Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.052
Filtrar
1.
Microb Biotechnol ; 17(6): e14480, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38858807

RESUMEN

The application of bacterial oligosaccharyltransferases (OSTs) such as the Campylobacter jejuni PglB for glycoengineering has attracted considerable interest in glycoengineering and glycoconjugate vaccine development. However, PglB has limited specificity for glycans that can be transferred to candidate proteins, which along with other factors is dependent on the reducing end sugar of glycans. In this study, we developed a cell-free glycosylation assay that offers the speed and simplicity of a 'yes' or 'no' determination. Using the assay, we tested the activity of eleven PglBs from Campylobacter species and more distantly related bacteria. The following assorted glycans with diverse reducing end sugars were tested for transfer, including Streptococcus pneumoniae capsule serotype 4, Salmonella enterica serovar Typhimurium O antigen (B1), Francisella tularensis O antigen, Escherichia coli O9 antigen and Campylobacter jejuni heptasaccharide. Interestingly, while PglBs from the same genus showed high activity, whereas divergent PglBs differed in their transfer of glycans to an acceptor protein. Notably for glycoengineering purposes, Campylobacter hepaticus and Campylobacter subantarcticus PglBs showed high glycosylation efficiency, with C. hepaticus PglB potentially being useful for glycoconjugate vaccine production. This study demonstrates the versatility of the cell-free assay in rapidly assessing an OST to couple glycan/carrier protein combinations and lays the foundation for future screening of PglBs by linking amino acid similarity to glycosyltransferase activity.


Asunto(s)
Hexosiltransferasas , Proteínas de la Membrana , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Hexosiltransferasas/química , Glicosilación , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Campylobacter/genética , Campylobacter/enzimología , Campylobacter/metabolismo , Polisacáridos/metabolismo , Sistema Libre de Células , Campylobacter jejuni/enzimología , Campylobacter jejuni/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Glicoconjugados/metabolismo
2.
Carbohydr Polym ; 341: 122327, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876725

RESUMEN

Bacterial pathogens can cause a broad range of infections with detrimental effects on health. Vaccine development is essential as multi-drug resistance in bacterial infections is a rising concern. Recombinantly produced proteins carrying O-antigen glycosylation are promising glycoconjugate vaccine candidates to prevent bacterial infections. However, methods for their comprehensive structural characterization are lacking. Here, we present a bottom-up approach for their site-specific characterization, detecting N-glycopeptides by nano reversed-phase liquid chromatography-mass spectrometry (RP-LC-MS). Glycopeptide analyses revealed information on partial site-occupancy and site-specific glycosylation heterogeneity and helped corroborate the polysaccharide structures and their modifications. Bottom-up analysis was complemented by intact glycoprotein analysis using nano RP-LC-MS allowing the fast visualization of the polysaccharide distribution in the intact glycoconjugate. At the glycopeptide level, the model glycoconjugates analyzed showed different repeat unit (RU) distributions that spanned from 1 to 21 RUs attached to each of the different glycosylation sites. Interestingly, the intact glycoprotein analysis displayed a RU distribution ranging from 1 to 28 RUs, showing the predominant species when the different glycopeptide distributions are combined in the intact glycoconjugate. The complete workflow based on LC-MS measurements allows detailed and comprehensive analysis of the glycosylation state of glycoconjugate vaccines.


Asunto(s)
Vacunas Bacterianas , Glicoconjugados , Glicopéptidos , Glicoconjugados/química , Glicoconjugados/inmunología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/química , Glicosilación , Glicopéptidos/química , Glicopéptidos/análisis , Espectrometría de Masas/métodos , Vacunas Conjugadas/química , Vacunas Conjugadas/inmunología , Cromatografía Liquida/métodos , Cromatografía de Fase Inversa/métodos
3.
Org Biomol Chem ; 22(27): 5470-5510, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38904076

RESUMEN

Carbohydrate-based self-assembling systems are essential for the formation of advanced biocompatible materials via a bottom-up approach. The self-assembling of sugar-based small molecules has applications encompassing many research fields and has been studied extensively. In this focused review, we will discuss the synthetic approaches for carbohydrate-based self-assembling (SA) systems, the mechanisms of the assembly, as well as the main properties and applications. This review will mainly cover recent publications in the last four years from January 2020 to December 2023. We will essentially focus on small molecule self-assembly, excluding polymer-based systems, which include various derivatives of monosaccharides, disaccharides, and oligosaccharides. Glycolipids, glycopeptides, and some glycoconjugate-based systems are discussed. Typically, in each category of systems, the system that can function as low molecular weight gelators (LMWGs) will be discussed first, followed by self-assembling systems that produce micelles and aggregates. The last section of the review discusses stimulus-responsive self-assembling systems, especially those forming gels, including dynamic covalent assemblies, chemical-triggered systems, and photoresponsive systems. The review will be organized based on the sugar structures, and in each category, the synthesis of representative molecular systems will be discussed next, followed by the properties of the resulting molecular assemblies.


Asunto(s)
Carbohidratos , Carbohidratos/química , Carbohidratos/síntesis química , Glicoconjugados/síntesis química , Glicoconjugados/química , Glucolípidos/química , Glucolípidos/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química
4.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791523

RESUMEN

Glucose transporters GLUT1 belong to the major facilitator superfamily and are essential to human glucose uptake. The overexpression of GLUT1 in tumor cells designates it as a pivotal target for glycoconjugate anticancer drugs. However, the interaction mechanism of glycoconjugate drugs with GLUT1 remains largely unknown. Here, we employed all-atom molecular dynamics simulations, coupled to steered and umbrella sampling techniques, to examine the thermodynamics governing the transport of glucose and two glycoconjugate drugs (i.e., 6-D-glucose-conjugated methane sulfonate and 6-D-glucose chlorambucil) by GLUT1. We characterized the specific interactions between GLUT1 and substrates at different transport stages, including substrate recognition, transport, and releasing, and identified the key residues involved in these procedures. Importantly, our results described, for the first time, the free energy profiles of GLUT1-transporting glycoconjugate drugs, and demonstrated that H160 and W388 served as important gates to regulate their transport via GLUT1. These findings provide novel atomic-scale insights for understanding the transport mechanism of GLUT1, facilitating the discovery and rational design of GLUT1-targeted anticancer drugs.


Asunto(s)
Transportador de Glucosa de Tipo 1 , Glicoconjugados , Simulación de Dinámica Molecular , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/química , Glicoconjugados/metabolismo , Glicoconjugados/química , Humanos , Glucosa/metabolismo , Transporte Biológico , Termodinámica
5.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792159

RESUMEN

As a development of our research on biocompatible glycoconjugate probes and specifically multi-chromophoric systems, herein, we report the synthesis and early bactericidal tests of two luminescent glycoconjugates whose basic structure is characterized by two boron dipyrromethene difluoride (BODIPY) moieties and three galactoside rings mounted on an oligophenylene ethynylene (OPE) skeleton. BODIPY fluorophores have found widespread application in many branches of biology in the last few decades. In particular, molecular platforms showing two different BODIPY groups have unique photophysical behavior useful in fluorescence imaging. Construction of the complex architecture of the new probes is accomplished through a convergent route that exploits a series of copper-free Heck-Cassar-Sonogashira cross-couplings. The great emergency due to the proliferation of bacterial infections, in conjunction with growing antibiotic resistance, requires the production of new multifunctional drugs and efficient methods for their targeted delivery to control bacteria-associated diseases. Preliminary studies of the glycoconjugate properties as antibacterial agents against representatives of Gram-negative (P. aeruginosa) and Gram-positive (S. aureus) pathogens, which are associated with chronic infections, indicated significant bactericidal activity ascribable to their structural features.


Asunto(s)
Antibacterianos , Compuestos de Boro , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Compuestos de Boro/química , Compuestos de Boro/farmacología , Compuestos de Boro/síntesis química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Glicoconjugados/química , Glicoconjugados/farmacología , Glicoconjugados/síntesis química , Estructura Molecular , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química
6.
Mem Inst Oswaldo Cruz ; 119: e230243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38775551

RESUMEN

BACKGROUND: Leishmania tarentolae is a non-pathogenic species found in lizards representing an important model for Leishmania biology. However, several aspects of this Sauroleishmania remain unknown to explain its low level of virulence. OBJECTIVES: We reported several aspects of L. tarentolae biology including glycoconjugates, proteolytic activities and metabolome composition in comparison to pathogenic species (Leishmania amazonensis, Leishmania braziliensis, Leishmania infantum and Leishmania major). METHODS: Parasites were cultured for extraction and purification of lipophosphoglycan (LPG), immunofluorescence probing with anti-gp63 and resistance against complement. Parasite extracts were also tested for proteases activity and metabolome composition. FINDINGS: Leishmania tarentolae does not express LPG on its surface. It expresses gp63 at lower levels compared to pathogenic species and, is highly sensitive to complement-mediated lysis. This species also lacks intracellular/extracellular activities of proteolytic enzymes. It has metabolic differences with pathogenic species, exhibiting a lower abundance of metabolites including ABC transporters, biosynthesis of unsaturated fatty acids and steroids, TCA cycle, glycine/serine/threonine metabolism, glyoxylate/dicarboxylate metabolism and pentose-phosphate pathways. MAIN CONCLUSIONS: The non-pathogenic phenotype of L. tarentolae is associated with alterations in several biochemical and molecular features. This reinforces the need of comparative studies between pathogenic and non-pathogenic species to elucidate the molecular mechanisms of virulence during host-parasite interactions.


Asunto(s)
Glicoconjugados , Leishmania , Metaboloma , Péptido Hidrolasas , Leishmania/enzimología , Péptido Hidrolasas/metabolismo , Animales , Glicoesfingolípidos/metabolismo , Proteínas del Sistema Complemento
7.
Microbiol Spectr ; 12(6): e0421323, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38700324

RESUMEN

A US collection of invasive Escherichia coli serotype O1 bloodstream infection (BSI) isolates were assessed for genotypic and phenotypic diversity as the basis for designing a broadly protective O-antigen vaccine. Eighty percent of the BSI isolate serotype O1 strains were genotypically ST95 O1:K1:H7. The carbohydrate repeat unit structure of the O1a subtype was conserved in the three strains tested representing core genome multi-locus sequence types (MLST) sequence types ST95, ST38, and ST59. A long-chain O1a CRM197 lattice glycoconjugate antigen was generated using oxidized polysaccharide and reductive amination chemistry. Two ST95 strains were investigated for use in opsonophagocytic assays (OPA) with immune sera from vaccinated animals and in murine lethal challenge models. Both strains were susceptible to OPA killing with O1a glycoconjugate post-immune sera. One of these, a neonatal sepsis strain, was found to be highly lethal in the murine challenge model for which virulence was shown to be dependent on the presence of the K1 capsule. Mice immunized with the O1a glycoconjugate were protected from challenges with this strain or a second, genotypically related, and similarly virulent neonatal isolate. This long-chain O1a CRM197 lattice glycoconjugate shows promise as a component of a multi-valent vaccine to prevent invasive E. coli infections. IMPORTANCE: The Escherichia coli serotype O1 O-antigen serogroup is a common cause of invasive bloodstream infections (BSI) in populations at risk such as newborns and the elderly. Sequencing of US BSI isolates and structural analysis of O polysaccharide antigens purified from strains that are representative of genotypic sub-groups confirmed the relevance of the O1a subtype as a vaccine antigen. O polysaccharide was purified from a strain engineered to produce long-chain O1a O-antigen and was chemically conjugated to CRM197 carrier protein. The resulting glycoconjugate elicited functional antibodies and was protective in mice against lethal challenges with virulent K1-encapsulated O1a isolates.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Glicoconjugados , Antígenos O , Animales , Antígenos O/inmunología , Antígenos O/genética , Ratones , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/inmunología , Escherichia coli/genética , Escherichia coli/inmunología , Glicoconjugados/inmunología , Humanos , Serogrupo , Vacunas contra Escherichia coli/inmunología , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Femenino , Virulencia , Vacunas Conjugadas/inmunología , Tipificación de Secuencias Multilocus , Modelos Animales de Enfermedad , Bacteriemia/prevención & control , Bacteriemia/microbiología , Bacteriemia/inmunología , Proteínas Bacterianas
8.
Life Sci ; 348: 122689, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710281

RESUMEN

Glycans and their glycoconjugates are complex biomolecules that are crucial for various biological processes. Glycoconjugates are found in all domains of life. They are covalently linked to key biomolecules such as proteins and lipids to play a pivotal role in cell signaling, adhesion, and recognition. The diversity of glycan structures and the associated complexity of glycoconjugates is the reason for their role in intricate biosynthetic pathways. Glycoconjugates play an important role in various diseases where they are actively involved in the immune response as well as in the pathogenicity of infectious diseases. In addition, various autoimmune diseases have been linked to glycosylation defects of different biomolecules, making them an important molecule in the field of medicine. The glycoconjugates have been explored for the development of therapeutics and vaccines, representing a breakthrough in medical science. They also hold significance in research studies to understand the mechanisms behind various biological processes. Finally, glycoconjugates have found an emerging role in various industrial and environmental applications which have been discussed here.


Asunto(s)
Glicoconjugados , Glicoconjugados/metabolismo , Glicoconjugados/química , Humanos , Polisacáridos/química , Polisacáridos/metabolismo , Glicosilación , Animales , Vacunas
9.
ACS Infect Dis ; 10(6): 2089-2100, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38819951

RESUMEN

Cryptococcus neoformans is a fungus classified by the World Health Organization as a critically important pathogen, which poses a significant threat to immunocompromised individuals. In this study, we present the chemical synthesis and evaluation of two semisynthetic vaccine candidates targeting the capsular polysaccharide glucuronoxylomannan (GXM) of C. neoformans. These semisynthetic glycoconjugate vaccines contain an identical synthetic decasaccharide (M2 motif) antigen. This antigen is present in serotype A strains, which constitute 95% of the clinical cryptococcosis cases. This synthetic oligosaccharide was conjugated to two proteins (CRM197 and Anthrax 63 kDa PA) and tested for immunogenicity in mice. The conjugates elicited a specific antibody response that bound to the M2 motif but also exhibited additional cross-reactivity toward M1 and M4 GXM motifs. Both glycoconjugates produced antibodies that bound to GXM in ELISA assays and to live fungal cells. Mice immunized with the CRM197 glycoconjugate produced weakly opsonic antibodies and displayed trends toward increased median survival relative to mice given a mock PBS injection (18 vs 15 days, p = 0.06). These findings indicate promise, achieving a successful vaccine demands further optimization of the glycoconjugate. This antigen could serve as a component in a multivalent GXM motif vaccine.


Asunto(s)
Anticuerpos Antifúngicos , Criptococosis , Cryptococcus neoformans , Vacunas Fúngicas , Glicoconjugados , Vacunas Conjugadas , Cryptococcus neoformans/inmunología , Animales , Vacunas Fúngicas/inmunología , Ratones , Criptococosis/prevención & control , Criptococosis/inmunología , Glicoconjugados/inmunología , Glicoconjugados/química , Vacunas Conjugadas/inmunología , Anticuerpos Antifúngicos/inmunología , Femenino , Polisacáridos/inmunología , Polisacáridos/química , Ratones Endogámicos BALB C , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/química , Antígenos Fúngicos/inmunología
10.
Chemistry ; 30(38): e202400941, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38700909

RESUMEN

Anthracene carboximides (ACIs) conjugated with gluco-, galacto- and mannopyranosides are synthesized, by glycosylation of N-hydroxyethylanthracene carboximide acceptor with glycosyl donors. Glycoconjugation of anthracene carboximide increases the aq. solubility by more than 3-fold. The glycoconjugates display red-shifted absorption and emission, as compared to anthracene. Large Stokes shift (λabs/λem=445/525 nm) and high fluorescence quantum yields (Φ) of 0.86 and 0.5 occur in THF and water, respectively. The ACI-glycosides undergo facile photodimerization in aqueous solutions, leading to the formation of the head-to-tail dimer, as a mixture of syn and anti-isomers. Solution phase and solid-state characterizations by dynamic light scattering (DLS), microscopic imaging by atomic force (AFM) and transmission electron (TEM) microscopies reveal self-assembled vesicle structures of ACI glycosides. These self-assembled structures act as multivalent glycoclusters for ligand-specific lectin binding, as evidenced by the binding of Man-ACI to Con A, by fluorescence and turbidity assays. The conjugates do not show cellular cytotoxicity (IC50) till concentrations of 50 µM with HeLa and HepG2 cell lines and are cell-permeable, showing strong fluorescence inside the cells. These properties enable the glycoconjugates to be used in cell imaging. The non-selective cellular uptake of the glycoconjugates suggests a passive diffusion through the membrane.


Asunto(s)
Antracenos , Glicoconjugados , Antracenos/química , Humanos , Ligandos , Células Hep G2 , Células HeLa , Glicoconjugados/química , Carbohidratos/química , Glicosilación , Glicósidos/química , Imidas/química
11.
Zebrafish ; 21(2): 177-180, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38621207

RESUMEN

Lectins are carbohydrate-binding proteins with specific affinity to glycoconjugates expressed in various tissues. Lectins are of substantial utility as research, histochemical, and diagnostic tools in mammalian systems. Reactivity of 12 commonly used plant-based lectins was studied in zebrafish liver. Four lectins, tomato lectin (TL), wheat germ agglutinin, concanavalin A, and Jacalin showed strong reactivity to hepatic parenchymal structures. Importantly, TL reacted to glycoconjugates within segments of the larval and adult intrahepatic biliary network, from canaliculi to bile ducts. We provide evidence that lectins can serve as important histochemical tools to investigate the structural and functional characteristics of the zebrafish liver.


Asunto(s)
Lectinas , Pez Cebra , Animales , Pez Cebra/metabolismo , Histocitoquímica , Hígado/metabolismo , Glicoconjugados/metabolismo , Mamíferos/metabolismo
12.
Carbohydr Res ; 538: 109101, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574410

RESUMEN

To achieve better-repurposed motifs, saccharin has been merged with biocompatible sugar molecules via a 1,2,3-triazole linker, and ten novel 1,2,3-triazole-appended saccharin glycoconjugates were developed in good yield by utilizing modular CuAAC click as regioselective triazole forming tool. The docking study indicated that the resulting hybrid molecules have an overall substantial interaction with the CAXII macromolecule. Moreover, the galactose triazolyl saccharin analogue 3h has a binding energy of -8.5 kcal/mol with 5 H-bonds, and xylosyl 1,2,3-triazolyl saccharin analogue 3d has a binding energy of -8.2 kcal/mol with 6 H-bond interactions and have exhibited the highest binding interaction with the macromolecule system.


Asunto(s)
Química Clic , Sacarina , Química Clic/métodos , Glicoconjugados/química , Triazoles/química , Simulación del Acoplamiento Molecular
13.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38612547

RESUMEN

Protein self-assembling nanoparticles (NPs) can be used as carriers for antigen delivery to increase vaccine immunogenicity. NPs mimic the majority of invading pathogens, inducing a robust adaptive immune response and long-lasting protective immunity. In this context, we investigated the potential of NPs of different sizes and shapes-ring-, rod-like, and spherical particles-as carriers for bacterial oligosaccharides by evaluating in murine models the role of these parameters on the immune response. Oligosaccharides from Neisseria meningitidis type W capsular polysaccharide were conjugated to ring-shape or nanotubes of engineered Pseudomonas aeruginosa Hemolysin-corregulated protein 1 (Hcp1cc) and to spherical Helicobacter pylori ferritin. Glycoconjugated NPs were characterized using advanced technologies such as High-Performance Liquid Chromatography (HPLC), Asymmetric Flow-Field Flow fractionation (AF4), and Transmission electron microscopy (TEM) to verify their correct assembly, dimensions, and glycosylation degrees. Our results showed that spherical ferritin was able to induce the highest immune response in mice against the saccharide antigen compared to the other glycoconjugate NPs, with increased bactericidal activity compared to benchmark MenW-CRM197. We conclude that shape is a key attribute over size to be considered for glycoconjugate vaccine development.


Asunto(s)
Antiinfecciosos , Nanopartículas , Animales , Ratones , Glicoconjugados , Ferritinas , Oligosacáridos
14.
J Org Chem ; 89(9): 6364-6370, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38650458

RESUMEN

Introducing glycans represents an efficient chemical approach to improve the pharmacological properties of therapeutic biomolecules. Herein, we report an efficient synthesis of glycoconjugates through chlorooxime-thiol conjugation. The reactive glycosyl chlorooximes, derived from pyranoses or furanoses, readily couple to a wide range of thiol-containing substrates, including peptides, sugars, and thiophenols. This method features mild reaction conditions and fast kinetics. Capability for aqueous media and gram-scale synthesis demonstrates the potential of this method in the bioconjugation of saccharides with biologically active molecules.


Asunto(s)
Glicoconjugados , Oximas , Compuestos de Sulfhidrilo , Oximas/química , Glicoconjugados/química , Glicoconjugados/síntesis química , Compuestos de Sulfhidrilo/química , Estructura Molecular
15.
Int J Biol Macromol ; 268(Pt 1): 131511, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615867

RESUMEN

This comprehensive review delves into the intricate landscape of glycans and glycoconjugates, unraveling their multifaceted roles across diverse biological dimensions. From influencing fundamental cellular processes such as signaling, recognition, and adhesion to exerting profound effects at the molecular and genetic levels, these complex carbohydrate structures emerge as linchpins in cellular functions and interactions. The structural diversity of glycoconjugates, which can be specifically classified into glycoproteins, glycolipids, and proteoglycans, underscores their importance in shaping the architecture of cells. Beyond their structural roles, these molecules also play key functions in facilitating cellular communication and modulating recognition mechanisms. Further, glycans and glycoconjugates prove invaluable as biomarkers in disease diagnostics, particularly in cancer, where aberrant glycosylation patterns offer critical diagnostic cues. Furthermore, the review explores their promising therapeutic applications, ranging from the development of glycan-based nanomaterials for precise drug delivery to innovative interventions in cancer treatment. This review endeavors to comprehensively explore the intricate functions of glycans and glycoconjugates, with the primary goal of offering valuable insights into their extensive implications in both health and disease. Encompassing a broad spectrum of biological processes, the focus of the review aims to provide a comprehensive understanding of the significant roles played by glycans and glycoconjugates.


Asunto(s)
Glicoconjugados , Polisacáridos , Humanos , Polisacáridos/química , Polisacáridos/metabolismo , Glicoconjugados/química , Glicoconjugados/metabolismo , Animales , Neoplasias/metabolismo , Glicosilación , Glicoproteínas/química , Glicoproteínas/metabolismo
16.
Cell Mol Biol Lett ; 29(1): 46, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561669

RESUMEN

BACKGROUND: Small extracellular vesicles (sEV) are closely associated with the development and metastasis of many types of mammalian cancer. Glycoconjugates are highly expressed on sEV and play important roles in sEV biogenesis and their interaction with other cells. However, the study on vesicular glycoconjugates are far behind proteins and nucleic acids. Especially, the functions of sialic acids which are the terminal components of glycoconjugates, are poorly understood in sEV. METHODS: Sialic acid levels on sEV from plasma and bladder cancer cells were determined by ELISA and lectin blotting. Effects of sialylation on sEV uptake were determined by flow cytometry. Vesicular glycoproteins bearing sialic acids responsible for sEV uptake was identified by proteomics and density gradient centrifugation, and their site-specific sialylation functions were assayed by N-glycosylation site mutation. Effects of integrin ß1 bearing sialic acids on the pro-metastatic function of sEV in vivo were explored using Balb/c nu/nu mice. RESULTS: (1) Increased sialic acid levels were observed in sEV from malignant bladder cancer cells. (2) Elimination of sialic acids on sEV impaired sEV uptake by recipient cells. (3) Vesicular integrin ß1 bearing sialic acids was identified to play a key role in sEV uptake. (4) Desialylation of the hybrid domain of vesicular integrin ß1 inhibited its binding to matrix fibronectin, and reduced sEV entry into recipient cells. (5) Sialylation on integrin ß1 affected pro-metastatic function of sEV in Balb/c nu/nu mice. CONCLUSIONS: Taken together, our findings indicate important functional roles of sialic acids in sEV uptake and reprogramming plasticity of surrounding normal epithelial cells.


Asunto(s)
Vesículas Extracelulares , Neoplasias de la Vejiga Urinaria , Animales , Ratones , Vesículas Extracelulares/metabolismo , Glicoconjugados , Integrina beta1/metabolismo , Mamíferos , Ácido N-Acetilneuramínico/metabolismo , Ácidos Siálicos/metabolismo
17.
Anal Chem ; 96(12): 5056-5064, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38497564

RESUMEN

Aptamer-based detection targeting glycoconjugates has attracted significant attention for its remarkable potential in identifying structural changes in saccharides in different stages of various diseases. However, the challenges in screening aptamers for small carbohydrates or glycoconjugates, which contain highly flexible and diverse glycosidic bonds, have hindered their application and commercialization. In this study, we investigated the binding conformations between three glycosidic bond-containing small molecules (GlySMs; glucose, N-acetylneuraminic acid, and neomycin) and their corresponding aptamers in silico, and analyzed factors contributing to their binding affinities. Based on the findings, a novel binding mechanism was proposed, highlighting the central role of the stem structure of the aptamer in binding and recognizing GlySMs and the auxiliary role of the mismatched bases in the adjacent loop. Guided by this binding mechanism, an aptamer with a higher 6'-sialyllactose binding affinity was designed, achieving a KD value of 4.54 ± 0.64 µM in vitro through a single shear and one mutation. The binding mechanism offers crucial guidance for designing high-affinity aptamers, enhancing the virtual screening efficiency for GlySMs. This streamlined workflow filters out ineffective binding sites, accelerating aptamer development and providing novel insights into glycan-nucleic acid interactions.


Asunto(s)
Aptámeros de Nucleótidos , Glicósidos , Aptámeros de Nucleótidos/química , ADN de Cadena Simple , Sitios de Unión , Glicoconjugados , Técnica SELEX de Producción de Aptámeros
18.
Methods Mol Biol ; 2793: 143-159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38526729

RESUMEN

The M13 phage platform is a stable and monodisperse nanoscale carrier, which can be modified with different molecules by chemical conjugation strategies. Here, we describe M13 phage acylated on pVIII protein with a dibenzocyclooctyne reacting with azido glycan to yield 30-1500 copy numbers of glycan per phage and monitored by MALDI-TOF spectrometry to generate multivalent glycoconjugates that contain desired densities of glycans. We prepared the liquid glycan arrays (LiGA) such that both the structure and density of glycans were encoded in the DNA of the bacteriophage. The LiGA can be used to validate the binding properties of glycans to purified lectins and explore the effect of glycan density on such binding. From a mixture of multivalent glycan probes, LiGAs can also identify the glycoconjugates with optimal avidity necessary for binding to lectins on living cells in vitro and live animals in vivo.


Asunto(s)
Lectinas , Polisacáridos , Animales , Polisacáridos/metabolismo , Lectinas/metabolismo , Glicoconjugados
19.
Carbohydr Polym ; 332: 121928, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431400

RESUMEN

Published work has shown that glycoconjugate vaccines, based on truncated detoxified lipopolysaccharides from Moraxella catarrhalis attached through their reducing end to a carrier protein, gave good protection for all three serotypes A, B, and C in mice immunisation experiments. The (from the non-reducing end) truncated LPS structures were obtained from bacterial glycosyl transferase knock-out mutants and contained the de-esterified Lipid A, two Kdo residues and five glucose moieties. This work describes the chemical synthesis of the same outer Moraxella LPS structures, spacer-equipped and further truncated from the reducing end, i.e., without the Lipid A part and containing four or five glucose moieties or four glucose moieties and one Kdo residue, and their subsequent conjugation to a carrier protein via a five­carbon bifunctional spacer to form glycoconjugates. Immunisation experiments both in mice and rabbits of these gave a good antibody response, being 2-7 times that of pre-immune sera. However, the sera produced only recognized the immunizing glycan immunogens and failed to bind to native LPS or whole bacterial cells. Comparative molecular modelling of three alternative antigens shows that an additional (2 â†’ 4)-linked Kdo residue, not present in the synthetic structures, has a significant impact on the shape and volume of the molecule, with implications for antigen binding and cross-reactivity.


Asunto(s)
Lipopolisacáridos , Moraxella catarrhalis , Conejos , Animales , Ratones , Lipopolisacáridos/química , Lípido A , Anticuerpos Antibacterianos , Glicoconjugados , Oligosacáridos/química , Glucosa , Proteínas Portadoras
20.
Front Immunol ; 15: 1292588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495885

RESUMEN

Aberrant glycosylation patterns of glycoproteins and glycolipids have long been recognized as one the major hallmarks of cancer cells that has led to numerous glycoconjugate vaccine attempts. These abnormal glycosylation profiles mostly originate from the lack of key glycosyltransferases activities, mutations, over expressions, or modifications of the requisite chaperone for functional folding. Due to their relative structural simplicity, O-linked glycans of the altered mucin family of glycoproteins have been particularly attractive in the design of tumor associated carbohydrate-based vaccines. Several such glycoconjugate vaccine formulations have generated potent monoclonal anti-carbohydrate antibodies useful as diagnostic and immunotherapies in the fight against cancer. Paradoxically, glycoproteins related to enveloped viruses also express analogous N- and O-linked glycosylation patterns. However, due to the fact that viruses are not equipped with the appropriate glycosyl enzyme machinery, they need to hijack that of the infected host cells. Although the resulting N-linked glycans are very similar to those of normal cells, some of their O-linked glycan patterns often share the common structural simplicity to those identified on tumor cells. Consequently, given that both cancer cells and viral glycoproteins share both common N- and O-linked glycoepitopes, glycoconjugate vaccines could be highly attractive to generate potent immune responses to target both conditions.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Virus , Glicoproteínas , Carbohidratos , Polisacáridos/metabolismo , Glicoconjugados , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...