Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.052
Filtrar
1.
PLoS One ; 19(7): e0304387, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968252

RESUMEN

Lindane is a broad-spectrum insecticide widely used on fruits, vegetables, crops, livestock and on animal premises to control the insects and pests. The extensive use of pesticides and their residues in the soil and water typically join the food chain and thus accumulate in the body tissues of human and animals causing severe health effects. The study was designed to determine the toxicity effects of sub-lethal concentrations of lindane on hemato-biochemical profile and histo-pathological changes in Rohu (Labeo rohita). A significant increase in the absolute (p<0.05) and relative (p<0.05) weights was observed along with severe histo-pathological alterations in liver, kidneys, gills, heart and brain at 30µg/L and 45µg/L concentration of lindane. A significant (p<0.05) decrease in RBCs count, PCV and Hb concentration while a significant (p<0.05) increased leukocytes were observed by 30µg/L and 45µg/L concentrations of lindane at 45 and 60 days of the experiment. Serum total protein and albumin were significantly (p<0.05) decreased while hepatic and renal enzymes were significantly (p<0.05) increased due to 30µg/L and 45µg/L concentrations of lindane at days-45 and 60 of experiment compared to control group. The observations of thin blood smear indicated significantly increased number of erythrocytes having nuclear abnormalities in the fish exposed at 30µg/L and 45µg/L concentrations of lindane. ROS and TBARS were found to be significantly increased while CAT, SOD, POD and GSH were significantly decreased with an increase in the concentration and exposure time of lindane. The results showed that lindane causes oxidative stress and severe hematological, serum biochemical and histo-pathological alterations in the fish even at sub-lethal concentrations.


Asunto(s)
Cyprinidae , Hexaclorociclohexano , Insecticidas , Riñón , Hígado , Animales , Hexaclorociclohexano/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Insecticidas/toxicidad , Cyprinidae/metabolismo , Branquias/efectos de los fármacos , Branquias/patología , Branquias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
2.
Environ Monit Assess ; 196(7): 626, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884864

RESUMEN

This study aimed to isolate and identify pathogenic bacteria in the intestinal tract, skin, and muscles of Sciades herzbergii; detect histopathological changes in the gill and liver; and use these biomarkers for the assessment of potential risks to human health. Fish were sampled during the rainy and dry seasons at two points in São Marcos Bay, Maranhão, Brazil: Ilha dos Caranguejos (IC) and Porto Grande (PG). Isolation and quantification were carried out using COLItest®. Colonies were subjected to identification and phenotypic investigation of antimicrobial resistance using Vitek®. Gill and liver samples were subjected to routine histological examination. The results indicated the presence of Klebsiella pneumoniae and Escherichia coli, the latter of which showed phenotypic resistance to norfloxacin and gentamicin. Fish caught at PG exhibited more extensive gill and liver damage than fish caught at IC. The findings suggest that histological changes in target organs of S. herzbergii may be influenced by infection with pathogenic bacteria.


Asunto(s)
Monitoreo del Ambiente , Estuarios , Branquias , Animales , Brasil , Branquias/microbiología , Branquias/patología , Humanos , Biomarcadores , Hígado/patología , Peces/microbiología , Escherichia coli/aislamiento & purificación , Klebsiella pneumoniae/aislamiento & purificación
3.
BMC Vet Res ; 20(1): 262, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890656

RESUMEN

BACKGROUND: In recent years, anthropogenic activities have released heavy metals and polluted the aquatic environment. This study investigated the ability of the silica-stabilized magnetite (Si-M) nanocomposite materials to dispose of lead nitrate (Pb(NO3)2) toxicity in Nile tilapia and African catfish. RESULTS: Preliminary toxicity tests were conducted and determined the median lethal concentration (LC50) of lead nitrate (Pb(NO3)2) to Nile tilapia and African catfish to be 5 mg/l. The sublethal concentration, equivalent to 1/20 of the 96-hour LC50 Pb(NO3)2, was selected for our experiment. Fish of each species were divided into four duplicated groups. The first group served as the control negative group, while the second group (Pb group) was exposed to 0.25 mg/l Pb(NO3)2 (1/20 of the 96-hour LC50). The third group (Si-MNPs) was exposed to silica-stabilized magnetite nanoparticles at a concentration of 1 mg/l, and the fourth group (Pb + Si-MNPs) was exposed simultaneously to Pb(NO3)2 and Si-MNPs at the same concentrations as the second and third groups. Throughout the experimental period, no mortalities or abnormal clinical observations were recorded in any of the treated groups, except for melanosis and abnormal nervous behavior observed in some fish in the Pb group. After three weeks of sublethal exposure, we analyzed hepatorenal indices, oxidative stress parameters, and genotoxicity. Values of alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), urea, and creatinine were significantly higher in the Pb-intoxicated groups compared to the control and Pb + Si-MNPs groups in both fish species. Oxidative stress parameters showed a significant decrease in reduced glutathione (GSH) concentration, along with a significant increase in malondialdehyde (MDA) and protein carbonyl content (PCC) concentrations, as well as DNA fragmentation percentage in the Pb group. However, these values were nearly restored to control levels in the Pb + Si-MNPs groups. High lead accumulation was observed in the liver and gills of the Pb group, with the least accumulation in the muscles of tilapia and catfish in the Pb + Si-MNPs group. Histopathological analysis of tissue samples from Pb-exposed groups of tilapia and catfish revealed brain vacuolation, gill fusion, hyperplasia, and marked hepatocellular and renal necrosis, contrasting with Pb + Si-MNP group, which appeared to have an apparently normal tissue structure. CONCLUSIONS: Our results demonstrate that Si-MNPs are safe and effective aqueous additives in reducing the toxic effects of Pb (NO3)2 on fish tissue through the lead-chelating ability of Si-MNPs in water before being absorbed by fish.


Asunto(s)
Bagres , Cíclidos , Plomo , Hígado , Nitratos , Estrés Oxidativo , Dióxido de Silicio , Contaminantes Químicos del Agua , Animales , Plomo/toxicidad , Estrés Oxidativo/efectos de los fármacos , Dióxido de Silicio/química , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Contaminantes Químicos del Agua/toxicidad , Nanocompuestos/química , Nanocompuestos/toxicidad , Quelantes/farmacología , Riñón/efectos de los fármacos , Riñón/patología , Bioacumulación , Branquias/efectos de los fármacos , Branquias/patología , Daño del ADN/efectos de los fármacos
4.
Environ Sci Pollut Res Int ; 31(28): 41069-41083, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842779

RESUMEN

Triclosan (TCS), an antimicrobial additive in various personal and health care products, has been widely detected in aquatic environment around the world. The present study investigated the impacts of TCS in the gills of the fish, Cyprinus carpio employing histopathological, biochemical, molecular docking and simulation analysis. The 96 h LC50 value of TCS in C. carpio was found to be 0.968 mg/L. Fish were exposed to 1/1000th (1 µg/L), 1/100th (10 µg/L), and 1/10th (100 µg/L) of 96 h LC50 value for a period of 28 days. The histopathological alterations observed in the gills were hypertrophy, hyperplasia, edematous swellings, and fusion of secondary lamellae in TCS exposed groups. The severity of these alterations increased with both the concentration as well as the duration of exposure. The present study revealed that the activity of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase, glutathione peroxidase, and reduced glutathione content decreased significantly (p < 0.05) in both concentration and duration dependent manner. However, a significant (p < 0.05) increase in the activity of the metabolic enzymes such as acid phosphatase and alkaline phosphatase was observed in all three exposure concentrations of TCS from 7 to 28 days. The activity of acetylcholinesterase declined significantly (p < 0.05) from 7 to 28 days whereas the content of acetylcholine increased significantly at the end of 28 day. The experimental results were further confirmed by molecular docking and simulation analysis that showed strong binding of TCS with acetylcholinesterase enzyme. The study revealed that long-term exposure to sublethal concentrations of TCS can lead to severe physiological and histopathological alterations in the fish.


Asunto(s)
Acetilcolinesterasa , Carpas , Branquias , Simulación del Acoplamiento Molecular , Triclosán , Animales , Triclosán/toxicidad , Branquias/efectos de los fármacos , Branquias/patología , Acetilcolinesterasa/metabolismo , Contaminantes Químicos del Agua/toxicidad , Glutatión Transferasa/metabolismo
5.
Vet Med Sci ; 10(4): e1494, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38853588

RESUMEN

BACKGROUND: Heavy metals are one of the most important environmental pollutants in marine coastal ecosystems. Cadmium is a heavy metal that enters to marine environments via industrial wastes and oil production activities. OBJECTIVES: This study were done to determine the toxicity of cadmium to Litopenaeus vannamei and to evaluate the histological changes in gill tissues after exposure to sublethal concentrations of cadmium at different salinities. METHODS: For this reason, toxicity test was done to determine the lethal concentration (LC50) of cadmium for whiteleg shrimp. According to the calculated LC50 amount, sublethal doses of cadmium were used to determine its histological effects in different salinity during 2 weeks exposing period. RESULTS: LC50 of cadmium for 96 h for whiteleg shrimp was 6.56 mg/L. Histological alterations in the gill were observed in L. vannamei after 14 days exposure to different concentrations of cadmium and salinity. Histopathological index was increased in a dose-dependent manner. CONCLUSION: Our findings showed that doses lower than 2 mg/L have repairable effects on gill structure, but the concentration of 2 mg/L cadmium leaves irreparable and destructive effects on the gill tissue.


Asunto(s)
Cadmio , Branquias , Penaeidae , Salinidad , Contaminantes Químicos del Agua , Animales , Penaeidae/efectos de los fármacos , Branquias/efectos de los fármacos , Branquias/patología , Cadmio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Dosificación Letal Mediana , Relación Dosis-Respuesta a Droga
6.
PLoS One ; 19(6): e0303702, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38833454

RESUMEN

Nile tilapia (Oreochromis niloticus) is valued in aquaculture because of its quick development and ability to thrive in various environments. Myxosporeans are among the fish parasites that affect fish productivity, as they impact fish growth and reproduction, resulting in large fish deaths in farms and hatcheries. This study has been focused on morpho-molecular identification for the myxosporean parasites infecting Nile tilapia from three governorates in Egypt and assessment of gene expression of different cytokines (Interleukin-1ßeta (IL-1ß), major histocompatibility complex class II (MHC-II), and clusters of differentiation 4 (CD-4) and 8 (CD-8)) in tissues. Additionally, this work aimed to correlate the developed histopathological alterations and inflammatory reactions in gills with immunohistochemical expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α). Finally, the infected fish's cortisol levels and blood glucose were assessed. Results of BLAST sequence analysis of the 18S rRNA for the collected protozoans confirmed Myxobolus agolus, M. brachysporus, M. tilapiae, and Henneguya species. The molecular characterization of the immunological status of gills revealed marked upregulation of different inflammatory cytokines in the gills of infected fish. There was a significantly increased serum cortisol and glucose level in infected fish compared with control, non-infected ones. Severe histopathological alterations were observed in the infected fish gills, associated with increased expression of iNOS and TNF-α and related to myxosporean infection. The present study provides new insights into oxidative stress biomarkers in Nile tilapia infected with Myxosporeans and elucidates the gill's immune status changes as a portal of entry for protozoa that contribute to tissue damage.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Branquias , Myxozoa , Enfermedades Parasitarias en Animales , Animales , Branquias/parasitología , Branquias/patología , Branquias/inmunología , Cíclidos/parasitología , Cíclidos/inmunología , Cíclidos/genética , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/inmunología , Enfermedades Parasitarias en Animales/parasitología , Enfermedades Parasitarias en Animales/inmunología , Enfermedades Parasitarias en Animales/patología , Myxozoa/fisiología , Biomarcadores , Inmunohistoquímica , Citocinas/metabolismo , Egipto , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética
7.
PLoS One ; 19(6): e0304112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38900829

RESUMEN

The development and application of functional feed ingredients represents a great opportunity to advance fish growth and health, boost the immune system, and induce physiological benefits beyond those provided by traditional feeds. In the present study, we looked at the feasibility of in vitro methods for screening the qualities of functional feed ingredients using the fish cell line RTgill-W1, which has never been used in fish nutrition, and the culture of Paramoeba perurans. Five functional feed ingredients (arginine, ß-glucan, vitamin C, and two phytogenic feed additives) were selected to investigate their effects on cell viability and reactive oxygen species production. Three of the selected ingredients (arginine and two phytogenic feed additives) were additionally tested to assess their potential amoebicidal activity. As these functional ingredients are the core of a commercially available feed (Protec Gill, Skretting AS), their beneficial effects were further assessed in a field trial in fish affected by complex gill disease. Here, the analyzed parameters included the evaluation of macroscopic and histopathological gill conditions, pathogen detections, and analyses of plasma parameters. RTgill-W1 cell line assays were a good tool for screening functional ingredients and provided information about the optimal ingredient concentration ranges, which can be helpful for adjusting the concentrations in future feed diets. Through the culture of P. perurans, the tested ingredients showed a clear amoebicidal activity, suggesting that their inclusions in dietary supplements could be a viable way to prevent microbial infections. A three-week period of feeding Protec Gill slowed the disease progression, by reducing the pathogen load and significantly improving gill tissue conditions, as revealed by histological evaluation. The use of diets containing selected functional ingredients may be a feasible strategy for preventing or mitigating the increasingly common gill diseases, particularly in cases of complex gill disease, as documented in this study.


Asunto(s)
Alimentación Animal , Enfermedades de los Peces , Branquias , Salmo salar , Animales , Alimentación Animal/análisis , Enfermedades de los Peces/prevención & control , Branquias/patología , Branquias/parasitología , Branquias/efectos de los fármacos , Línea Celular , beta-Glucanos/farmacología , Arginina/farmacología , Ácido Ascórbico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Suplementos Dietéticos , Amebiasis/parasitología , Supervivencia Celular/efectos de los fármacos
8.
Ecotoxicol Environ Saf ; 280: 116587, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878336

RESUMEN

Early cyanobacterial blooms studies observed that exposure to blue-green algae led to fish gills impairment. The objective of this work was to evaluate the toxic mechanisms of exudates of Microcystis aeruginosa (MaE) on fish gills. In this study, the toxic mechanism of MaE (2×106 cells/mL) and one of its main components phytosphingosine (PHS) with two concentrations 2.9 ng/mL and 145 ng/mL were conducted by integrating histopathology, biochemical biomarkers, and transcriptomics techniques in Sinocyclocheilus grahami (S. grahami) for 96 h exposure. Damaged gill tissue with epithelial hyperplasia and hypertrophy, remarkable Na+/K+-ATPase (NKA) enzyme activity, disrupted the redox homeostats including lipid peroxidation and inflammatory responses were observed in the fish of MaE exposure group. Compare to MaE exposure, two concentrations of PHS exposure appeared to be a trend of lower degree of tissue damage, NKA activity and oxidative stress, but induced obviously lipid metabolism disorder with higher triglycerides, total cholesterol and total bile acid, which might be responsible for inflammation responses in fish gill. By transcriptome analysis, MaE exposure were primarily enriched in pathways related to gill function and immune response. PHS exposure, with higher number of differentially expressed genes (DEGs), were enriched in Toll-like receptor (TLR), Mitogen-Activated Protein Kinase (MAPK) and NOD-like receptor protein 3 (NLRP3) pathways. We concluded that MaE and PHS were induced the inflammatory responses, with oxidative stress-induced inflammation for MaE exposure but lipid metabolism disorder-induced inflammation for PHS exposure. The present study provided two toxin-induced gill inflammation response pathways under cyanobacterial blooms, which could be a scientific basis for the ecological and health risk assessment in the aquatic environment.


Asunto(s)
Branquias , Microcystis , Estrés Oxidativo , Animales , Branquias/efectos de los fármacos , Branquias/patología , Estrés Oxidativo/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/patología , Metabolismo de los Lípidos/efectos de los fármacos
9.
Chemosphere ; 360: 142387, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38801905

RESUMEN

This study was designed to investigate the toxic effects of two frequently used commercial insecticides containing endosulfan and indoxacarb on a freshwater amphipod Gammarus kischineffensis. In this context, the 24, 48, 72 and 96 h LC50 values of these pesticides were determined for G. kischineffensis. Then the histopathological effects of these pesticides on the gill tissues of this species were evaluated. At the end of the study, the 96 h LC50 values of commercial-grade endosulfan and indoxacarb for G. kischineffensis were determined as 1.861 µg L-1 and 20.212 mg L-1, respectively. Histopathologically, the most common histopathological alterations in individuals exposed to sublethal concentrations of commercial-grade endosulfan and indoxacarb were pillar cell hypertrophy resulting in atrophy of the hemocoelic space and hemocytic infiltration. Considering these results, it can be said that commercial-grade endosulfan is extremely and indoxacarb is slightly toxic to G. kischineffensis.


Asunto(s)
Anfípodos , Endosulfano , Insecticidas , Oxazinas , Contaminantes Químicos del Agua , Animales , Anfípodos/efectos de los fármacos , Endosulfano/toxicidad , Insecticidas/toxicidad , Oxazinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Branquias/efectos de los fármacos , Branquias/patología , Dosificación Letal Mediana
10.
Vet Parasitol ; 329: 110215, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788313

RESUMEN

Monogenean trematodes, particularly those belonging to the Diplectanidae family, are significant metazoan parasites with substantial implications for aquaculture expansion. This study, investigatied the occurrence, prevalence, and pathological impact of Diplectanum spp. in European seabass (Dicentrarchus labrax) across three distinct Egyptian fish farms. During 2021-2022, we sampled 1800 European seabass (Dicentrarchus labrax) from three Egyptian fish farms (600 fish per farm). Farms 1 and 2 used semi-intensive earthen pond systems, while Farm 3 utilized an intensive floating cage system. Employing Clinical, post-mortem, parasitological, and molecular examination technique. Pathological lesions were identified, including skin and gill discoloration, emaciation, and internal organ abnormalities. Seasonal prevalence exhibited significant variations between farms, with highest rates observed in spring and Farm 3 reached an overall peak prevalence of 84.67 %. Parasitological examination distinguished two Diplectanum species morphologically, while molecular techniques exhibited limited specificity. Histopathology unveiled damage to gill, liver, spleen, kidney, and intestine, attributed to Diplectanum haptors including inflammation and internal bleeding, potentially leading to secondary infections. Molecular identification via PCR targeting ITS and 28SrDNA genes, revealing similar band sizes for the two Diplectanum species, indicating limited intraspecific genetic diversity. The study emphasizes investigating parasitic infections' prevalence and impact in aquaculture, necessitating robust molecular techniques for species differentiation. This study underscores the importance of investigating the prevalence and impact of parasitic infections in aquaculture. It highlights the need for robust molecular techniques to differentiate species. By focusing on Diplectanum spp. infections in D. labrax, the study offers valuable insights into managing parasites in aquaculture effectively.


Asunto(s)
Acuicultura , Lubina , Enfermedades de los Peces , Trematodos , Infecciones por Trematodos , Animales , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/patología , Lubina/parasitología , Infecciones por Trematodos/veterinaria , Infecciones por Trematodos/epidemiología , Infecciones por Trematodos/parasitología , Prevalencia , Trematodos/clasificación , Trematodos/genética , Egipto/epidemiología , Branquias/parasitología , Branquias/patología
11.
Toxicon ; 243: 107739, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38704125

RESUMEN

The stingrays of the genus Himantura imbricata are present in all of the world's oceans, but the toxicity of their venoms has not yet been thoroughly characterized. The zebrafish as a toxicology model can be used for general toxicity testing of drugs and the investigation of toxicological mechanisms. The aim of this study was to evaluate the effect of crude venom from the stingray H. imbricata on the zebrafish Danio rerio. Juvenile zebrafish were injected with different concentrations of venom from H. imbricata via subcutaneous injections. The venom's effects were established via histological examination and hemolytic activity in zebrafish. The histopathological analysis revealed significant tissue damage in the organs of the zebrafish injected with venom, including liver necrosis and kidney degeneration. A blood examination revealed echinocytes, hemolysis, and nuclear abnormalities. Bodyweight estimations and histopathological attributes of the gills, heart, muscle, liver, intestine, eye, and brain were determined. The histological staining studies of the gills, liver, and intestine were measurably higher in the venom groups compared with the other two groups. Aggregately, the result shows that zebrafish may act as a valuable biomarker for alterations impelled by H. imbricata venom. The work delivers a useful model with substantial pharmacological potential for new drugs and a better comprehension of research on stingray venom.


Asunto(s)
Pez Cebra , Animales , Venenos de los Peces/toxicidad , Hemólisis/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Pruebas de Toxicidad , Branquias/efectos de los fármacos , Branquias/patología
12.
PLoS One ; 19(5): e0302691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709735

RESUMEN

Parabens are being used as preservatives due to their antifungal and antimicrobial effects. They are emerging as aquatic pollutants due to their excessive use in many products. The purpose of this study was to determine the toxic effect of ethyl paraben (C9H10O3) on the hematobiochemical, histological, oxidative, and anti-oxidant enzymatic and non-enzymatic activity; the study also evaluates the potential of ethyl paraben to cause genotoxicity in Rohu Labeo rohita. A number of 15 fish with an average weight of 35.45±1.34g were placed in each group and exposed to ethyl paraben for 21 days. Three different concentrations of ethyl paraben, i.e., T1 (2000µg/L), T2 (4000 µg/L), andT3 (6000 µg/L) on which fish were exposed as compared to the control T0 (0.00 µg/L). Blood was used for hematobiochemical and comet assay. Gills, kidneys, and liver were removed for histological alterations. The results showed a significant rise in all hemato-biochemical parameters such as RBCs, WBCs, PLT count, blood sugar, albumin, globulin, and cholesterol. An increase in aspartate aminotransferase (AST) and alanine transaminase (ALT) levels directed the hepatocytic damage. Histological alterations in the liver, gills and kidneys of fish were found. Ethylparaben induces oxidative stress by suppressing antioxidant enzyme activity such as SOD, GSH, CAT and POD. Based on the comet assay, DNA damage was also observed in blood cells, resulting in genotoxicity. Findings from the present study indicate that ethyl paraben induces hemato-biochemical alterations, tissue damage, oxidative stress, and genotoxicity.


Asunto(s)
Antioxidantes , Biomarcadores , Daño del ADN , Animales , Biomarcadores/metabolismo , Antioxidantes/metabolismo , Daño del ADN/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Branquias/efectos de los fármacos , Branquias/patología , Branquias/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Parabenos/toxicidad , Ensayo Cometa , Cyprinidae/metabolismo , Oxidantes/metabolismo , Oxidantes/toxicidad
13.
Fish Physiol Biochem ; 50(3): 1305-1314, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38630160

RESUMEN

In this study, the anaesthetic effects of fennel and anise essential oils were investigated on common carp. Fish (10 ± 0.45 g) were exposed to nine concentrations of essential oils (5, 10, 20, 50, 100, 200, 300, 400 and 500 mg L-1). Additionally, the histopathological effects on the fish tissues including gill, skin and hepatopancreas and physiological effects on some blood parameters (Na+, K+, Ca+2, Cl-, total plasma protein and glucose) of essential oils were investigated in carp. At the end of the experiment, fennel oil showed an anaesthetic effect at a concentration of 500 mg L-1 in carp (anaesthesia induction and recovery times were 308 and 472 s, respectively). Anise essential oil showed deep anaesthesia at a concentration of 100 mg L-1, but anaesthesia induction time was found to be very long (20 min). In addition, anise oil at concentrations above 100 mg L-1 caused 10% mortality in fish. Blood parameters except glucose level in both essential oils were unchanged during deep anaesthesia in carp. However, plasma glucose levels were found lower in fish anaesthetized with anise oil than control and fennel groups (P < 0.05). At the histopathological examination, no pathological findings were observed in any organ of fish in the fennel group. However, severe hyperemia and inflammatory cell infiltrations in gills, erosive lesions in the skin and slight inflammatory reactions in the skin were observed in the anise group. The present study demonstrated that fennel essential oil at 500 mg L-1 concentration can be used as an effective and safe anaesthetic in common carp, but anise essential oil is not suitable.


Asunto(s)
Anestésicos , Carpas , Foeniculum , Aceites Volátiles , Animales , Aceites Volátiles/farmacología , Foeniculum/química , Anestésicos/farmacología , Pimpinella/química , Branquias/efectos de los fármacos , Branquias/patología , Glucemia/análisis , Piel/efectos de los fármacos , Aceites de Plantas/farmacología , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/patología
14.
Sci Rep ; 14(1): 9401, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658643

RESUMEN

This study evaluated the impacts of sulfamethoxazole (SMX) on antioxidant, immune, histopathological dynamic changes, and gut microbiota of zebrafish. SMX was carried out five groups: 0 (C), 3 mg/L (T3), 6 mg/L (T6), 12 mg/L (T12), and 24 mg/L (T24), with 5 replicates per group for an 8-weeks chronic toxicity test. It was found that SMX is considered to have low toxicity to adult zebrafish. SMX with the concentration not higher than 24 mg/L has no obvious inhibitory effect on the growth of fish. Under different concentrations of SMX stress, oxidative damage and immune system disorder were caused to the liver and gill, with the 12 and 24 mg/L concentration being the most significant. At the same time, it also causes varying degrees of pathological changes in both intestinal and liver tissues. As the concentration of SMX increases, the composition and abundance of the gut microbiota in zebrafish significantly decrease.


Asunto(s)
Microbioma Gastrointestinal , Hígado , Sulfametoxazol , Contaminantes Químicos del Agua , Pez Cebra , Animales , Sulfametoxazol/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ecosistema , Branquias/efectos de los fármacos , Branquias/patología
15.
Artículo en Inglés | MEDLINE | ID: mdl-38688406

RESUMEN

Nanoplastics (NPs) are one of the most hazardous marine litters, having the potential to cause far-reaching impacts on the environment and humankind. The effect of NPs on fish health has been studied, but their impact on the subcellular organelles remains unexplored. The present investigation studied the possible implications of polystyrene-nanoplastics (PS-NPs) on the hematology, tissue organization, and endoplasmic reticulum (ER) stress-related proteins in Nile tilapia (Oreochromis niloticus). Fish were exposed to ∼100 nm PS-NPs at environmentally relevant (0.1 mg/L), and sublethal (1, 10 mg/L) concentrations for 14 days through water exposure. The growth performance and hematological parameters such as erythrocytes, hemoglobin, hematocrit, and leucocytes decreased, while thrombocytes increased with PS-NPs dose-dependently. The gills, liver, kidney, and heart tissues displayed increasing degrees of pathology with increased concentrations of PS-NPs. The gills showed severe epithelial hyperplasia and lamellar fusion. The liver had an abstruse cellular framework, membrane breakage, and vacuolation. While glomerular and tubular atrophy was the most prominent pathology in the kidney tissue, the heart displayed extensive myofibrillar loss and disorderly arranged cardiac cells. The ER-stress-related genes such as bip, atf6, ire1, xbp1, pkr, and apoptotic genes such as casp3a, and bax were over-expressed, while, the anti-apoptotic bcl2 was under-expressed with increasing concentrations of PS-NPs. Immunohistochemistry and blotting results of GRP78, CHOP, EIF2S, and ATF6 in gills, liver, kidney, and heart tissues affirmed the translation to ER stress proteins. The results revealed the sub-lethal adverse effects and the activation of the ER-stress pathway in fish with sub-chronic exposure to PS-NPs.


Asunto(s)
Cíclidos , Estrés del Retículo Endoplásmico , Proteínas de Peces , Poliestirenos , Animales , Cíclidos/metabolismo , Cíclidos/genética , Cíclidos/crecimiento & desarrollo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Poliestirenos/toxicidad , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Chaperón BiP del Retículo Endoplásmico , Contaminantes Químicos del Agua/toxicidad , Branquias/efectos de los fármacos , Branquias/metabolismo , Branquias/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Regulación de la Expresión Génica/efectos de los fármacos , Nanopartículas/toxicidad , Microplásticos/toxicidad
16.
Artículo en Inglés | MEDLINE | ID: mdl-38599346

RESUMEN

Aniline (C6H5NH2) is one of the hazardous aromatic amine where an amino group -NH2) is connected to phenyl ring (C6H5). Based on the evaluation of the 96-hour LC50 of aniline, two sublethal concentrations (4.19 mg/l and 8.39 mg/l) were selected for acute exposure tests in freshwater fish Channa punctatus. The liver, gills and kidney of fish being the principal sites of xenobiotic material accumulation, respiration, biotransformation, and excretion are the focus of the present study. Throughout the exposure time, the comet assay revealed increased tail length and tail DNA percentage indicating maximum damage to liver, gills and kidney of treated group after 96 h. After acute exposure, there was a significant (p ≤ 0.05) increase in the enzymatic activity of glutathione-S-transferase (GST) and acetylcholinesterase (AChE), whereas decline in superoxide dismutase (SOD) and catalase (CAT) activity was observed. Meanwhile, levels of malondialdehyde (MDA) increased over the exposure period for both concentrations. After 96 h of exposure, degree of tissue change (DTC) was evaluated in liver, gill and kidney of aniline exposed fish. Additionally, light microscopy revealed multiple abnormalities in liver, gills and kidney of all the treated groups. Significant changes were observed in the levels of biochemical markers viz., glucose, triglyceride, cholesterol, aspartate transaminase, alanine transaminase and urea following a 96-hour exposure to aniline. Studies using ATR-FTIR and transmission electron microscopy (TEM) revealed changes in biomolecules and structural abnormalities in several tissues of the aniline-exposed groups in comparison to the control group respectively.


Asunto(s)
Compuestos de Anilina , Branquias , Riñón , Hígado , Contaminantes Químicos del Agua , Animales , Branquias/efectos de los fármacos , Branquias/metabolismo , Branquias/patología , Branquias/ultraestructura , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Compuestos de Anilina/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Contaminantes Químicos del Agua/toxicidad , Peces/metabolismo , Estrés Oxidativo/efectos de los fármacos , Pruebas de Toxicidad Aguda , Agua Dulce , Channa punctatus
17.
Environ Sci Pollut Res Int ; 31(22): 31989-32002, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642230

RESUMEN

The present study aimed to analyse the integrated histopathological lesions (IHLs) of the gill, liver and intestine of Catla catla exposed to the different doses of UV-B radiation. Gill exhibited the lesions like hypertrophy, hyperplasia, vacuolation, fusion of the gill filaments, rupture in the gill lamellae, epithelial cell lifting and necrosis. The UV-B-exposed liver of Catla showed the lesions like the degeneration of nucleus, the disarrangement of hepatocytes, sinusoidal vacuolation, epitheliod histiocyst, hepatocellular adenoma, exocrine adenoma, cyst formation and diffused epithelial necrosis (DEN). UV-B-exposed intestine showed the lesions like the distortion of columnar epithelial cells (CECs), distortion in lamina propria (LP), disruption in brush border (BB), vacuolation in LP, the presence of submucosal mass (SM), the degeneration of nucleus, the presence of tactoid bodies, the presence of aschoff nodules and metatypical cell carcinoma. These histopathological alterations can be considered as the main blocking alterations of the growth and absorption as well as the final production of fish which can cause a serious loss in total yield to fish farmers which can interrupt the profitable economical production of fish.


Asunto(s)
Cyprinidae , Branquias , Intestinos , Hígado , Rayos Ultravioleta , Animales , Branquias/patología , Hígado/patología , Intestinos/patología
18.
Fish Physiol Biochem ; 50(3): 1171-1187, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38446317

RESUMEN

Hypoxia, a major issue in aquatic ecosystems, in special reference to climate change, and exacerbated by anthropogenic activities. It is causing slow growth, disease outbreaks, and mortality in finfish and shellfish. Therefore, adaptation to lowering oxygen levels through supplementation of herbs or their extracts in diets is imperative. In this study, hypoxia was simulated in controlled conditions with quercetin-enriched diets. Quercetin is a plant pigment (flavonol) possessing anti-oxidant property and is present in vegetables, leaves, seeds, pulses, and fruits. The experiment was conducted on rohu Labeo rohita, which is most widely cultured in India. There were four treatments including T1 (Normoxia: > 5 ppm dissolved oxygen; DO2), T2 (hypoxia: 3-4 ppm DO2), T3 (hypoxia + 50 mg quercetin/kg diet), and T4 (hypoxia + 100 mg quercetin/kg diet). The study was conducted for 30 days, and water quality was measured regularly. The results revealed that the hematological parameters were negatively affected. The tissue micro-architecture illustrated the impairment through degeneration of neurons in the brain, increased pigmentation as melanosis in the kidney, increased thickness of primary lamellae in the gills, and dilatations of sinusoids in the liver in hypoxia groups, while quercetin-enriched diets improved the hematological and histomorphological parameters. The results confirm the utility of hematological and histopathological tools as biomarkers and reflect the possible threats of hypoxia on fish. In conclusion, quercetin in diets appeared to show resistance towards chronic hypoxia by restoring the structure and functions of the vital organs towards normalcy and could be recommended as a potential ameliorative agent.


Asunto(s)
Cyprinidae , Quercetina , Animales , Quercetina/farmacología , Quercetina/administración & dosificación , Hipoxia/veterinaria , Suplementos Dietéticos , Dieta/veterinaria , Antioxidantes/farmacología , Alimentación Animal/análisis , Riñón/efectos de los fármacos , Riñón/patología , Branquias/efectos de los fármacos , Branquias/patología , Hígado/efectos de los fármacos , Hígado/patología , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/patología , Enfermedades de los Peces/inducido químicamente
19.
Sci Total Environ ; 926: 172019, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38547980

RESUMEN

The widespread application of herbicides raises concerns about their impact on non-target aquatic organisms. This study aimed to evaluate the toxicity of a commercially available herbicide formulation containing Bromoxynil+MCPA (2-Methyl-4-chlorophenoxyacetic acid) on Cirrhinus mrigala (economically significant fish). A total of 210 juvenile fish were subjected to a triplicate experimental setup, with 70 fish allocated to each replicate, exposed to seven different concentrations of herbicide: 0 mg/L, 0.133 mg/L, 0.266 mg/L, 0.4 mg/L, 0.5 mg/L, 0.66 mg/L, and 0.8 mg/L, respectively, for a duration of 96 h. The median lethal concentration (LC50) was determined to be 0.4 mg/L. Significant hematological alterations were observed, including decreases in RBC counts, hemoglobin, hematocrit, and lymphocyte counts, along with an increase in erythrocyte indices. Biochemical analysis revealed elevated levels of neutrophils, WBCs, bilirubin, urea, creatinine, ALT, AST, ALP, and glucose in treated groups. Morphological abnormalities in erythrocytes and histopathological changes in gills, liver, and kidneys were noted. Pathological alterations in gills, liver and kidneys including epithelial cell uplifting, lamellar fusion, hepatolysis, and renal tubule degeneration were observed. Oxidative stress biomarkers such as TBARS (Thiobarbituric Acid Reactive Substance), ROS (Reactive Oxygen Species), and POD (Peroxides) activity increased, while antioxidant enzymatic activities decreased as toxicant doses increased from low to high concentrations. The study reveals that Bromoxynil+MCPA significantly disrupts physiological and hematobiochemical parameters in Cirrhinus mrigala, which highlights the substantial aquatic risks. In conclusion, the herbicide formulation induced significant alterations in various fish biomarkers, emphasizing their pivotal role in assessing the environmental impact of toxicity. This multi-biomarker approach offers valuable insights regarding the toxicological effects, thereby contributing substantially to the comprehensive evaluation of environmental hazards.


Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético , Cyprinidae , Herbicidas , Contaminantes Químicos del Agua , Animales , Herbicidas/toxicidad , Ácido 2-Metil-4-clorofenoxiacético/toxicidad , Nitrilos , Biomarcadores , Hígado , Branquias/patología , Contaminantes Químicos del Agua/toxicidad
20.
J Fish Dis ; 47(6): e13933, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38400598

RESUMEN

Nodular gill disease (NGD) is an emerging condition associated with amoeba trophozoites in freshwater salmonid farms. However, unambiguous identification of the pathogens still must be achieved. This study aimed to identify the amoeba species involved in periodic NGD outbreaks in two rainbow trout (Oncorhynchus mykiss) farms in Northeastern Italy. During four episodes (February-April 2023), 88 fish were euthanized, and their gills were evaluated by macroscopic, microscopic and histopathological examination. The macroscopic and microscopic severity of the lesions and the degree of amoebae infestation were scored and statistically evaluated. One gill arch from each animal was put on non-nutrient agar (NNA) Petri dishes for amoeba isolation, cultivation and subsequent identification with SSU rDNA sequencing. Histopathology confirmed moderate to severe lesions consistent with NGD and mild to moderate amoeba infestation. The presence of amoebae was significantly correlated with lesion severity. Light microscopy of cultured amoebae strains and SSU rDNA analysis revealed the presence of a previously characterized amoeba Naegleria sp. strain GERK and several new strains: two strains from Hartmannelidae, three vannelid amoebae from the genus Ripella and cercozoan amoeba Rosculus. Despite the uncertainty in NGD etiopathogenesis and amoebae pathogenic role, identifying known and new amoebae leans towards a possible multi-aetiological origin.


Asunto(s)
Amebiasis , Enfermedades de los Peces , Branquias , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/parasitología , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/epidemiología , Italia , Amebiasis/veterinaria , Amebiasis/parasitología , Branquias/parasitología , Branquias/patología , Amoeba/genética , Amoeba/aislamiento & purificación , Amoeba/clasificación , Acuicultura , Amebozoos/genética , Amebozoos/aislamiento & purificación , Amebozoos/clasificación , Amebozoos/fisiología , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...