Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.711
Filtrar
1.
Neurosci Lett ; 837: 137919, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39089611

RESUMEN

The sympathetic nervous system is crucial for the regulation of visceral organ function. For instance, the activation of the sympathetic nervous system promotes glycogenolysis in the liver and modulates glucagon and insulin release from the pancreas, thereby raising blood glucose levels. A decrease in sympathetic nerve activity has the opposite effect. Although such acute effects of sympathetic activity changes have been studied, their long-term outcomes have not been previously examined. In this study, we removed the celiac/superior mesenteric ganglia, where sympathetic postganglionic neurons innervating pancreas and liver locate, and examined its effects on glucose homeostasis and islet size several weeks after surgery. Consistent with the reduction in gluconeogenesis, glucose tolerance improved in gangliectomized mice. However, contrary to our expectation that the inhibition of pancreatic function by sympathetic nerves would be relieved with gangliectomy, insulin or C-peptide release did not increase. Examining the size distribution of pancreatic islets, we identified that the gangliectomy led to a size reduction in large islets and a decrease in the proportion of α and ß cells within each islet, as analyzed by immunostaining for insulin and glucagon, respectively. These results indicate that the absence of sympathetic nerve activity reduces the size of the pancreatic islets within a few weeks to reinstate the homeostatic mechanism of blood glucose levels.


Asunto(s)
Ganglios Simpáticos , Glucagón , Islotes Pancreáticos , Animales , Islotes Pancreáticos/metabolismo , Ganglios Simpáticos/metabolismo , Glucagón/metabolismo , Masculino , Glucemia/metabolismo , Insulina/metabolismo , Ratones Endogámicos C57BL , Ratones , Tamaño de los Órganos , Prueba de Tolerancia a la Glucosa , Ganglionectomía/métodos
2.
Front Endocrinol (Lausanne) ; 15: 1419329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149119

RESUMEN

Background: The functional changes in alpha cells in patients with type 1 diabetes (T1D) with different residual beta cell functions remain poorly elucidated. The study aimed to investigate the relationship between glucagon secretion and C-peptide levels and to explore the relationship between glucagon response and glucose increment in respond to a secretagogue in a steamed bread meal tolerance test (BMTT) in T1D. Methods: The study enrolled 43 adult patients with T1D and 24 healthy control subjects. Patients with T1D who underwent BMTT were divided into two groups based on peak C-peptide levels: C peptide low (CPL; C-peptide < 200 pmol/L; n=14) and high (CPH; C peptide ≥ 200 pmol/L; n=29). Plasma glucose, C-peptide, glucagon levels at 0, 30, 60, 120, and 180 min were measured. The glucagon response to the BMTT was defined by areas under the curve (AUC) as early (AUC0-30), late (AUC30-180), or total (AUC0-180) glucagon. Results: Compared to healthy individuals, fasting plasma glucagon was lower and postprandial plasma glucagon level was increased in patients with T1D. Glucagon levels after BMTT between the CPL and CPH group showed significant group by time interaction. Peak glucagon and glucagon at 60-180 min, total and late glucagon response were higher in CPL than CPH group, while fasting glucagon and early glucagon response adjusted for glucose were comparable between CPL and CPH group. The higher late glucagon response and late glucagon response adjusted for glucose were associated with lower peak C-peptide in T1D. The higher late glucagon response and lower peak C-peptide were associated with the higher value of ▵glucose at 180 min. Conclusion: Stimulated C-peptide levels affect the paradoxical increase in postprandial glucagon secretion in patients with T1D, especially late glucagon response. The exaggerated postprandial glucagon secretion further stimulates the elevation of postprandial glucose in patients with T1D.


Asunto(s)
Glucemia , Péptido C , Diabetes Mellitus Tipo 1 , Glucagón , Periodo Posprandial , Humanos , Glucagón/sangre , Péptido C/sangre , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/metabolismo , Masculino , Femenino , Periodo Posprandial/fisiología , Adulto , Glucemia/metabolismo , Persona de Mediana Edad , Estudios de Casos y Controles , Adulto Joven
3.
Diabetes Obes Metab ; 26(9): 3897-3905, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38951936

RESUMEN

AIM: To perform a direct, double-blind, randomised, crossover comparison of subcutaneous and intravenous glucagon-like peptide-1 (GLP-1) in hyperglycaemic subjects with type 2 diabetes naïve to GLP-1-based therapy. MATERIALS AND METHODS: Ten fasted, hyperglycaemic subjects (1 female, age 63 ± 10 years [mean ± SD], glycated haemoglobin 73.5 ± 22.0 mmol/mol [8.9% ± 2.0%], both mean ± SD) received subcutaneous GLP-1 and intravenous saline, or intravenous GLP-1 and subcutaneous saline. Infusion rates were doubled every 120 min (1.2, 2.4, 4.8 and 9.6 pmol·kg-1·min-1 for subcutaneous, and 0.3, 0.6, 1.2 and 2.4 pmol·kg-1·min-1 for intravenous). Plasma glucose, total and intact GLP-1, insulin, C-peptide, glucagon and gastrointestinal symptoms were evaluated over 8 h. The results are presented as mean ± SEM. RESULTS: Plasma glucose decreased more with intravenous (by ~8.0 mmol/L [144 mg/dL]) than subcutaneous GLP-1 (by ~5.6 mmol/L [100 mg/dL]; p < 0.001). Plasma GLP-1 increased dose-dependently, but more with intravenous than subcutaneous for both total (∆max 154.2 ± 3.9 pmol/L vs. 85.1 ± 3.8 pmol/L; p < 0.001), and intact GLP-1 (∆max 44.2 ± 2.2 pmol/L vs. 12.8 ± 2.2 pmol/L; p < 0.001). Total and intact GLP-1 clearance was higher for subcutaneous than intravenous GLP-1 (p < 0.001 and p = 0.002, respectively). The increase in insulin secretion was greater, and glucagon was suppressed more with intravenous GLP-1 (p < 0.05 each). Gastrointestinal symptoms did not differ (p > 0.05 each). CONCLUSIONS: Subcutaneous GLP-1 administration is much less efficient than intravenous GLP-1 in lowering fasting plasma glucose, with less stimulation of insulin and suppression of glucagon, and much less bioavailability, even at fourfold higher infusion rates.


Asunto(s)
Glucemia , Estudios Cruzados , Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Hiperglucemia , Hipoglucemiantes , Humanos , Femenino , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Persona de Mediana Edad , Péptido 1 Similar al Glucagón/administración & dosificación , Masculino , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Método Doble Ciego , Anciano , Inyecciones Subcutáneas , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Infusiones Intravenosas , Hemoglobina Glucada/análisis , Hemoglobina Glucada/metabolismo , Glucagón/administración & dosificación , Glucagón/sangre , Péptido C/sangre
4.
Diabetes Obes Metab ; 26(9): 3926-3934, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38957925

RESUMEN

AIM: To evaluate insulin and glucagon sensitivity in Han Chinese women with and without gestational diabetes mellitus (GDM). METHODS: In total, 81 women with GDM and 81 age-matched healthy controls were evaluated with a 75 g oral glucose tolerance test (OGTT) at gestational weeks 24-28. Plasma glucose concentrations were measured at fasting and 1 h and 2 h post-OGTT. Fasting plasma insulin, glucagon and amino acids were also measured. Insulin and glucagon sensitivity were assessed by the homeostatic model assessment of insulin resistance (HOMA-IR) and glucagon-alanine index, respectively. RESULTS: As expected, plasma glucose concentrations were higher at fasting and 1 h and 2 h post-OGTT in GDM participants (p < .001 each). Both the HOMA-IR and the glucagon-alanine index were higher in GDM participants. There was a weak positive correlation between HOMA-IR and glucagon-alanine index (r = 0.24, p = .0024). Combining the HOMA-IR and the glucagon-alanine index yielded better capacity (area under the curve = 0.878) than either alone (area under the curve = 0.828 for HOMA-IR and 0.751 for glucagon-alanine index, respectively) in differentiating GDM from healthy participants. While the majority of GDM participants (64%) exhibited both reduced insulin and glucagon sensitivity, a third of them presented either reduced insulin (20%) or glucagon (14%) sensitivity alone. HOMA-IR and glucagon-alanine index correlated differentially with fasting glucose, triglycerides, low-density lipoprotein cholesterol, sum of amino acids and hepatic steatosis index. CONCLUSIONS: Impairments of both insulin and glucagon sensitivity occur frequently in Chinese women with GDM, which may, individually or together, drive metabolic derangements in GDM. These observations provide new insights into the pathophysiology of GDM and support the need to target insulin or glucagon resistance, or both, in the management of GDM.


Asunto(s)
Glucemia , Diabetes Gestacional , Glucagón , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina , Insulina , Humanos , Femenino , Diabetes Gestacional/sangre , Diabetes Gestacional/metabolismo , Embarazo , Glucagón/sangre , Adulto , Glucemia/metabolismo , Glucemia/análisis , Insulina/sangre , China/epidemiología , Pueblo Asiatico , Estudios de Casos y Controles , Ayuno/sangre , Alanina/sangre , Pueblos del Este de Asia
5.
Mol Metab ; 87: 101982, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38960129

RESUMEN

OBJECTIVE: Hepatic Ca2+ signaling has been identified as a crucial key factor in driving gluconeogenesis. The involvement of mitochondria in hormone-induced Ca2+ signaling and their contribution to metabolic activity remain, however, poorly understood. Moreover, the molecular mechanism governing the mitochondrial Ca2+ efflux signaling remains unresolved. This study investigates the role of the Na+/Ca2+ exchanger, NCLX, in modulating hepatic mitochondrial Ca2+ efflux, and examines its physiological significance in hormonal hepatic Ca2+ signaling, gluconeogenesis, and mitochondrial bioenergetics. METHODS: Primary mouse hepatocytes from both an AAV-mediated conditional hepatic-specific and a total mitochondrial Na+/Ca2+ exchanger, NCLX, knockout (KO) mouse models were employed for fluorescent monitoring of purinergic and glucagon/vasopressin-dependent mitochondrial and cytosolic hepatic Ca2+ responses in cultured hepatocytes. Isolated liver mitochondria and permeabilized primary hepatocytes were used to analyze the ion-dependence of Ca2+ efflux. Utilizing the conditional hepatic-specific NCLX KO model, the rate of gluconeogenesis was assessed by first monitoring glucose levels in fasted mice, and subsequently subjecting the mice to a pyruvate tolerance test while monitoring their blood glucose. Additionally, cultured primary hepatocytes from both genotypes were assessed in vitro for glucagon-dependent glucose production and cellular bioenergetics through glucose oxidase assay and Seahorse respirometry, respectively. RESULTS: Analysis of Ca2+ responses in isolated liver mitochondria and cultured primary hepatocytes from NCLX KO versus WT mice showed that NCLX serves as the principal mechanism for mitochondrial calcium extrusion in hepatocytes. We then determined the role of NCLX in glucagon and vasopressin-induced Ca2+ oscillations. Consistent with previous studies, glucagon and vasopressin triggered Ca2+ oscillations in WT hepatocytes, however, the deletion of NCLX resulted in selective elimination of mitochondrial, but not cytosolic, Ca2+ oscillations, underscoring NCLX's pivotal role in mitochondrial Ca2+ regulation. Subsequent in vivo investigation for hepatic NCLX role in gluconeogenesis revealed that, as opposed to WT mice which maintained normoglycemic blood glucose levels when fasted, conditional hepatic-specific NCLX KO mice exhibited a faster drop in glucose levels, becoming hypoglycemic. Furthermore, KO mice showed deficient conversion of pyruvate to glucose when challenged under fasting conditions. Concurrent in vitro assessments showed impaired glucagon-dependent glucose production and compromised bioenergetics in KO hepatocytes, thereby underscoring NCLX's significant contribution to hepatic glucose metabolism. CONCLUSIONS: The study findings demonstrate that NCLX acts as the primary Ca2+ efflux mechanism in hepatocytes. NCLX is indispensable for regulating hormone-induced mitochondrial Ca2+ oscillations, mitochondrial metabolism, and sustenance of hepatic gluconeogenesis.


Asunto(s)
Señalización del Calcio , Calcio , Glucagón , Gluconeogénesis , Hepatocitos , Ratones Noqueados , Intercambiador de Sodio-Calcio , Animales , Ratones , Hepatocitos/metabolismo , Calcio/metabolismo , Glucagón/metabolismo , Masculino , Intercambiador de Sodio-Calcio/metabolismo , Mitocondrias Hepáticas/metabolismo , Hígado/metabolismo , Vasopresinas/metabolismo , Células Cultivadas , Glucosa/metabolismo , Ratones Endogámicos C57BL
6.
Front Endocrinol (Lausanne) ; 15: 1368570, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027470

RESUMEN

Background: Fasting levels of glucagon are known to be elevated in youth and adults with type 2 diabetes mellitus (T2D). Children and adolescents with obesity were previously reported to show increasing fasting and post-glucose-challenge hyperglucagonemia across the spectrum of glucose tolerance, while no data are available in those with impaired fasting glucose (IFG). Materials and methods: Individuals from the Beta-JUDO study population (Uppsala and Salzburg 2010-2016) (n=101, age 13.3 ± 2.8, m/f =50/51) were included (90 with overweight or obesity, 11 with normal weight). Standardized OGTT were performed and plasma glucose, glucagon and insulin concentrations assessed at baseline, 5, 10, 15, 30, 60, 90 and 120 minutes. Patients were grouped according to their glycemic state in six groups with normal glucose metabolism (NGM) and normal weight (NG-NW), NGM with obesity or overweight (NG-O), impaired glucose tolerance (IGT), impaired fasting glucose (IFG), IGT+IFG and T2D, and in two groups with NGM and impaired glucose metabolism (IGM), for statistical analysis. Results and conclusion: Glucagon concentrations were elevated in young normoglycemic individuals with overweight or obesity (NG-O) compared to normoglycemic individuals with normal weight. Glucagon levels, fasting and dynamic, increased with progressing glycemic deterioration, except in IFG, where levels were comparable to those in NG-O. All glycemic groups showed an overall suppression of glucagon during OGTT. An initial increase of glucagon could be observed in T2D. In T2D, glucagon showed a strong direct linear correlation with plasma glucose levels during OGTT. Glucagon in adolescents, as in adults, may play a role in the disease progression of T2D.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Ayuno , Glucagón , Intolerancia a la Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Glucagón/sangre , Diabetes Mellitus Tipo 2/sangre , Adolescente , Masculino , Femenino , Intolerancia a la Glucosa/sangre , Niño , Ayuno/sangre , Glucemia/metabolismo , Glucemia/análisis , Obesidad Infantil/sangre , Obesidad Infantil/complicaciones , Insulina/sangre
7.
Endocrinology ; 165(8)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38970533

RESUMEN

Dietary carbohydrates raise blood glucose levels, and limiting carbohydrate intake improves glycemia in patients with type 2 diabetes. Low carbohydrate intake (< 25 g) allows the body to utilize fat as its primary fuel. As a consequence of increased fatty acid oxidation, the liver produces ketones to serve as an alternative energy source. ß-Hydroxybutyrate (ßHB) is the most abundant ketone. While ßHB has a wide range of functions outside of the pancreas, its direct effects on islet cell function remain understudied. We examined human islet secretory response to acute racemic ßHB treatment and observed increased insulin secretion at a low glucose concentration of 3 mM. Because ßHB is a chiral molecule, existing as both R and S forms, we further studied insulin and glucagon secretion following acute treatment with individual ßHB enantiomers in human and C57BL/6J mouse islets. We found that acute treatment with R-ßHB increased insulin secretion and decreased glucagon secretion at physiological glucose concentrations in both human and mouse islets. Proteomic analysis of human islets treated with R-ßHB over 72 hours showed altered abundance of proteins that may promote islet cell health and survival. Collectively, our data show that physiological concentrations of ßHB influence hormone secretion and signaling within pancreatic islets.


Asunto(s)
Ácido 3-Hidroxibutírico , Glucagón , Secreción de Insulina , Insulina , Islotes Pancreáticos , Ratones Endogámicos C57BL , Ácido 3-Hidroxibutírico/farmacología , Animales , Humanos , Glucagón/metabolismo , Secreción de Insulina/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Ratones , Insulina/metabolismo , Masculino , Glucosa/metabolismo , Femenino
8.
Diabetes Res Clin Pract ; 214: 111769, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971377

RESUMEN

Elevated fasting glucagon concentrations and/or attenuated postprandial glucagon suppression are characteristics of type 2 diabetes (T2D) and contribute to hyperglycaemia. This study shows that hyperglucagonaemia is more prominent in males than females after a nutrient load in T2D, adding insights into sex differences in relation to the pathophysiology of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Carbohidratos de la Dieta , Glucagón , Glucosa , Periodo Posprandial , Humanos , Diabetes Mellitus Tipo 2/sangre , Glucagón/sangre , Femenino , Masculino , Persona de Mediana Edad , Glucosa/metabolismo , Periodo Posprandial/fisiología , Glucemia/metabolismo , Glucemia/análisis , Caracteres Sexuales , Anciano , Factores Sexuales
9.
J Psychosom Res ; 184: 111856, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38972099

RESUMEN

OBJECTIVE: To investigate fear of hypoglycemia (FoH) in parents of children with type 1 diabetes (T1D) before and after undergoing training to learn intranasal (IN) glucagon administration. METHOD: In this pre-test/post-test uncontrolled study 364 caregivers of patients with T1D (6-18 years) completed questionnaires measuring sociodemographic characteristics, diabetes-related factors (e.g., type of insulin therapy, glycemic control), and parents' trait anxiety. Parents' FoH was assessed at baseline (T0, training) and after nine months (T1). Two repeated-measure mixed analyses of covariance (ANCOVA) compared the FoH at T0 and at T1 and analyzed the moderating roles of anxiety proneness and type of insulin therapy, as well as of anxiety proneness and use of sensor. Age, T1D duration, HbA1c values, and SES were included as covariates. RESULTS: Parental FoH at T1 (M = 1.72; SE = 0.06/M = 1.57; SE = 0.09) was significantly lower than parental FoH at T0 (M = 1.89; SE = 0.06/M = 1.77; SE = 0.09). The group with high trait-anxiety had a higher level of FoH (M = 2.05; SE = 0.08/M = 1.89; SE = 0.12) than the group with low trait-anxiety (M = 1.57; SE = 0.08/M = 1.46; SE = 0.09) at both time points. SES was negatively associated with FoH at T0 (t = -2.87; p = .004/t = -2.87; p = .005). No other significant effects were found. CONCLUSIONS: Training and educating parents on IN glucagon use can help them effectively manage hypoglycemic episodes and alleviate the fear that generally accompany such events.


Asunto(s)
Administración Intranasal , Ansiedad , Diabetes Mellitus Tipo 1 , Miedo , Glucagón , Hipoglucemia , Padres , Humanos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/psicología , Hipoglucemia/inducido químicamente , Masculino , Femenino , Padres/psicología , Niño , Adolescente , Adulto , Encuestas y Cuestionarios , Persona de Mediana Edad
10.
Front Endocrinol (Lausanne) ; 15: 1406931, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994010

RESUMEN

Background: It has been reported that central adrenal insufficiency (CAI) in pediatric patients (pts) with Prader-Willi syndrome (PWS) may be a potential cause of their sudden death. In addition, the risk of CAI may increase during treatment with recombinant human growth hormone (rhGH). Objective: To prevent both over- and undertreatment with hydrocortisone, we evaluated the prevalence of CAI in a large multicenter cohort of pediatric pts with PWS analyzing adrenal response in the low-dose ACTH test (LDAT) and/or the glucagon stimulation test (GST) and reviewing the literature. Methods: A total of 46 pts with PWS were enrolled to the study, including 34 treated with rhGH with a median dose of 0.21 mg/kg/week. LDAT was performed in 46 pts, and GST was carried out in 13 pts. Both tests were conducted in 11 pts. The tests began at 8:00 a.m. Hormones were measured by radioimmunoassays. Serum cortisol response >181.2 ng/mL (500 nmol/L) in LDAT and >199.3 ng/mL (550 nmol/L) in GST was considered a normal response. Additionally, cortisol response delta (the difference between baseline and baseline) >90 ng/mL and doubling/tripling of baseline cortisol were considered indicators of normal adrenal reserve. Results: Three GSTs were not diagnostic (no hypoglycemia obtained). LDAT results suggested CAI in four pts, but in two out of four pts, and CAI was excluded in GST. GST results suggested CAI in only one patient, but it was excluded in LDAT. Therefore, CAI was diagnosed in 2/46 pts (4.3%), 1 treated and 1 untreated with rhGH, with the highest cortisol values of 162 and 175 ng/dL, but only in one test. However, in one of them, the cortisol delta response was >90 ng/mL and peak cortisol was more than tripled from baseline. Finally, CAI was diagnosed in one patient treated with rhGH (2.2%). Conclusion: We present low prevalence of CAI in pediatric pts with PWS according to the latest literature. Therefore, we do not recommend to routinely screen the function of the hypothalamic-pituitary-adrenal axis (HPAA) in all pts with PWS, both treated and untreated with rhGH. According to a review of the literature, signs and symptoms or low morning ACTH levels suggestive of CAI require urgent and appropriate diagnosis of HPAA by stimulation test. Our data indicate that the diagnosis of CAI should be confirmed by at least two tests to prevent overtreatment with hydrocortisone.


Asunto(s)
Hidrocortisona , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/tratamiento farmacológico , Síndrome de Prader-Willi/sangre , Síndrome de Prader-Willi/complicaciones , Femenino , Masculino , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Niño , Preescolar , Hidrocortisona/sangre , Adolescente , Insuficiencia Suprarrenal/diagnóstico , Insuficiencia Suprarrenal/sangre , Insuficiencia Suprarrenal/tratamiento farmacológico , Insuficiencia Suprarrenal/epidemiología , Lactante , Hormona de Crecimiento Humana/sangre , Hormona Adrenocorticotrópica/sangre , Hormona Adrenocorticotrópica/administración & dosificación , Glucagón/sangre
11.
Mol Pharm ; 21(8): 3815-3823, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39046445

RESUMEN

Peptide aggregation poses a significant challenge in biopharmaceutical development and neurodegenerative diseases. This study combines computational simulations and experimental validation to uncover the underlying mechanisms and countermeasures for the aggregation of glucagon, a peptide with a high tendency to aggregate. In silico simulations demonstrate that lactose and 2-hydroxypropyl-ß-cyclodextrin (2-HPßCD) influence glucagon aggregation differently: lactose stabilizes glucagon by increasing the α-helical content, while 2-HPßCD disrupts protein-protein interactions. According to the simulations, 2-HPßCD is particularly effective at preserving the monomeric form of glucagon. Experimental validation with microfluidic modulation spectroscopy (MMS) confirms these findings, showing that glucagon in the presence of 2-HPßCD remains structurally stable, supporting the antiaggregation effect of this excipient. This research provides essential insights into glucagon aggregation obtained through a new powerful tool for monitoring the critical properties of peptide aggregation, suggesting new strategies for addressing this challenge in therapeutic peptide development.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina , Simulación por Computador , Glucagón , Agregado de Proteínas , Glucagón/química , Glucagón/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/química , Excipientes/química , Humanos
12.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892240

RESUMEN

A detailed study of palmitate metabolism in pancreatic islets subject to different experimental conditions, like varying concentrations of glucose, as well as fed or starved conditions, has allowed us to explore the interaction between the two main plasma nutrients and its consequences on hormone secretion. Palmitate potentiates glucose-induced insulin secretion in a concentration-dependent manner, in a physiological range of both palmitate (0-2 mM) and glucose (6-20 mM) concentrations; at glucose concentrations lower than 6 mM, no metabolic interaction with palmitate was apparent. Starvation (48 h) increased islet palmitate oxidation two-fold, and the effect was resistant to its inhibition by glucose (6-20 mM). Consequently, labelled palmitate and glucose incorporation into complex lipids were strongly suppressed, as well as glucose-induced insulin secretion and its potentiation by palmitate. 2-bromostearate, a palmitate oxidation inhibitor, fully recovered the synthesis of complex lipids and insulin secretion. We concluded that palmitate potentiation of the insulin response to glucose is not attributable to its catabolic mitochondrial oxidation but to its anabolism to complex lipids: islet lipid biosynthesis is dependent on the uptake of plasma fatty acids and the supply of α-glycerol phosphate from glycolysis. Islet secretion of glucagon and somatostatin showed a similar dependence on palmitate anabolism as insulin. The possible mechanisms implicated in the metabolic coupling between glucose and palmitate were commented on. Moreover, possible mechanisms responsible for islet gluco- or lipotoxicity after a long-term stimulation of insulin secretion were also discussed. Our own data on the simultaneous stimulation of insulin, glucagon, and somatostatin by glucose, as well as their modification by 2-bromostearate in perifused rat islets, give support to the conclusion that increased FFA anabolism, rather than its mitochondrial oxidation, results in a potentiation of their stimulated release. Starvation, besides suppressing glucose stimulation of insulin secretion, also blocks the inhibitory effect of glucose on glucagon secretion: this suggests that glucagon inhibition might be an indirect or direct effect of insulin, but not of glucose. In summary, there seems to exist three mechanisms of glucagon secretion stimulation: 1. glucagon stimulation through the same secretion coupling mechanism as insulin, but in a different range of glucose concentrations (0 to 5 mM). 2. Direct or indirect inhibition by secreted insulin in response to glucose (5-20 mM). 3. Stimulation by increased FFA anabolism in glucose intolerance or diabetes in the context of hyperlipidemia, hyperglycemia, and hypo-insulinemia. These conclusions were discussed and compared with previous published data in the literature. Specially, we discussed the mechanism for inhibition of glucagon release by glucose, which was apparently contradictory with the secretion coupling mechanism of its stimulation.


Asunto(s)
Glucagón , Glucosa , Secreción de Insulina , Insulina , Islotes Pancreáticos , Glucosa/metabolismo , Animales , Insulina/metabolismo , Glucagón/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Secreción de Insulina/efectos de los fármacos , Ácidos Grasos/metabolismo , Ratas , Palmitatos/metabolismo , Palmitatos/farmacología , Oxidación-Reducción/efectos de los fármacos
13.
Zhonghua Yan Ke Za Zhi ; 60(6): 547-558, 2024 Jun 11.
Artículo en Chino | MEDLINE | ID: mdl-38825955

RESUMEN

With the increasing prevalence of myopia among adolescents, the pathogenesis of this condition has garnered significant attention. Studies have discovered the expression of various hormone receptors in ocular tissues of both animals and humans. Additionally, changes in hormone levels accompany the development of myopia, although the exact relationships remain inconclusive. This article reviews the potential influences and mechanisms of action of endogenous hormones such as melatonin, serotonin, insulin, glucagon, sex hormones, vitamin D, and prostaglandins in ocular tissues including the retina, choroid, and sclera. It elaborates on the relationship between fluctuations in these hormone levels and the progression of myopia, aiming to provide guidance for exploring targets for myopia prevention and control.


Asunto(s)
Melatonina , Miopía , Humanos , Miopía/metabolismo , Melatonina/metabolismo , Vitamina D/metabolismo , Serotonina/metabolismo , Insulina/metabolismo , Glucagón/metabolismo , Animales , Hormonas Esteroides Gonadales/metabolismo , Prostaglandinas/metabolismo , Hormonas/metabolismo , Retina/metabolismo
14.
Life Sci ; 351: 122854, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38901688

RESUMEN

AIMS: To evaluate the cell proliferation and death, and structural morphology of the pancreatic islet cells of the rats with hyperglycemia in the first month of life and compare to those of the control rats. MAIN METHODS: Female Sprague-Dawley newborn rats received Streptozotocin (a beta-cytotoxic drug) at birth for diabetes induction. Control and hyperglycemic animals were euthanized on different days of life: 5, 10, 15, and 30. The pancreas was collected and processed for immunohistochemical analysis of cleaved Caspase-3 (cell death), Ki-67 (cell proliferation), PDX-1 (transcription factor responsible for insulin synthesis), and endocrine hormones (insulin, glucagon, and somatostatin). KEY FINDINGS: Control females showed a higher percentage (%) of Ki-67-positive(+) cells on D10 and D15, a higher % of insulin+ and somatostatin+ cells on D15 and D30, a lower % of PDX-1+ cells on D10, and a higher % of glucagon+ cells on D10 and D30. Hyperglycemic females showed a lower % of Ki-67+ cells on D15, a higher % of cleaved Caspase-3+ cells on D15, and insulin+ cells on D15 and D30. In the comparison among the experimental groups, the hyperglycemic females showed an increased % of cleaved Caspase-3+ and Ki-67+ cells and a lower % of PDX-1+ cells. SIGNIFICANCE: This study enabled a better understanding of the abnormal pancreas development regarding cellular proliferation, apoptosis, and hormonal synthesis in the neonatal period. Thus, the pancreatic islets of hyperglycemic rats do not reestablish the normal endocrine cell population, and cellular apoptosis overcame the proliferative activity of these cells.


Asunto(s)
Animales Recién Nacidos , Proliferación Celular , Hiperglucemia , Islotes Pancreáticos , Ratas Sprague-Dawley , Animales , Femenino , Hiperglucemia/metabolismo , Hiperglucemia/patología , Ratas , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Muerte Celular , Glucagón/metabolismo , Insulina/metabolismo , Antígeno Ki-67/metabolismo , Caspasa 3/metabolismo , Somatostatina/metabolismo , Apoptosis , Transactivadores , Proteínas de Homeodominio
15.
Diabetes Obes Metab ; 26(9): 3501-3512, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38853300

RESUMEN

Type 2 diabetes mellitus (T2DM) is associated with obesity and, therefore, it is important to target both overweight and hyperglycaemia. Glucagon plays important roles in glucose, amino acid and fat metabolism and may also regulate appetite and energy expenditure. These physiological properties are currently being exploited therapeutically in several compounds, most often in combination with glucagon-like peptide-1 (GLP-1) agonism in the form of dual agonists. With this combination, increases in hepatic glucose production and hyperglycaemia, which would be counterproductive, are largely avoided. In multiple randomized trials, the co-agonists have been demonstrated to lead to significant weight loss and, in participants with T2DM, even improved glycated haemoglobin (HbA1c) levels. In addition, significant reductions in hepatic fat content have been observed. Here, we review and discuss the studies so far available. Twenty-six randomized trials of seven different GLP-1 receptor (GLP-1R)/glucagon receptor (GCGR) co-agonists were identified and reviewed. GLP-1R/GCGR co-agonists generally provided significant weight loss, reductions in hepatic fat content, improved lipid profiles, insulin secretion and sensitivity, and in some cases, improved HbA1c levels. A higher incidence of adverse effects was present with GLP-1R/GCGR co-agonist treatment than with GLP-1 agonist monotherapy or placebo. Possible additional risks associated with glucagon agonism are also discussed. A delicate balance between GLP-1 and glucagon agonism seems to be of particular importance. Further studies exploring the optimal ratio of GLP-1 and glucagon receptor activation and dosage and titration regimens are needed to ensure a sufficient safety profile while providing clinical benefits.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Glucagón , Hipoglucemiantes , Obesidad , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Glucagón/metabolismo , Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Receptores de Glucagón/agonistas , Pérdida de Peso/efectos de los fármacos , Péptido 1 Similar al Glucagón/agonistas , Hemoglobina Glucada/efectos de los fármacos , Hemoglobina Glucada/metabolismo , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Masculino
16.
Cell Rep ; 43(6): 114346, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38850534

RESUMEN

Histopathological heterogeneity in the human pancreas is well documented; however, functional evidence at the tissue level is scarce. Herein, we investigate in situ glucose-stimulated islet and carbachol-stimulated acinar cell secretion across the pancreas head (PH), body (PB), and tail (PT) regions in donors without diabetes (ND; n = 15), positive for one islet autoantibody (1AAb+; n = 7), and with type 1 diabetes (T1D; <14 months duration, n = 5). Insulin, glucagon, pancreatic amylase, lipase, and trypsinogen secretion along with 3D tissue morphometrical features are comparable across regions in ND. In T1D, insulin secretion and beta-cell volume are significantly reduced within all regions, while glucagon and enzymes are unaltered. Beta-cell volume is lower despite normal insulin secretion in 1AAb+, resulting in increased volume-adjusted insulin secretion versus ND. Islet and acinar cell secretion in 1AAb+ are consistent across the PH, PB, and PT. This study supports low inter-regional variation in pancreas slice function and, potentially, increased metabolic demand in 1AAb+.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulina , Islotes Pancreáticos , Humanos , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Masculino , Insulina/metabolismo , Femenino , Secreción de Insulina/efectos de los fármacos , Adulto , Persona de Mediana Edad , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Células Acinares/metabolismo , Células Acinares/patología , Glucagón/metabolismo , Glucosa/metabolismo , Autoanticuerpos/inmunología , Amilasas/metabolismo
17.
Anal Biochem ; 693: 115585, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38851475

RESUMEN

Over the past few years, the implementation of mass spectrometry (MS) in QC laboratories has become a more common occurrence. The multi-attribute method (MAM), and emerging intact multi-attribute method (iMAM), are powerful analytical tools utilising liquid chromatography-mass spectrometry (LC-MS) methods that enable the monitoring of critical quality attributes (CQAs) in biotherapeutic proteins in compliant settings. Both MAM and iMAM are intended to replace or supplement several conventional assays with a single LC-MS method utilising MS data in combination with robust, semi-automated data processing workflows. MAM and iMAM workflows can also be implemented into current Good Manufacturing Practices environments due to the availability of CFR 11 compliant chromatography data system software. In this study, MAM and iMAM are employed for the analysis of 4 batches of a glucagon-like peptide-Fc fusion protein. MAM approach involved a first the discovery phase for the identification of CQAs and second, the target monitoring phase of the selected CQAs in other samples. New peak detection was performed on the data set to determine the appearance, absence or change of any peak. For native iMAM workflow both size exclusion and strong cation exchange chromatography were optimized for the identification and monitoring of CQAs at the intact level.


Asunto(s)
Proteínas Recombinantes de Fusión , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Flujo de Trabajo , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/análisis , Glucagón/análisis , Glucagón/química , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas
18.
Prehosp Emerg Care ; 28(6): 787-802, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38848591

RESUMEN

OBJECTIVES: Intranasal (IN) medications offer a safe non-invasive way to rapidly deliver drugs in situations where intravenous (IV) access and intramuscular (IM) administration is challenging or not feasible. In the prehospital setting, this can be an essential alternative in time critical situations including trauma management, seizures, and agitated patients. However, there is a paucity of evidence summarizing its efficacy in this environment. This systematic review aims to assess the current evidence supporting the use of IN medicine (midazolam, ketamine, fentanyl, morphine, glucagon, and naloxone) in the prehospital setting alone. METHODS: A systematic literature search (PROSPERO CRD42023440713) of PubMed, Web of Science, OVID Medline, "Cochrane Central Register of Controlled Trials," Cochrane reviews and Embase was performed from inception to June 2023 to identify studies where IN medications were administered to patients in the prehospital setting. All randomized controlled trials, observational cohort studies, case series, and case reports were included. Papers not written in English, review articles, abstracts, and non-published data (including letters to the editor) were excluded. The methodological quality of the included studies was interpreted using the Cochrane risk of bias tool and rated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. No funding was received. RESULTS: From 4818 studies, 39 were included (seven for midazolam, five for ketamine, twelve for fentanyl, one for diamorphine, two for glucagon, and twelve for naloxone). A total of 24,097 patients were treated with IN medications across all the studies. There were five moderate quality, four low quality, and thirty very low quality studies. The potential efficacy of IN fentanyl and ketamine was demonstrated consistently throughout the studies with less clear evidence for midazolam, morphine, glucagon, and naloxone. This review was severely limited by the study quality, with most studies demonstrating "high concerns" for bias. CONCLUSIONS: Prehospital IN medication administration has wide-ranging potential, particularly for administering analgesia. There are likely to be certain populations, for example, pediatrics, that will benefit the most, although conclusions are limited by the quality of evidence currently available. We encourage additional research in this area, particularly with robust prospective double-blind RCTs.


Asunto(s)
Administración Intranasal , Servicios Médicos de Urgencia , Naloxona , Humanos , Servicios Médicos de Urgencia/métodos , Naloxona/administración & dosificación , Naloxona/uso terapéutico , Fentanilo/administración & dosificación , Fentanilo/uso terapéutico , Ketamina/administración & dosificación , Ketamina/uso terapéutico , Midazolam/administración & dosificación , Midazolam/uso terapéutico , Morfina/administración & dosificación , Morfina/uso terapéutico , Glucagón/administración & dosificación , Glucagón/uso terapéutico
19.
Nat Commun ; 15(1): 5129, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879678

RESUMEN

Glucagon, a hormone released from pancreatic α-cells, is critical for maintaining euglycemia and plays a key role in the pathophysiology of diabetes. To stimulate the development of new classes of therapeutic agents targeting glucagon release, key α-cell signaling pathways that regulate glucagon secretion need to be identified. Here, we focused on the potential importance of α-cell Gs signaling on modulating α-cell function. Studies with α-cell-specific mouse models showed that activation of α-cell Gs signaling causes a marked increase in glucagon secretion. We also found that intra-islet adenosine plays an unexpected autocrine/paracrine role in promoting glucagon release via activation of α-cell Gs-coupled A2A adenosine receptors. Studies with α-cell-specific Gαs knockout mice showed that α-cell Gs also plays an essential role in stimulating the activity of the Gcg gene, thus ensuring proper islet glucagon content. Our data suggest that α-cell enriched Gs-coupled receptors represent potential targets for modulating α-cell function for therapeutic purposes.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs , Células Secretoras de Glucagón , Glucagón , Ratones Noqueados , Transducción de Señal , Glucagón/metabolismo , Animales , Células Secretoras de Glucagón/metabolismo , Ratones , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Adenosina/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2A/genética , Masculino , Ratones Endogámicos C57BL , Islotes Pancreáticos/metabolismo
20.
Anat Histol Embryol ; 53(4): e13074, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38864153

RESUMEN

In this study, we investigated amylin-like substance distribution in the pancreas of Japanese quail (Coturnix japonica) using a specific anti-rat amylin serum. We detected amylin-immunoreactive cells dispersed in the pancreatic extra-islet region but not in the islet region. The synthetic rat amylin-containing serum pre-absorption abolished the staining profile. Almost all amylin-immunoreactive cells were immuno-positive for peptide YY (PYY). In addition, certain amylin-immunoreactive cells stained immuno-positive for glucagon. Amylin and PYY co-secreted from the extra-islet cells might participate in the insulin and glucagon release regulation in the pancreas and food intake modulation through the central nervous system.


Asunto(s)
Coturnix , Glucagón , Polipéptido Amiloide de los Islotes Pancreáticos , Páncreas , Péptido YY , Animales , Péptido YY/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Coturnix/metabolismo , Glucagón/metabolismo , Páncreas/metabolismo , Inmunohistoquímica/veterinaria , Islotes Pancreáticos/metabolismo , Masculino , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA