0 McFarland and subjecting samples to a 72-hour incubation period at 35°C, the KB method closely mirrors the outcomes of the PAP approach in detecting fluconazole heteroresistance. This optimization of the KB method not only enhances assay efficiency but also provides a blueprint for developing a timely and effective strategy for identifying heteroresistance.


Asunto(s)
Antifúngicos , Cryptococcus neoformans , Farmacorresistencia Fúngica , Fluconazol , Hospitales de Enseñanza , Meningitis Criptocócica , Pruebas de Sensibilidad Microbiana , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/aislamiento & purificación , Cryptococcus neoformans/genética , Meningitis Criptocócica/microbiología , Meningitis Criptocócica/tratamiento farmacológico , Meningitis Criptocócica/epidemiología , Fluconazol/farmacología , Humanos , Antifúngicos/farmacología , China/epidemiología , Adulto , Femenino , Masculino , Persona de Mediana Edad , Anciano , Adulto Joven , Adolescente
10.
Am J Case Rep ; 25: e944291, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003517

RESUMEN

BACKGROUND Cryptococcosis is an opportunistic fungal infection that typically occurs in patients with compromised immune systems, primarily affecting the respiratory and central nervous systems. However, cryptococcal osteomyelitis is a rare manifestation of cryptococcal infection, characterized by nonspecific clinical features. Here, we present a case of vertebral cryptococcal osteomyelitis in a middle-aged woman and discuss diagnostic approaches. CASE REPORT A 56-year-old woman presented with lower back pain and limited mobility, without fever, and with a history of pulmonary tuberculosis. Physical examination revealed enlarged lymph nodes and tenderness in the thoracic vertebrae. A computed tomography-guided biopsy confirmed granulomatous inflammation caused by Cryptococcus, with abundant 10 µm spherical microbial spores. After 4 weeks of treatment with amphotericin B and fluconazole, symptoms and lesions improved. Upon discharge, the patient was prescribed oral fluconazole. Follow-up examinations showed a stable condition and a negative serum cryptococcal capsular polysaccharide antigen test. CONCLUSIONS Given the rarity and lack of specificity of clinical features of cryptococcal spondylitis, clinicians encountering similar presentations should consider tuberculous spondylitis and spinal tumors as differential diagnoses. Additionally, tissue biopsy of the affected vertebral bodies should be performed early to establish the type of vertebral infection, aiding in diagnosis, treatment, and prognosis.


Asunto(s)
Criptococosis , Osteomielitis , Tuberculosis de la Columna Vertebral , Humanos , Femenino , Persona de Mediana Edad , Osteomielitis/diagnóstico , Osteomielitis/microbiología , Osteomielitis/tratamiento farmacológico , Criptococosis/diagnóstico , Criptococosis/tratamiento farmacológico , Diagnóstico Diferencial , Tuberculosis de la Columna Vertebral/diagnóstico , Vértebras Torácicas , Antifúngicos/uso terapéutico , Fluconazol/uso terapéutico , Tomografía Computarizada por Rayos X
11.
PLoS Pathog ; 20(7): e1012389, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39078851

RESUMEN

Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans. Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Homozygous deletions of ERG251 resulted in accumulation of ergosterol intermediates consistent with the fitness defect in rich medium. Dysfunction of ERG251, together with FLC exposure, resulted in decreased accumulation of the toxic sterol (14-ɑ-methylergosta-8,24(28)-dien-3ß,6α-diol) and increased accumulation of non-toxic alternative sterols. The altered sterol composition of the ERG251 mutants had pleiotropic effects on transcription, filamentation, and stress responses including cell membrane, osmotic and oxidative stress. Interestingly, while dysfunction of ERG251 resulted in azole tolerance, it also led to transcriptional upregulation of ZRT2, a membrane-bound Zinc transporter, in the presence of FLC, and overexpression of ZRT2 is sufficient to increase azole tolerance in wild-type C. albicans. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study demonstrates that single allele dysfunction of ERG251 is a recurrent and effective mechanism of acquired azole tolerance. We propose that altered sterol composition resulting from ERG251 dysfunction mediates azole tolerance as well as pleiotropic effects on stress response, filamentation and virulence.


Asunto(s)
Antifúngicos , Candida albicans , Candidiasis , Farmacorresistencia Fúngica , Ergosterol , Proteínas Fúngicas , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/metabolismo , Antifúngicos/farmacología , Ratones , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Animales , Candidiasis/microbiología , Candidiasis/metabolismo , Candidiasis/tratamiento farmacológico , Ergosterol/metabolismo , Azoles/farmacología , Esteroles/metabolismo , Fenotipo , Estrés Fisiológico , Pruebas de Sensibilidad Microbiana , Fluconazol/farmacología
12.
Eur J Dermatol ; 34(3): 260-266, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-39015959

RESUMEN

Onychomycosis, a fungal nail infection, is primarily caused by dermatophytes, yeasts, and non-dermatophyte moulds (NDMs). The incidence of this disease and the predominance of specific pathogens vary across different regions and evolve. This study aimed to elucidate the epidemiology of onychomycosis and the pattern of causative pathogens in Beijing, and to ascertain the in vitro antifungal susceptibility profiles of Trichophyton rubrum against itraconazole (ITR), terbinafine (TER), and fluconazole (FLU). Involving 245 patients of onychomycosis with positive fungal culture results, the study implemented internal transcribed spacer (ITS) sequencing of ribosomal DNA (rDNA) on all collected samples. The mean age of the participants was 37.93 ± 13.73 years, with a male-to-female ratio of 1.53:1. The prevalence of toenail infections was significantly higher than that of fingernails. Distal and lateral subungual onychomycosis (DLSO) were the most frequent clinical classifications. PCR results indicated that dermatophytes were the most prevalent pathogens, followed by yeasts and NDMs, among which T. rubrum was the most dominant dermatophyte. TER demonstrated high sensitivity to T. rubrum. However, in clinical settings, some patients with onychomycosis exhibit a poor response to TER treatment. The relationship between in vitro antifungal sensitivity and clinical effectiveness is complex, and understanding the link between in vitro MIC values and clinical efficacy requires further investigation.


Asunto(s)
Antifúngicos , Fluconazol , Dermatosis del Pie , Itraconazol , Pruebas de Sensibilidad Microbiana , Onicomicosis , Terbinafina , Humanos , Onicomicosis/microbiología , Onicomicosis/tratamiento farmacológico , Onicomicosis/epidemiología , Masculino , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Femenino , Adulto , Persona de Mediana Edad , Terbinafina/farmacología , Terbinafina/uso terapéutico , Dermatosis del Pie/microbiología , Dermatosis del Pie/tratamiento farmacológico , Itraconazol/farmacología , Itraconazol/uso terapéutico , Fluconazol/farmacología , Arthrodermataceae/efectos de los fármacos , Adulto Joven , Dermatosis de la Mano/microbiología , Dermatosis de la Mano/tratamiento farmacológico , Dermatosis de la Mano/epidemiología , China/epidemiología , Prevalencia , Trichophyton/efectos de los fármacos , Anciano , Adolescente
13.
Ann Afr Med ; 23(3): 391-399, 2024 Jul 01.
Artículo en Francés, Inglés | MEDLINE | ID: mdl-39034564

RESUMEN

OBJECTIVES: This study investigated the anti-cryptococcal potential of certain essential oils (EOs)/compounds alone and in combination with fluconazole. MATERIALS AND METHODS: We investigated the antifungal activity of oils of Cinnamomum verum, Cymbopogon citratus, Cymbopogon martini, and Syzygium aromaticum, and their major active ingredients cinnamaldehyde, citral, eugenol, and geraniol against clinical and standard strains of Cryptococcus neoformans (CN). Disc diffusion, broth microdilution, checkerboard methods, and transmission electron microscopy were employed to determine growth inhibition, synergistic interaction, and mechanism of action of test compounds. RESULTS: EOs/compounds showed pronounced antifungal efficacy against azole-resistant CN in the order of cinnamaldehyde > eugenol > S. aromaticum > C. verum > citral > C. citratus > geraniol ≥ C. martini, each exhibiting zone of inhibition >15 mm. These oils/compounds were highly cidal compared to fluconazole. Eugenol and cinnamaldehyde showed the strongest synergy with fluconazole against CN by lowering their MICs up to 32-fold. Transmission electron microscopy indicated damage of the fungal cell wall, cell membrane, and other endomembranous organelles. CONCLUSION: Test oils and their active compounds exhibited potential anti-cryptococcus activity against the azole-resistant strains of CN. Moreover, eugenol and cinnamaldehyde significantly potentiated the anti-cryptococcal activity of fluconazole. It is suggested that multiple sites of action from oils/compounds could turn static fluconazole into a cidal drug combination in combating cryptococcosis.


RésuméObjectifs: Cette étude a étudié le potentiel anti-cryptocoque de certaines huiles essentielles (HE)/composés seuls et en combinaison avec fluconazole. Matériels et méthodes: Nous avons étudié l'activité antifongique des huiles de Cinnamomum verum, Cymbopogon citratus, Cymbopogon martini et Syzygium spiceum , et leurs principaux ingrédients actifs, le cinnamaldéhyde, le citral, l'eugénol et le géraniol, contre les normes cliniques et standards. souches de Cryptococcus neoformans (CN). Diffusion sur disque, microdilution en bouillon, méthodes en damier et microscopie électronique à transmission ont été utilisés pour déterminer l'inhibition de la croissance, l'interaction synergique et le mécanisme d'action des composés testés. Résultats: HE/composés a montré une efficacité antifongique prononcée contre les CN résistantes aux azoles dans l'ordre suivant: cinnamaldéhyde > eugénol > S. spiceum > C. verum > citral > C. citratus > géraniol ≥ C. martini , chacun présentant une zone d'inhibition > 15 mm. Ces huiles/composés étaient hautement cides par rapport au fluconazole. L'eugénol et le cinnamaldéhyde ont montré la synergie la plus forte avec le fluconazole contre le CN en abaissant leurs CMI jusqu'à 32 fois. La microscopie électronique à transmission a indiqué des dommages à la paroi cellulaire fongique, à la membrane cellulaire et à d'autres organites endomembranaires. Conclusion: Les huiles testées et leurs composés actifs ont montré une activité anti-cryptocoque potentielle contre les souches de CN résistantes aux azoles. De plus, l'eugénol et le cinnamaldéhyde ont significativement potentialisé l'activité anticryptococcique du fluconazole. Il est suggéré que plusieurs Les sites d'action des huiles/composés pourraient transformer le fluconazole statique en une combinaison médicamenteuse cide pour lutter contre la cryptococcose.


Asunto(s)
Acroleína , Antifúngicos , Cryptococcus neoformans , Cymbopogon , Farmacorresistencia Fúngica , Sinergismo Farmacológico , Eugenol , Fluconazol , Pruebas de Sensibilidad Microbiana , Aceites Volátiles , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/ultraestructura , Fluconazol/farmacología , Antifúngicos/farmacología , Aceites Volátiles/farmacología , Cymbopogon/química , Farmacorresistencia Fúngica/efectos de los fármacos , Acroleína/análogos & derivados , Acroleína/farmacología , Eugenol/farmacología , Humanos , Monoterpenos Acíclicos/farmacología , Syzygium/química , Cinnamomum zeylanicum/química , Terpenos/farmacología , Monoterpenos/farmacología , Microscopía Electrónica de Transmisión , Aceites de Plantas/farmacología , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología
14.
BMC Vet Res ; 20(1): 325, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026256

RESUMEN

Fluconazole (FCZ), an antifungal from the azole family, causes several detrimental effects in fish. In recent times, there has been a notable surge in interest regarding the utilization of Moringa oleifera (Mo) as a dietary antioxidant. This research aimed to evaluate the potential protective effects of dietary Moringa oleifera (MO) against the adverse impacts of fluconazole in the African catfish (Clarias gariepinus). The fish were allocated into four groups as follows: a control group fed a basal diet, an FCZ - exposed (200 ng/L) fed basal diet, 1% MO fed through basal diet, and an FCZ-exposed (200 ng/L) and 1% MO fed through basal diet fed group. The results showed that FCZ exposure decreased superoxide dismutase, total antioxidant capacity, and acetylcholine esterase levels. On the other hand, FCZ exposure increased malonaldehyde and cortisol levels as compared to control (P < 0.05). FCZ caused immunosuppressive effects in C. gariepinus as revealed by lower immunity indices (lysozyme and phagocytic activity and immunoglobulin level) and increased cytokine levels (IL-6 IL-1ß). Histological examination of the spleen from fish exposed to FCZ showed several splenic changes. We conclude that dietary MO supplementation has the potential to alleviate the oxidative stress, restore immune response balance, and mitigate histological damage induced by FCZ exposure, thus positioning MO as an immunostimulant in C. gariepinus when administered alongside FCZ.


Asunto(s)
Alimentación Animal , Bagres , Dieta , Suplementos Dietéticos , Fluconazol , Moringa oleifera , Bazo , Animales , Moringa oleifera/química , Bazo/efectos de los fármacos , Bazo/patología , Fluconazol/farmacología , Fluconazol/administración & dosificación , Dieta/veterinaria , Alimentación Animal/análisis , Antifúngicos/administración & dosificación , Antifúngicos/farmacología , Antioxidantes/farmacología , Superóxido Dismutasa/metabolismo
15.
Euro Surveill ; 29(29)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39027938

RESUMEN

BackgroundThe COVID-19 pandemic and the emergence of Candida auris have changed the epidemiological landscape of candidaemia worldwide.AimWe compared the epidemiological trends of candidaemia in a Greek tertiary academic hospital before (2009-2018) and during the early COVID-19 (2020-2021) and late COVID-19/early post-pandemic (2022-2023) era.MethodsIncidence rates, species distribution, antifungal susceptibility profile and antifungal consumption were recorded, and one-way ANOVA or Fisher's exact test performed. Species were identified by MALDI-ToF MS, and in vitro susceptibility determined with CLSI M27-Ed4 for C. auris and the EUCAST-E.DEF 7.3.2 for other Candida spp.ResultsIn total, 370 candidaemia episodes were recorded during the COVID-19 pandemic. Infection incidence (2.0 episodes/10,000 hospital bed days before, 3.9 during the early and 5.1 during the late COVID-19 era, p < 0.0001), C. auris (0%, 9% and 33%, p < 0.0001) and fluconazole-resistant C. parapsilosis species complex (SC) (20%, 24% and 33%, p = 0.06) infections increased over time, with the latter not associated with increase in fluconazole/voriconazole consumption. A significant increase over time was observed in fluconazole-resistant isolates regardless of species (8%, 17% and 41%, p < 0.0001). Resistance to amphotericin B or echinocandins was not recorded, with the exception of a single pan-echinocandin-resistant C. auris strain.ConclusionCandidaemia incidence nearly tripled during the COVID-19 era, with C. auris among the major causative agents and increasing fluconazole resistance in C. parapsilosis SC. Almost half of Candida isolates were fluconazole-resistant, underscoring the need for increased awareness and strict implementation of infection control measures.


Asunto(s)
Antifúngicos , COVID-19 , Candidemia , Farmacorresistencia Fúngica , Fluconazol , Pruebas de Sensibilidad Microbiana , SARS-CoV-2 , Centros de Atención Terciaria , Humanos , Candidemia/epidemiología , Candidemia/tratamiento farmacológico , Candidemia/microbiología , Grecia/epidemiología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , COVID-19/epidemiología , Centros de Atención Terciaria/estadística & datos numéricos , Fluconazol/farmacología , Fluconazol/uso terapéutico , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/aislamiento & purificación , Incidencia , Candida auris/efectos de los fármacos , Candida/efectos de los fármacos , Candida/aislamiento & purificación , Adulto , Masculino , Femenino , Persona de Mediana Edad , Anciano , Pandemias , Candidiasis/epidemiología , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología
16.
Front Cell Infect Microbiol ; 14: 1397724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966251

RESUMEN

Cryptococcus neoformans is at the top of the list of "most wanted" human pathogens. Only three classes of antifungal drugs are available for the treatment of cryptococcosis. Studies on antifungal resistance mechanisms are limited to the investigation of how a particular antifungal drug induces resistance to a particular drug, and the impact of stresses other than antifungals on the development of antifungal resistance and even cross-resistance is largely unexplored. The endoplasmic reticulum (ER) is a ubiquitous subcellular organelle of eukaryotic cells. Brefeldin A (BFA) is a widely used chemical inducer of ER stress. Here, we found that both weak and strong selection by BFA caused aneuploidy formation in C. neoformans, mainly disomy of chromosome 1, chromosome 3, and chromosome 7. Disomy of chromosome 1 conferred cross-resistance to two classes of antifungal drugs: fluconazole and 5-flucytosine, as well as hypersensitivity to amphotericin B. However, drug resistance was unstable, due to the intrinsic instability of aneuploidy. We found overexpression of AFR1 on Chr1 and GEA2 on Chr3 phenocopied BFA resistance conferred by chromosome disomy. Overexpression of AFR1 also caused resistance to fluconazole and hypersensitivity to amphotericin B. Furthermore, a strain with a deletion of AFR1 failed to form chromosome 1 disomy upon BFA treatment. Transcriptome analysis indicated that chromosome 1 disomy simultaneously upregulated AFR1, ERG11, and other efflux and ERG genes. Thus, we posit that BFA has the potential to drive the rapid development of drug resistance and even cross-resistance in C. neoformans, with genome plasticity as the accomplice.


Asunto(s)
Aneuploidia , Antifúngicos , Brefeldino A , Cryptococcus neoformans , Farmacorresistencia Fúngica , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/genética , Brefeldino A/farmacología , Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Anfotericina B/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pruebas de Sensibilidad Microbiana , Flucitosina/farmacología , Humanos , Estrés del Retículo Endoplásmico/efectos de los fármacos
17.
Mycopathologia ; 189(4): 65, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990436

RESUMEN

Candida auris is an emerging multi-drug resistant yeast that can cause life-threatening infections. A recent report clarified the ability of C. auris to form a biofilm with enhanced drug resistance properties in the host skin's deep layers. The formed biofilm may initiate further bloodstream spread and immune escape. Therefore, we propose that secreted chemicals from the biofilm may facilitate fungal pathogenesis. In response to this interaction, the host skin may develop potential defensive mechanisms. Comparative transcriptomics was performed on the host dermal cells in response to indirect interaction with C. auris biofilm through Transwell inserts compared to planktonic cells. Furthermore, the effect of antifungals including caspofungin and fluconazole was studied. The obtained data showed that the dermal cells exhibited different transcriptional responses. Kyoto Encyclopedia of Genes and Genomes and Reactome analyses identified potential defensive responses employed by the dermal cells and potential toxicity induced by C. auris. Additionally, our data indicated that the dominating toxic effect was mediated by ferroptosis; which was validated by qRT-PCR, cytotoxicity assay, and flow cytometry. On the other hand, the viability of C. auris biofilm was enhanced and accompanied by upregulation of MDR1, and KRE6 upon interaction with dermal cells; both genes play significant roles in drug resistance and biofilm maturation, respectively. This study for the first-time shed light on the dominating defensive responses of human dermal cells, microbe colonization site, to C. auris biofilm and its toxic effects. Further, it demonstrates how C. auris biofilm responds to the defensive mechanisms developed by the human dermal cells.


Asunto(s)
Antifúngicos , Biopelículas , Candida auris , Ferroptosis , Perfilación de la Expresión Génica , Humanos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida auris/genética , Candida auris/efectos de los fármacos , Antifúngicos/farmacología , Ferroptosis/efectos de los fármacos , Fluconazol/farmacología , Caspofungina/farmacología , Piel/microbiología , Interacciones Huésped-Patógeno
18.
Microbiol Spectr ; 12(7): e0056424, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38864624

RESUMEN

In recent years, the incidence and drug resistance of Candida parapsilosis have increased. Our study aimed to determine the antifungal sensitivity of C. parapsilosis and the clinical and demographic characteristics of children with candidemia. Two hundred pediatric patients with C. parapsilosis candidemia were included in the study between 1 January 2010 and 1 August 2023. Clinical samples were evaluated on a BACTEC-FX-40 automatic blood culture device (Becton Dickinson, USA). Yeast isolates were identified to the species level via identification cards (YST) using the VITEK 2 Compact (bioMeriéux, France) system. Antifungal susceptibility was performed using antifungal cell cards (AST-YST01). Approval for the study was received from the "University Faculty of Medicine" Hospital Clinical Research Ethics Committee. Non-catheter candidemia was detected in 127 (63.5%) patients, and catheter-related candidemia was detected in 73 (36.5%) patients. It was observed that the patients' history of malignancy, mechanical ventilation, urinary catheter, nasogastric tube, and intensive care unit stay was associated with C. parapsilosis mortality. The mortality rate from candidemia was 9.5%. The most frequently preferred antifungal agents were amphotericin B and fluconazole. The fluconazole drug resistance rate was found to be 6%, and the amphotericin B drug resistance rate was 4%. Because C. parapsilosis candidemia mortality rates can be high depending on risk factors and clinical characteristics, it is important to initiate appropriate and timely antifungal therapy. We think that our study can provide important information about the clinical profiles, distributions, susceptibility profiles, and control of antifungal resistance of C. parapsilosis isolates. IMPORTANCE: It has been observed that the frequency and antifungal resistance of Candida parapsilosis have increased recently. In our study, we aimed to determine the antifungal sensitivity of C. parapsilosis and the clinical and demographic characteristics of children with candidemia. It was observed that the patients' history of malignancy, mechanical ventilation, urinary catheter, nasogastric tube, and intensive care stay was associated with C. parapsilosis mortality. The mortality rate from candidemia was 9.5%. The most frequently preferred antifungal agents were amphotericin B and fluconazole. The fluconazole drug resistance rate was found to be 6%, and the amphotericin B drug resistance rate was 4%. Because C. parapsilosis candidemia mortality rates can be high depending on risk factors and clinical characteristics, it is important to initiate appropriate and timely antifungal therapy.


Asunto(s)
Antifúngicos , Candida parapsilosis , Candidemia , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana , Centros de Atención Terciaria , Humanos , Candidemia/microbiología , Candidemia/tratamiento farmacológico , Candidemia/mortalidad , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Masculino , Femenino , Turquía/epidemiología , Niño , Preescolar , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/aislamiento & purificación , Lactante , Adolescente , Fluconazol/uso terapéutico , Fluconazol/farmacología , Anfotericina B/uso terapéutico , Anfotericina B/farmacología , Recién Nacido , Candida/efectos de los fármacos , Candida/aislamiento & purificación , Candida/clasificación
19.
Am J Trop Med Hyg ; 111(1): 48-50, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38834082

RESUMEN

Infections caused by free-living amoebae pose a significant public health threat owing to growing populations of immunocompromised hosts combined with diagnostic delays, treatment difficulties, and high case fatality rates. Nasopharyngeal infections caused by Acanthamoeba are rare and the optimal treatment is not well established. We report a case of Acanthamoeba rhinosinusitis in a patient with chronic lymphocytic leukemia who presented with headaches and chronic rhinosinusitis refractory to multiple courses of antibiotics. A diagnosis of Acanthamoeba rhinosinusitis was established through broad-range polymerase chain reaction testing on sinus tissue. The patient had a favorable response to treatment, which included surgical debridement, cessation of immunosuppressants, and a three-drug regimen consisting of miltefosine, fluconazole, and sulfadiazine.


Asunto(s)
Acanthamoeba , Amebiasis , Leucemia Linfocítica Crónica de Células B , Rinitis , Sinusitis , Humanos , Leucemia Linfocítica Crónica de Células B/complicaciones , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Sinusitis/tratamiento farmacológico , Sinusitis/parasitología , Sinusitis/diagnóstico , Acanthamoeba/aislamiento & purificación , Acanthamoeba/genética , Rinitis/tratamiento farmacológico , Rinitis/diagnóstico , Rinitis/parasitología , Amebiasis/tratamiento farmacológico , Amebiasis/diagnóstico , Masculino , Huésped Inmunocomprometido , Persona de Mediana Edad , Fluconazol/uso terapéutico , Anciano , Antiprotozoarios/uso terapéutico , Rinosinusitis , Fosforilcolina/análogos & derivados
20.
J Antimicrob Chemother ; 79(8): 1877-1884, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38831614

RESUMEN

BACKGROUND: Candidaemia is associated with poor outcomes including high mortality rates. Controversy remains regarding whether fluconazole or an echinocandin is the optimal choice for initial candidaemia treatment, particularly among high-risk patients such as the immunocompromised or critically ill. OBJECTIVES: To understand optimal initial treatment of candidaemia. METHODS: We conducted a retrospective study of immunocompromised or ICU adult patients with candidaemia from 2010 to 2014. Patients who received ≥3 consecutive days of initial treatment with fluconazole or micafungin were included. The primary outcome was complete response at day 14, defined as clinical improvement and blood culture sterilization. Secondary outcomes included microbiological and clinical success, survival and recurrent candidaemia. RESULTS: A total of 197 patients were included; 76 received fluconazole and 121 received micafungin. There was no difference in complete response between the fluconazole and micafungin groups (ICU: 38% versus 40%, P = 0.87; immunocompromised: 57% versus 59%, P = 0.80). Secondary outcomes including survival were also similar. In multivariable analysis, among ICU patients, Pitt bacteraemia score < 4 (P = 0.002) and time to antifungal (P = 0.037) were associated with meeting the primary outcome; white blood cell count > 11 cells × 103/µL on day 0 (P < 0.001) and Candida isolated from a non-blood site (P = 0.025) were associated with not meeting the primary outcome. Among immunocompromised patients, white blood cells > 11 × 103/µL (P = 0.003) and Candida isolated from a non-blood site (P = 0.026) were associated with not meeting the primary outcome. CONCLUSIONS: These data suggest that among ICU or immunocompromised patients, severity of illness rather than initial antifungal choice drove clinical outcomes.


Asunto(s)
Antifúngicos , Candidemia , Enfermedad Crítica , Equinocandinas , Fluconazol , Huésped Inmunocomprometido , Micafungina , Humanos , Micafungina/uso terapéutico , Micafungina/administración & dosificación , Antifúngicos/uso terapéutico , Masculino , Estudios Retrospectivos , Femenino , Persona de Mediana Edad , Resultado del Tratamiento , Candidemia/tratamiento farmacológico , Candidemia/mortalidad , Anciano , Fluconazol/uso terapéutico , Fluconazol/administración & dosificación , Equinocandinas/uso terapéutico , Equinocandinas/administración & dosificación , Adulto , Lipopéptidos/uso terapéutico , Lipopéptidos/administración & dosificación , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA