Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.793
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 29-37, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39097898

RESUMEN

Garlic (Allium sativum) is recognized as functional food, rich in bioactive compounds that can combat diseases associated with oxidative stress. This study aims to investigate the protective potential of aqueous garlic extract against hemolysis and oxidation. Despite being caused by membrane fragility, hemolysis can lead to inflammation through the oxidation of its products, and in some cases, even exacerbate it in certain pathological contexts. Supplementation with antioxidant molecules can improves oxidative status, in this study, we selected garlic, an excellent functional food, and targeted its effects using aqueous extract and pure molecules. The aqueous garlic extract was prepared under safe conditions and subjected to toxicity on human neutrophils and red blood cells before experimentation. The results indicate that aqueous garlic extract significantly reduces hemolysis with a maximum protection of  98. 74 ± 1. 08 % at a concentration of 5µg/ml. Additionally, experiments were conducted with pure compounds found in garlic such as quercetin, gallic acid, and caffeic acid. The outcomes show that quercetin reduces hemolysis of RBC with a maximum protection of  88. 8 ± 2. 89 % at 20 µM followed by caffeic acid and gallic acid. The action mechanism of the extract was tested on human neutrophil cells, the extract significantly reduced luminol-amplified chemiluminescence of PMA-stimulated neutrophils up to 50 % at 10 µg/ml in addition to its ability to directly scavenge hydrogen peroxide. Our results suggest that aqueous garlic extract exerts promising anti-inflammatory activity in vitro. Through its dual protection against hemolysis and Ros production, garlic may indirectly prevent inflammation reducing the oxidation of hemolysis products. These abilities make garlic aqueous extract promising candidate for improving cardiovascular health, reducing oxidative stress and modulating immunity.


Asunto(s)
Antioxidantes , Eritrocitos , Ajo , Hemólisis , Inflamación , Neutrófilos , Oxidación-Reducción , Extractos Vegetales , Ajo/química , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hemólisis/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Inflamación/prevención & control , Inflamación/tratamiento farmacológico , Oxidación-Reducción/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Agua/química
2.
Nanoscale ; 16(28): 13613-13626, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38958597

RESUMEN

Over the past several years, a significant increase in the expanding field of biomaterial sciences has been observed due to the development of biocompatible materials based on peptide derivatives that have intrinsic therapeutic potential. In this report, we synthesized nucleobase functionalized peptide derivatives (NPs). Hydrogelation in the synthesized NPs was induced by increasing their hydrophobicity with an aromatic moiety. The aggregation behavior of the NPs was analyzed by performing molecular dynamics simulations and DOSY NMR experiments. We performed circular dichroism (CD), thioflavin-T binding and PXRD to characterize the supramolecular aggregation in the NP1 hydrogel. The mechanical strength of the NP1 hydrogel was tested by performing rheological experiments. TEM and SEM experiments were performed to investigate the morphology of the NP1 hydrogel. The biocompatibility of the newly synthesized NP1 hydrogel was investigated using McCoy and A549 cell lines. The hemolytic activity of the NP1 hydrogel was examined in human blood cells. The stability of the newly formed NP1 hydrogel was examined using proteinase K and α-chymotrypsin. The NP1 hydrogel was used for in vitro wound healing. Western blotting, qRT-PCR and DCFDA assay were performed to determine the anti-inflammatory activity of the NP1 hydrogel. The synthesized NP1 hydrogel also exhibits antibacterial efficacy.


Asunto(s)
Antiinflamatorios , Hidrogeles , Péptidos , Cicatrización de Heridas , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Células A549 , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Hemólisis/efectos de los fármacos , Animales , Simulación de Dinámica Molecular , Ratones , Línea Celular
3.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000133

RESUMEN

There is growing evidence that inflammation impairs erythrocyte structure and function. We assessed the impact of mild systemic inflammation on erythrocyte fragility in three different settings. In order to investigate causation, erythrocyte osmotic fragility was measured in mice challenged with a live attenuated bacterial strain to induce low-grade systemic inflammation; a significant increase in erythrocyte osmotic fragility was observed. To gather evidence that systemic inflammation is associated with erythrocyte fragility in humans, two observational studies were conducted. First, using a retrospective study design, the relationship between reticulocyte-based surrogate markers of haemolysis and high-sensitivity C-reactive protein was investigated in 9292 healthy participants of the UK Biobank project. Secondly, we prospectively assessed the relationship between systemic inflammation (measured by the urinary neopterin/creatinine ratio) and erythrocyte osmotic fragility in a mixed population (n = 54) of healthy volunteers and individuals with long-term medical conditions. Both human studies were in keeping with a relationship between inflammation and erythrocyte fragility. Taken together, we conclude that mild systemic inflammation increases erythrocyte fragility and may contribute to haemolysis. Further research is needed to assess the molecular underpinnings of this pathway and the clinical implications in inflammatory conditions.


Asunto(s)
Proteína C-Reactiva , Eritrocitos , Hemólisis , Inflamación , Fragilidad Osmótica , Humanos , Inflamación/sangre , Inflamación/metabolismo , Eritrocitos/metabolismo , Masculino , Animales , Ratones , Femenino , Persona de Mediana Edad , Proteína C-Reactiva/metabolismo , Anciano , Adulto , Estudios Retrospectivos , Biomarcadores/orina , Biomarcadores/sangre , Neopterin/orina , Neopterin/sangre
4.
World J Microbiol Biotechnol ; 40(9): 265, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990361

RESUMEN

The increasing prevalence of infections related to methicillin-resistant Staphylococcus aureus (MRSA) necessitates the exploration of innovative therapeutic strategies that diverge from conventional antibiotic treatments. This is imperative to effectively combat resistance and manage these infections. The adoption of antivirulence strategies has emerged as a particularly promising avenue. This approach applies a heightened selective pressure on pathogens, thereby diminishing the likelihood of bacteria evolving resistance to antibiotics. In our pursuit of novel therapeutics for treating MRSA infections, we have focused on agents that inhibit the virulence of S. aureus without impeding its growth, aiming to minimize the development of drug resistance. α-Hemolysin, a critical virulence factor encoded by the hla gene, is a cytotoxin that forms pores in host cell membranes and plays a pivotal role in the progression of disease during bacterial infections. Herein, we identified that norwogonin could effectively inhibit Hla production via targeting agrAC, a crucial protein in quorum sensing, resulting in dose-dependent inhibition of hemolytic activity without suppressing S. aureus growth. In vitro assays illustrated that norwogonin decreased the thermal stability of agrAC, providing evidence of interaction between norwogonin and agrAC. Meanwhile, norwogonin alleviated Hla-mediated A549 cell damage and reduced lactate dehydrogenase release. In vivo studies suggested that norwogonin treatment blocked the establishment of a mouse model of pneumonia caused by S. aureus USA300. Notably, norwogonin enhanced the antibacterial potency of oxacillin. In conclusion, norwogonin is a promising candidate for treating S. aureus infections, offering a novel alternative to traditional antibiotics by targeting virulence factors and enhancing the efficacy of existing treatments.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Proteínas Hemolisinas , Staphylococcus aureus Resistente a Meticilina , Factores de Virulencia , Animales , Femenino , Humanos , Ratones , Células A549 , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Proteínas Hemolisinas/metabolismo , Hemólisis/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones Endogámicos BALB C , Percepción de Quorum/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Virulencia/efectos de los fármacos , Factores de Virulencia/metabolismo
7.
Toxins (Basel) ; 16(7)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39057948

RESUMEN

Currently, the search for new alternatives to conventional antibiotics to combat bacterial resistance is an urgent task, as many microorganisms threaten human health due to increasing bacterial resistance to traditional medicines. Thus, new molecules such as antimicrobial peptides have emerged as promising alternatives because of their low induction of resistance and broad spectrum of action. In this context, in the past few years, our research group has synthesized and characterized a peptide derived from the C-terminal region of the Lys49 PLA2-like BthTX-I, named p-BthTX-I. After several studies, the peptide (p-BthTX-I)2K was proposed as the molecule with the most considerable biotechnological potential. As such, the present work aimed to evaluate whether the modifications made on the peptide (p-BthTX-I)2K can be applied to other molecules originating from the C-terminal region of PLA2-like Lys49 from snake venoms. The peptides were obtained through the solid-phase peptide synthesis technique, and biochemical and functional characterization was carried out using dichroism techniques, mass spectrometry, antimicrobial activity against ESKAPE strains, hemolytic activity, and permeabilization of lipid vesicles. The antimicrobial activity of the peptides was promising, especially for the peptides (p-AppK)2K and (p-ACL)2K, which demonstrated activity against all strains that were tested, surpassing the model molecule (p-BthTX-I)2K in most cases and maintaining low hemolytic activity. The modifications initially proposed for the (p-BthTX-I)2K peptide were shown to apply to other peptides derived from Lys49 PLA2-like from snake venoms, showing promising results for antimicrobial activity. Future assays comparing the activity of the dimers obtained through this strategy with the monomers of these peptides should be carried out.


Asunto(s)
Fosfolipasas A2 , Fosfolipasas A2/farmacología , Fosfolipasas A2/química , Hemólisis/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/síntesis química , Animales , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Humanos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Bacterias/efectos de los fármacos
8.
World J Microbiol Biotechnol ; 40(9): 286, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083107

RESUMEN

Staphylococcus aureus is a gram-positive bacteria, and its virulence factors can cause many kinds of infections, such as pneumonia, sepsis, enteritis and osteomyelitis. Traditional antibiotics can not only kill bacteria, but also easily lead to bacterial resistance. Jingfang Mixture (JFM) has the effects of inducing sweating and relieving the exterior, dispelling wind and eliminating dampness, and is commonly used in clinic to prevent and treat epidemic diseases and infectious diseases. The main purpose of this study is to explore the inhibitory effect of JFM on alpha-hemolysin (Hla) of S. aureus and to alleviate the damage caused by Hla. We found that JFM could inhibit the hemolytic activity, transcription level and neutralizing activity of Hla in a dose-dependent manner at the concentrations of 125, 250 and 500 µg/mL, without affecting the growth of bacteria. In addition, JFM reduced the damage of Hla to A549 cells and the release of lactate dehydrogenase (LDH). We also observed that in the S. aureus - induced pneumonia mouse model, JFM could significantly prolong the life of mice, reduce the bacterial load in the lungs, significantly improve the pathological state of the lungs and alleviate the damage caused by inflammatory factors, and the pathogenicity of gene deletion strain DU 1090 of S. aureus to pneumonia mice was also significantly reduced. In conclusion, this study proved that JFM is a potential drug against S. aureus infection, and this study provided a preliminary study for better guidance of clinical drug use.


Asunto(s)
Antibacterianos , Toxinas Bacterianas , Modelos Animales de Enfermedad , Proteínas Hemolisinas , Hemólisis , Staphylococcus aureus , Proteínas Hemolisinas/metabolismo , Animales , Staphylococcus aureus/efectos de los fármacos , Ratones , Humanos , Células A549 , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Antibacterianos/farmacología , Hemólisis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Pulmón/microbiología , Pulmón/efectos de los fármacos , Factores de Virulencia/genética , Neumonía Estafilocócica/tratamiento farmacológico , Neumonía Estafilocócica/microbiología , Femenino , Ratones Endogámicos BALB C , Carga Bacteriana/efectos de los fármacos
9.
Sci Rep ; 14(1): 16029, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992151

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common enzymopathies worldwide. Patients with G6PD deficiency are usually asymptomatic throughout their life but can develop acute hemolysis after exposure to free radicals or certain medications. Several studies have shown that serum miRNAs can be used as prognostic biomarkers in various types of hemolytic anemias. However, the impact of G6PD deficiency on circulating miRNA profiles is largely unknown. The present study aimed to assess the use of serum miRNAs as biomarkers for detecting hemolysis in the nonacute phase of G6PD deficiency. Patients with severe or moderate G6PD Viangchan (871G > A) deficiency and normal G6PD patients were enrolled in the present study. The biochemical hemolysis indices were normal in the three groups, while the levels of serum miR-451a, miR-16, and miR-155 were significantly increased in patients with severe G6PD deficiency. In addition, 3D analysis of a set of three miRNAs (miR-451a, miR-16, and miR-155) was able to differentiate G6PD-deficient individuals from healthy individuals, suggesting that these three miRNAs may serve as potential biomarkers for patients in the nonhemolytic phase of G6PD deficiency. In conclusion, miRNAs can be utilized as additional biomarkers to detect hemolysis in the nonacute phase of G6PD deficiency.


Asunto(s)
Biomarcadores , Deficiencia de Glucosafosfato Deshidrogenasa , Hemólisis , MicroARNs , Humanos , Deficiencia de Glucosafosfato Deshidrogenasa/sangre , Deficiencia de Glucosafosfato Deshidrogenasa/diagnóstico , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Biomarcadores/sangre , MicroARNs/sangre , Masculino , Adulto , Femenino , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/sangre , Persona de Mediana Edad , Estudios de Casos y Controles
11.
Biomolecules ; 14(7)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39062495

RESUMEN

Parasite-derived new permeation pathways (NPPs) expressed at the red blood cell (RBC) membrane enable Plasmodium parasites to take up nutrients from the plasma to facilitate their survival. Thus, NPPs represent a potential novel therapeutic target for malaria. The putative channel component of the NPP in the human malaria parasite P. falciparum is encoded by mutually exclusively expressed clag3.1/3.2 genes. Complicating the study of the essentiality of these genes to the NPP is the addition of three clag paralogs whose contribution to the P. falciparum channel is uncertain. Rodent malaria P. berghei contains only two clag genes, and thus studies of P. berghei clag genes could significantly aid in dissecting their overall contribution to NPP activity. Previous methods for determining NPP activity in a rodent model have utilised flux-based assays of radioisotope-labelled substrates or patch clamping. This study aimed to ratify a streamlined haemolysis assay capable of assessing the functionality of P. berghei NPPs. Several isotonic lysis solutions were tested for their ability to preferentially lyse infected RBCs (iRBCs), leaving uninfected RBCs (uRBCs) intact. The osmotic lysis assay was optimised and validated in the presence of NPP inhibitors to demonstrate the uptake of the lysis solution via the NPPs. Guanidinium chloride proved to be the most efficient reagent to use in an osmotic lysis assay to establish NPP functionality. Furthermore, following treatment with guanidinium chloride, ring-stage parasites could develop into trophozoites and schizonts, potentially enabling use of guanidinium chloride for parasite synchronisation. This haemolysis assay will be useful for further investigation of NPPs in P. berghei and could assist in validating its protein constituents.


Asunto(s)
Eritrocitos , Guanidina , Hemólisis , Malaria , Plasmodium berghei , Plasmodium berghei/efectos de los fármacos , Animales , Hemólisis/efectos de los fármacos , Guanidina/farmacología , Eritrocitos/parasitología , Eritrocitos/metabolismo , Eritrocitos/efectos de los fármacos , Ratones , Malaria/tratamiento farmacológico , Malaria/parasitología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Humanos
12.
Biomolecules ; 14(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39062526

RESUMEN

Red blood cell (RBC) storage solutions have evolved significantly over the past decades to optimize the preservation of cell viability and functionality during hypothermic storage. This comprehensive review provides an in-depth analysis of the effects of various storage solutions and conditions on critical RBC parameters during refrigerated preservation. A wide range of solutions, from basic formulations such as phosphate-buffered saline (PBS), to advanced additive solutions (ASs), like AS-7 and phosphate, adenine, glucose, guanosine, saline, and mannitol (PAGGSM), are systematically compared in terms of their ability to maintain key indicators of RBC integrity, including adenosine triphosphate (ATP) levels, morphology, and hemolysis. Optimal RBC storage requires a delicate balance of pH buffering, metabolic support, oxidative damage prevention, and osmotic regulation. While the latest alkaline solutions enable up to 8 weeks of storage, some degree of metabolic and morphological deterioration remains inevitable. The impacts of critical storage conditions, such as the holding temperature, oxygenation, anticoagulants, irradiation, and processing methods, on the accumulation of storage lesions are also thoroughly investigated. Personalized RBC storage solutions, tailored to individual donor characteristics, represent a promising avenue for minimizing storage lesions and enhancing transfusion outcomes. Further research integrating omics profiling with customized preservation media is necessary to maximize post-transfusion RBC survival and functions. The continued optimization of RBC storage practices will not only enhance transfusion efficacy but also enable blood banking to better meet evolving clinical needs.


Asunto(s)
Conservación de la Sangre , Supervivencia Celular , Eritrocitos , Eritrocitos/metabolismo , Eritrocitos/citología , Humanos , Conservación de la Sangre/métodos , Supervivencia Celular/efectos de los fármacos , Hemólisis/efectos de los fármacos , Glucosa/metabolismo , Adenosina Trifosfato/metabolismo , Manitol/farmacología
13.
J Tradit Chin Med ; 44(4): 804-712, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39066541

RESUMEN

OBJECTIVE: To evaluate phytochemicals and in vitro biological potential of flowers, leaves and stem extracts of Rosa arvensis. METHODS: Presence of twenty secondary metabolites was confirmed and then phenolic and flavonoid contents were quantified spectrophotometrically. Fourier Transform Infrared spectroscopy was conducted to ascertain functional groups and antioxidant potential was examined using 2,2-diphenyl-1-picrylhydrazyl scavenging activity, total antioxidant capacity and total reducing power assays. Human erythrocytes were used to assess anti-hemolytic activity and five bacterial strains were examined to determine antibacterial potential of plant extracts. Radish seeds were used to perform phytotoxic activity and cytotoxic potential was evaluated via brine shrimps and PC3 cell lines. RESULTS: Highest phenolic contents were detected in the methanolic extract of Rosa arvensis flower (RAFM) [(151.635 ± 0.005) gallic acid equivalent mg/g] and highest flavonoid contents in the chloroform leaf extract (RALC) [(108.228 ± 0.004) quercetin equivalent mg/g]. Fourier-transform infrared spectroscopy analysis showed the presence of wide range of functional groups. The antioxidant assays indicated highest DPPH scavenging activity [IC50 (23.5 ± 0.6) µg/mL] in the methanolic stem extract (RASM), highest total antioxidant capacity [(265.1 ± 0.9) µg/mL] in RAFM and highest reducing potential [(209.9 ± 0.6) µg/mL] in leaf extract (RALM). Highest anti-hemolytic activity [(90.0 ± 0.5) µg/mL] was recorded in RAFM and brine shrimp cytotoxicity potential [(52.3 ± 0.3) µg/mL] in RASM. The antimicrobial activity was detected highest [(21.1 ± 0.5) mm inhibition zones] in RALM against Streptococcus aureus. In the end, anti-inflammatory and anti-cancer activity results depicted less than 50 % inhibition in the methanolic extracts. CONCLUSIONS: Our findings will be helpful in designing pharmaceutical regimens and therefore, more studies can be recommended to isolate and characterize compounds associated with the biological activities of Rosa arvensis.


Asunto(s)
Antiinflamatorios , Antioxidantes , Flores , Fitoquímicos , Extractos Vegetales , Hojas de la Planta , Antioxidantes/farmacología , Antioxidantes/química , Humanos , Hojas de la Planta/química , Flores/química , Fitoquímicos/farmacología , Fitoquímicos/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Animales , Tallos de la Planta/química , Hemólisis/efectos de los fármacos , Rosa/química , Artemia/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química
14.
Platelets ; 35(1): 2383642, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39072582

RESUMEN

Hemolysis is associated with thrombosis and vascular dysfunction, which are the pathological components of many diseases. Hemolytic products, including hemoglobin and hemin, activate platelets (PLT). Despite its activation, the effect of hemolysis on platelet clearance remains unclear, It is critical to maintain a normal platelet count and ensure that circulating platelets are functionally viable. In this study, we used hemin, a degradation product of hemoglobin, as a potent agonist to treat platelets and simulate changes in vivo in mice. Hemin treatment induced activation and morphological changes in platelets, including an increase in intracellular Ca2+ levels, phosphatidylserine (PS) exposure, and cytoskeletal rearrangement. Fewer hemin-treated platelets were cleared by macrophages in the liver after transfusion than untreated platelets. Hemin bound to glycoprotein Ibα (GPIbα), the surface receptor in hemin-induced platelet activation and aggregation. Furthermore, hemin decreased GPIbα desialylation, as evidenced by reduced Ricinus communis agglutinin I (RCA- I) binding, which likely extended the lifetime of such platelets in vivo. These data provided new insight into the mechanisms of GPIbα-mediated platelet activation and clearance in hemolytic disease.


What is the context? Hemolysis is a primary hematological disease. Hemolysis is a pathological complication of several diseases.Hemin, a degradation product of cell-free hemoglobin, has been proven to be a more potent agonist than hemoglobin for directly activating platelets.Platelet membrane glycoproteins (GP), including GPIb-IX and GPIIb/IIIa complexes, play crucial roles in platelet hemostasis.Desialylation (loss of sialic acid residues) of GPIbα, is believed to regulate physiological platelet clearance through liver macrophages and hepatocytes.What is new? In this study, we evaluated the effects of hemolysis on platelet clearance. We first analyzed the influence of hemin at 0-50 µM on platelets in vitro before exploring the mechanism underlying hemin-induced platelet activation and its role in platelet clearance in vitro and in vivo.Our analyses suggest that: Hemin bound to GPIbα on the platelet surface with high affinity.Platelet clearance occurred slowly in the liver and spleen after hemin treatment.Platelets exhibited significant significantly reduced GPIbα surface expression and desialylation after hemin treatment.Platelets exhibited significant significantly reduced GPIbα surface expression and desialylation after hemin treatment.What is the impact? This study provides new insights into the role of hemin in the mechanisms of GPIbα-mediated platelets activation and clearance in diseases associated with hemolysis.


Asunto(s)
Plaquetas , Hemina , Complejo GPIb-IX de Glicoproteína Plaquetaria , Ratones , Animales , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Hemina/farmacología , Hemina/metabolismo , Humanos , Activación Plaquetaria/efectos de los fármacos , Hemólisis/efectos de los fármacos , Unión Proteica
15.
Anal Chim Acta ; 1312: 342766, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38834280

RESUMEN

BACKGROUND: Intravascular hemolysis is associated with massive release of hemoglobin and consequently labile heme into the blood, resulting in prothrombotic and proinflammatory events in patients. Though heme is well-known to participate in these adverse effects, it is not monitored. Instead, haptoglobin and hemoglobin serve as clinical biomarkers. The quantification of labile heme together with hemoglobin, however, should be considered in clinical diagnosis as well, to obtain a complete picture of the hemolytic state in patients. So far, quantification techniques for labile heme were not yet systematically analyzed and compared for their clinical application potential, especially in the presence of hemoglobin. RESULTS: Two commercial assays (Heme Assay Kit®, Hemin Assay Kit®) and five common approaches (pyridine hemochromogen assay, apo-horseradish peroxidase-based assay, UV/Vis spectroscopy, HPLC, mass spectrometry) were analyzed concerning their linearity, accuracy, and precision, as well as their ability to distinguish between hemoglobin-bound heme and labile heme. Further, techniques for the quantification of hemoglobin (Harboe method, SLS method, Hemastix®) were included to study their selectivity for hemoglobin and potential interference by the presence of labile heme. Both, indirect and direct approaches were suitable for the determination of a wide concentration of heme (∼0.02-45 µM) and hemoglobin (∼0.002-17 µM). A clear distinction between hemoglobin-bound heme and labile heme with one method was not possible. Thus, a novel combined approach is presented and applied to human and porcine plasma samples for the determination of hemoglobin and labile heme. SIGNIFICANCE: Our results demonstrate the need to develop improved techniques to differentiate labile and protein-bound heme for early detection of intravascular hemolysis. Here, we present a novel strategy by combining two spectroscopic methods, which is most reliable as an easy-to-use tool for the determination of hemoglobin and heme levels in plasma samples for the diagnosis of intravascular hemolysis and in basic biomedical research.


Asunto(s)
Hemo , Hemoglobinas , Hemólisis , Hemo/química , Hemo/análisis , Hemoglobinas/análisis , Humanos , Animales , Porcinos , Cromatografía Líquida de Alta Presión
16.
PeerJ ; 12: e17490, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903886

RESUMEN

Background: Pathogenic bacteria are the cause of most skin diseases, but issues such as resistance and environmental degradation drive the need to research alternative treatments. It is reported that silk cocoon extract possesses antioxidant properties. During silk processing, the degumming of silk cocoons creates a byproduct that contains natural active substances. These substances were found to have inhibitory effects on bacterial growth, DNA synthesis, the pathogenesis of hemolysis, and biofilm formation. Thus, silk cocoon extracts can be used in therapeutic applications for the prevention and treatment of skin pathogenic bacterial infections. Methods: The extract of silk cocoons with pupae (SCP) and silk cocoons without pupae (SCWP) were obtained by boiling with distilled water for 9 h and 12 h, and were compared to silkworm pupae (SP) extract that was boiled for 1 h. The active compounds in the extracts, including gallic acid and quercetin, were determined using high-performance liquid chromatography (HPLC). Furthermore, the total phenolic and flavonoid content in the extracts were investigated using the Folin-Ciocalteu method and the aluminum chloride colorimetric method, respectively. To assess antioxidant activity, the extracts were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Additionally, the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of silk extracts and phytochemical compounds were determined against skin pathogenic bacteria. This study assessed the effects of the extracts and phytochemical compounds on growth inhibition, biofilm formation, hemolysis protection, and DNA synthesis of bacteria. Results: The HPLC characterization of the silk extracts showed gallic acid levels to be the highest, especially in SCP (8.638-31.605 mg/g extract) and SP (64.530 mg/g extract); whereas quercetin compound was only detected in SCWP (0.021-0.031 mg/g extract). The total phenolics and flavonoids in silk extracts exhibited antioxidant and antimicrobial activity. Additionally, SCP at 9 h and 12 h revealed the highest anti-bacterial activity, with the lowest MIC and MBC of 50-100 mg/mL against skin pathogenic bacteria including Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Cutibacterium acnes and Pseudomonas aeruginosa. Hence, SCP extract and non-sericin compounds containing gallic acid and quercetin exhibited the strongest inhibition of both growth and DNA synthesis on skin pathogenic bacteria. The suppression of bacterial pathogenesis, including preformed and matured biofilms, and hemolysis activity, were also revealed in SCP extract and non-sericin compounds. The results show that the byproduct of silk processing can serve as an alternative source of natural phenolic and flavonoid antioxidants that can be used in therapeutic applications for the prevention and treatment of pathogenic bacterial skin infections.


Asunto(s)
Antibacterianos , Antioxidantes , Bombyx , Seda , Animales , Bombyx/química , Antioxidantes/farmacología , Antioxidantes/química , Seda/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Biopelículas/efectos de los fármacos , Pupa/efectos de los fármacos , Radicales Libres/metabolismo , Pruebas de Sensibilidad Microbiana , Hemólisis/efectos de los fármacos
17.
Front Cell Infect Microbiol ; 14: 1410385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903940

RESUMEN

Introduction: Stenotrophomonas is a prominent genus owing to its dual nature. Species of this genus have many applications in industry and agriculture as plant growth-promoting rhizobacteria and microbial biological control agents, whereas species such as Stenotrophomonas maltophilia are considered one of the leading gram-negative multi-drug-resistant bacterial pathogens because of their high contribution to the increase in crude mortality and significant clinical challenge. Pathogenic Stenotrophomonas species and most clinical isolates belong to the Stenotrophomonas maltophilia complex (SMc). However, a strain highly homologous to S. terrae was isolated from a patient with pulmonary tuberculosis (TB), which aroused our interest, as S. terrae belongs to a relatively distant clade from SMc and there have been no human association reports. Methods: The pathogenicity, immunological and biochemical characteristics of 610A2T were systematically evaluated. Results: 610A2T is a new species of genus Stenotrophomonas, which is named as Stenotrophomonas pigmentata sp. nov. for its obvious brown water-soluble pigment. 610A2T is pathogenic and caused significant weight loss, pulmonary congestion, and blood transmission in mice because it has multiple virulence factors, haemolysis, and strong biofilm formation abilities. In addition, the cytokine response induced by this strain was similar to that observed in patients with TB, and the strain was resistant to half of the anti-TB drugs. Conclusions: The pathogenicity of 610A2T may not be weaker than that of S. maltophilia. Its isolation extended the opportunistic pathogenic species to all 3 major clades of the genus Stenotrophomonas, indicating that the clinical importance of species of Stenotrophomonas other than S. maltophilia and potential risks to biological safety associated with the use of Stenotrophomonas require more attention.


Asunto(s)
Biopelículas , Infecciones por Bacterias Gramnegativas , Filogenia , Stenotrophomonas , Stenotrophomonas/aislamiento & purificación , Stenotrophomonas/genética , Stenotrophomonas/clasificación , Stenotrophomonas/patogenicidad , Animales , Infecciones por Bacterias Gramnegativas/microbiología , Biopelículas/crecimiento & desarrollo , Ratones , Factores de Virulencia/genética , ARN Ribosómico 16S/genética , Humanos , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Modelos Animales de Enfermedad , Hemólisis , Técnicas de Tipificación Bacteriana
18.
Sci Rep ; 14(1): 14110, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898117

RESUMEN

Newly synthesized gemini quaternary ammonium salts (QAS) with different counterions (bromide, hydrogen chloride, methylcarbonate, acetate, lactate), chain lengths (C12, C14, C16) and methylene linker (3xCH2) were tested. Dihydrochlorides and dibromides with 12 carbon atoms in hydrophobic chains were characterized by the highest biological activity against planktonic forms of yeast and yeast-like fungi. The tested gemini surfactants also inhibited the production of filaments by C. albicans. Moreover, they reduced the adhesion of C. albicans cells to the surfaces of stainless steel, silicone and glass, and slightly to polystyrene. In particular, the gemini compounds with 16-carbon alkyl chains were most effective against biofilms. It was also found that the tested surfactants were not cytotoxic to yeast cells. Moreover, dimethylcarbonate (2xC12MeCO3G3) did not cause hemolysis of sheep erythrocytes. Dihydrochlorides, dilactate and diacetate showed no mutagenic potential.


Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Compuestos de Amonio Cuaternario , Biopelículas/efectos de los fármacos , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/síntesis química , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Candida albicans/efectos de los fármacos , Animales , Ovinos , Tensoactivos/farmacología , Tensoactivos/síntesis química , Tensoactivos/química , Hemólisis/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Adhesión Celular/efectos de los fármacos , Acero Inoxidable/química
19.
J Mater Sci Mater Med ; 35(1): 35, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900360

RESUMEN

Bioabsorbable sutures can improve the medical functions of existing non-absorbable sutures, and may produce new medical effects, and are expected to become a new generation of medical degradable materials. In this study, the cytocompatibility of triclosan coated polyglactin910 sutures (CTS-PLGA910) was analyzed and different concentrations of sutures were prepared. The effects of sutures on the cytotoxicity and cell proliferation of HUVEC were studied by CCK-8 assay. The hemolysis, total antioxidant capacity (T-AOC) activity and nitric oxide (NO) content were investigated to improve the blood compatibility of sutures. The results showed that the hemolysis rate of CTS-PLGA910 was less than 5%. After treatment on HUVEC cells for 48 and 72 h, there was no significant change in NO content in CTS-PLGA910 groups compared with the control group, while T-AOC activity and antioxidant capacity were significantly increased in medium and high dose groups. In summary, the blood compatibility and cell compatibility were significantly improved, which provided a basis for the clinical application of sutures in the future.


Asunto(s)
Proliferación Celular , Materiales Biocompatibles Revestidos , Células Endoteliales de la Vena Umbilical Humana , Ensayo de Materiales , Poliglactina 910 , Suturas , Triclosán , Humanos , Triclosán/farmacología , Triclosán/química , Poliglactina 910/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Proliferación Celular/efectos de los fármacos , Hemólisis/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Materiales Biocompatibles/química , Óxido Nítrico/metabolismo , Supervivencia Celular/efectos de los fármacos
20.
Sci Rep ; 14(1): 14263, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902287

RESUMEN

Hemolysis is a crucial factor in various biomedical and pharmaceutical contexts, driving our interest in developing advanced computational techniques for precise prediction. Our proposed approach takes advantage of the unique capabilities of convolutional neural networks (CNNs) and transformers to detect complex patterns inherent in the data. The integration of CNN and transformers' attention mechanisms allows for the extraction of relevant information, leading to accurate predictions of hemolytic potential. The proposed method was trained on three distinct data sets of peptide sequences known as recurrent neural network-hemolytic (RNN-Hem), Hlppredfuse, and Combined. Our computational results demonstrated the superior efficacy of our models compared to existing methods. The proposed approach demonstrated impressive Matthews correlation coefficients of 0.5962, 0.9111, and 0.7788 respectively, indicating its effectiveness in predicting hemolytic activity. With its potential to guide experimental efforts in peptide design and drug development, this method holds great promise for practical applications. Integrating CNNs and transformers proves to be a powerful tool in the fields of bioinformatics and therapeutic research, highlighting their potential to drive advancement in this area.


Asunto(s)
Hemólisis , Redes Neurales de la Computación , Péptidos , Hemólisis/efectos de los fármacos , Péptidos/química , Biología Computacional/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA