Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.822
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 272, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350229

RESUMEN

BACKGROUND: Cholangiocarcinoma (CCA) is a highly malignant, rapidly progressing tumor of the bile duct. Owing to its chemoresistance, it always has an extremely poor prognosis. Therefore, detailed elucidation of the mechanisms of chemoresistance and identification of therapeutic targets are still needed. METHODS: We analyzed the expression of MBD2 (Methyl-CpG-binding domain 2) in CCA and normal bile duct tissues using the public database and immunohistochemistry (IHC). The roles of MBD2 in CCA cell proliferation, migration, and chemoresistance ability were validated through CCK-8, plate cloning assay, wound healing assays and xenograft mouse model. In addition, we constructed a primary CCA mouse model to further confirm the effect of MBD2. RNA-seq and co-IP-MS were used to identify the mechanisms by how MBD2 leads to chemoresistance. RESULTS: MBD2 was upregulated in CCA. It promoted the proliferation, migration and chemoresistance of CCA cells. Mechanistically, MBD2 directly interacted with WDR5, bound to the promoter of ABCB1, promoted the trimethylation of H3K4 in this region through KMT2A, and activated the expression of ABCB1. Knocking down WDR5 or KMT2A blocked the transcriptional activation of ABCB1 by MBD2. The molecular inhibitor MM-102 targeted the interaction of WDR5 with KMT2A. MM-102 inhibited the expression of ABCB1 in CCA cells and decreased the chemoresistance of CCA to cisplatin. CONCLUSION: MBD2 promotes the progression and chemoresistance of CCA through interactions with WDR5. MM-102 can effectively block this process and increase the sensitivity of CCA to cisplatin.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Proteínas de Unión al ADN , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Péptidos y Proteínas de Señalización Intracelular , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología , Humanos , Animales , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Proliferación Celular , Línea Celular Tumoral , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica , Ensayos Antitumor por Modelo de Xenoinjerto , Movimiento Celular , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética
2.
J Cell Mol Med ; 28(19): e70126, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39384181

RESUMEN

B-cell acute lymphoblastic leukaemia (B-ALL) is the most prevalent hematologic malignancy in children and a leading cause of mortality. Managing B-ALL remains challenging due to its heterogeneity and relapse risk. This study aimed to delineate the molecular features of paediatric B-ALL and explore the clinical utility of circulating tumour DNA (ctDNA). We analysed 146 patients with paediatric B-ALL who received systemic chemotherapy. The mutational landscape was profiled in bone marrow (BM) and plasma samples using next-generation sequencing. Minimal residual disease (MRD) testing on day 19 of induction therapy evaluated treatment efficacy. RNA sequencing identified gene fusions in 61% of patients, including 37 novel fusions. Specifically, the KMT2A-TRIM29 novel fusion was validated in a boy who responded well to initial therapy but relapsed after 1 year. Elevated mutation counts and maximum variant allele frequency in baseline BM were associated with significantly poorer chemotherapy response (p = 0.0012 and 0.028, respectively). MRD-negative patients exhibited upregulation of immune-related pathways (p < 0.01) and increased CD8+ T cell infiltration (p = 0.047). Baseline plasma ctDNA exhibited high mutational concordance with the paired BM samples and was significantly associated with chemotherapy efficacy. These findings suggest that ctDNA and BM profiling offer promising prognostic insights for paediatric B-ALL management.


Asunto(s)
Biomarcadores de Tumor , Mutación , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Masculino , Niño , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Femenino , Preescolar , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Adolescente , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Lactante , Pronóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Médula Ósea/patología , Médula Ósea/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , N-Metiltransferasa de Histona-Lisina/genética
3.
Commun Biol ; 7(1): 1257, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39362994

RESUMEN

KMT2A-rearranged acute lymphoblastic leukemia (ALL) is characterized by deregulation of the epigenome and shows susceptibility towards histone deacetylase (HDAC) inhibition. Most broad-spectrum HDAC inhibitors simultaneously target multiple human HDAC isoforms. Consequently, they often induce toxicity and especially in combination with other therapeutic agents. Therefore, more specifically targeting HDAC isoforms may represent a safer therapeutic strategy. Here we show that shRNA-mediated knock-down of the class IIA HDAC isoforms HDAC4, HDAC5, and HDAC7 results in apoptosis induction and cell cycle arrest in KMT2A-rearranged ALL cells. In concordance, the HDAC4/5 selective small molecule inhibitor LMK-235 effectively eradicates KMT2A-rearranged ALL cell lines as well as primary patient samples in vitro. However, using a xenograft mouse model of KMT2A-rearranged ALL we found that the maximum achievable dose of LMK-235 was insufficient to induce anti-leukemic effects in vivo. Similar results were obtained for the specific class IIA HDAC inhibitors MC1568 and TMP195. Finally, LMK-235 appeared to exert minimal anti-leukemic effects in vivo in combination with the BCL-2 inhibitor venetoclax, but not enough to prolong survival in treated mice. In conclusion, class IIA HDAC isoforms represent attractive therapeutic target in KMT2A-rearranged ALL, although clinical applications require the development of more stable and efficient specific HDAC inhibitors.


Asunto(s)
Inhibidores de Histona Desacetilasas , N-Metiltransferasa de Histona-Lisina , Proteína de la Leucemia Mieloide-Linfoide , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Humanos , Animales , Proteína de la Leucemia Mieloide-Linfoide/genética , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Ratones , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Reordenamiento Génico , Apoptosis/efectos de los fármacos , Femenino
4.
Genome Biol ; 25(1): 263, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39390582

RESUMEN

BACKGROUND: Methylation of histone 3 lysine 36 (H3K36me) has emerged as an essential epigenetic component for the faithful regulation of gene expression. Despite its importance in development and disease, how the molecular agents collectively shape the H3K36me landscape is unclear. RESULTS: We use mouse mesenchymal stem cells to perturb the H3K36me methyltransferases (K36MTs) and infer the activities of the five most prominent enzymes: SETD2, NSD1, NSD2, NSD3, and ASH1L. We find that H3K36me2 is the most abundant of the three methylation states and is predominantly deposited at intergenic regions by NSD1, and partly by NSD2. In contrast, H3K36me1/3 are most abundant within exons and are positively correlated with gene expression. We demonstrate that while SETD2 deposits most H3K36me3, it may also deposit H3K36me2 within transcribed genes. Additionally, loss of SETD2 results in an increase of exonic H3K36me1, suggesting other (K36MTs) prime gene bodies with lower methylation states ahead of transcription. While NSD1/2 establish broad intergenic H3K36me2 domains, NSD3 deposits H3K36me2 peaks on active promoters and enhancers. Meanwhile, the activity of ASH1L is restricted to the regulatory elements of developmentally relevant genes, and our analyses implicate PBX2 as a potential recruitment factor. CONCLUSIONS: Within genes, SETD2 primarily deposits H3K36me3, while the other K36MTs deposit H3K36me1/2 independently of SETD2 activity. For the deposition of H3K36me1/2, we find a hierarchy of K36MT activities where NSD1 > NSD2 > NSD3 > ASH1L. While NSD1 and NSD2 are responsible for most genome-wide propagation of H3K36me2, the activities of NSD3 and ASH1L are confined to active regulatory elements.


Asunto(s)
Proteínas de Unión al ADN , N-Metiltransferasa de Histona-Lisina , Histonas , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Animales , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Metilación , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Histona Metiltransferasas/metabolismo
5.
J Hematol Oncol ; 17(1): 91, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39380002

RESUMEN

BACKGROUND: The epigenetic factors KAT6A (MOZ/MYST3) and KMT2A (MLL/MLL1) interact in normal hematopoiesis to regulate progenitors' self-renewal. Both proteins are recurrently translocated in AML, leading to impairment of critical differentiation pathways in these malignant cells. We evaluated the potential of different KAT6A therapeutic targeting strategies to alter the growth of KAT6A and KMT2A rearranged AMLs. METHODS: We investigated the action and potential mechanisms of the first-in-class KAT6A inhibitor, WM-1119 in KAT6A and KMT2A rearranged (KAT6Ar and KMT2Ar) AML using cellular (flow cytometry, colony assays, cell growth) and molecular (shRNA knock-down, CRISPR knock-out, bulk and single-cell RNA-seq, ChIP-seq) assays. We also used two novel genetic murine KAT6A models combined with the most common KMT2Ar AML, KMT2A::MLLT3 AML. In these murine models, the catalytic activity of KAT6A, or the whole protein, can be conditionally abrogated or deleted. These models allowed us to compare the effects of specific KAT6A KAT activity inhibition with the complete deletion of the whole protein. Finally, we also tested these therapeutic approaches on human AML cell lines and primary patient AMLs. RESULTS: We found that WM-1119 completely abrogated the proliferative and clonogenic potential of KAT6Ar cells in vitro. WM-1119 treatment was associated with a dramatic increase in myeloid differentiation program. The treatment also decreased stemness and leukemia pathways at the transcriptome level and led to loss of binding of the fusion protein at critical regulators of these pathways. In contrast, our pharmacologic and genetic results indicate that the catalytic activity of KAT6A plays a more limited role in KMT2Ar leukemogenicity, while targeting the whole KAT6A protein dramatically affects leukemic potential in murine KMT2A::MLLT3 AML. CONCLUSION: Our study indicates that inhibiting KAT6A KAT activity holds compelling promise for KAT6Ar AML patients. In contrast, targeted degradation of KAT6A, and not just its catalytic activity, may represent a more appropriate therapeutic approach for KMT2Ar AMLs.


Asunto(s)
Histona Acetiltransferasas , N-Metiltransferasa de Histona-Lisina , Leucemia Mieloide Aguda , Proteína de la Leucemia Mieloide-Linfoide , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Animales , Proteína de la Leucemia Mieloide-Linfoide/genética , Humanos , Ratones , N-Metiltransferasa de Histona-Lisina/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/antagonistas & inhibidores , Reordenamiento Génico , Línea Celular Tumoral
6.
Stem Cell Res Ther ; 15(1): 350, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39380045

RESUMEN

BACKGROUND: The histone-lysine N-methyltransferase SMYD1, which is specific to striated muscle, plays a crucial role in regulating early heart development. Its deficiency has been linked to the occurrence of congenital heart disease. Nevertheless, the precise mechanism by which SMYD1 deficiency contributes to congenital heart disease remains unclear. METHODS: We established a SMYD1 knockout pluripotent stem cell line and a doxycycline-inducible SMYD1 expression pluripotent stem cell line to investigate the functions of SMYD1 utilizing an in vitro-directed myocardial differentiation model. RESULTS: Cardiomyocytes lacking SMYD1 displayed drastically diminished differentiation efficiency, concomitant with heightened proliferation capacity of cardiac progenitor cells during the early cardiac differentiation stage. These cellular phenotypes were confirmed through experiments inducing the re-expression of SMYD1. Transcriptome sequencing and small molecule inhibitor intervention suggested that the GSK3ß/ß-catenin&ERK signaling pathway was involved in the proliferation of cardiac progenitor cells. Chromatin immunoprecipitation demonstrated that SMYD1 acted as a transcriptional activator of GSK3ß through histone H3 lysine 4 trimethylation. Additionally, dual-luciferase analyses indicated that SMYD1 could interact with the promoter region of GSK3ß, thereby augmenting its transcriptional activity. Moreover, administering insulin and Insulin-like growth factor 1 can enhance the efficacy of myocardial differentiation in SMYD1 knockout cells. CONCLUSIONS: Our research indicated that the participation of SMYD1 in the GSK3ß/ß-catenin&ERK signaling cascade modulated the proliferation of cardiac progenitor cells during myocardial differentiation. This process was partly reliant on the transcription of GSK3ß. Our research provided a novel insight into the genetic modification effect of SMYD1 during early myocardial differentiation. The findings were essential to the molecular mechanism and potential interventions for congenital heart disease.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Glucógeno Sintasa Quinasa 3 beta , N-Metiltransferasa de Histona-Lisina , Miocitos Cardíacos , beta Catenina , Humanos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , beta Catenina/metabolismo , beta Catenina/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Sistema de Señalización de MAP Quinasas , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Histonas/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Células Madre Multipotentes/metabolismo , Células Madre Multipotentes/citología , Células Madre Multipotentes/efectos de los fármacos , Línea Celular , Proteínas de Unión al ADN , Factores de Transcripción
7.
Genes (Basel) ; 15(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39336746

RESUMEN

Background: Wiedemann-Steiner syndrome (WSS), a rare autosomal-dominant disorder caused by haploinsufficiency of the KMT2A gene product, is part of a group of disorders called chromatinopathies. Chromatinopathies are neurodevelopmental disorders caused by mutations affecting the proteins responsible for chromatin remodeling and transcriptional regulation. The resulting gene expression dysregulation mediates the onset of a series of clinical features such as developmental delay, intellectual disability, facial dysmorphism, and behavioral disorders. Aim of the Study: The aim of this study was to investigate a 10-year-old girl who presented with clinical features suggestive of WSS. Methods: Clinical and genetic investigations were performed. Whole exome sequencing (WES) was used for genetic testing, performed using Illumina technology. The bidirectional capillary Sanger resequencing technique was used in accordance with standard methodology to validate a mutation discovered by WES in all family members who were available. Utilizing computational protein modeling for structural and functional studies as well as in silico pathogenicity prediction models, the effect of the mutation was examined. Results: WES identified a de novo heterozygous missense variant in the KMT2A gene KMT2A(NM_001197104.2): c.3451C>G, p.(Arg1151Gly), absent in the gnomAD database. The variant was classified as Likely Pathogenetic (LP) according to the ACMG criteria and was predicted to affect the CXXC-type zinc finger domain functionality of the protein. Modeling of the resulting protein structure suggested that this variant changes the protein flexibility due to a variation in the Gibbs free energy and in the vibrational entropy energy difference between the wild-type and mutated domain, resulting in an alteration of the DNA binding affinity. Conclusions: A novel and de novo mutation discovered by the NGS approach, enhancing the mutation spectrum in the KMT2A gene, was characterized and associated with WSS. This novel KMT2A gene variant is suggested to modify the CXXC-type zinc finger domain functionality by affecting protein flexibility and DNA binding.


Asunto(s)
Secuenciación del Exoma , N-Metiltransferasa de Histona-Lisina , Proteína de la Leucemia Mieloide-Linfoide , Humanos , Femenino , Secuenciación del Exoma/métodos , Proteína de la Leucemia Mieloide-Linfoide/genética , Niño , N-Metiltransferasa de Histona-Lisina/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Discapacidad Intelectual/diagnóstico , Mutación Missense , Anomalías Múltiples/genética
8.
Cancer Rep (Hoboken) ; 7(9): e2150, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39307938

RESUMEN

BACKGROUND: Dexamethasone (Dex), a synthetic glucocorticoid that acts by binding to the glucocorticoid receptor (GR), has been widely applied to treat leukemia and lymphoma; however, the precise mechanism underlying Dex action is still not well elucidated. DOT1L, a histone H3-lysine79 (H3K79) methyltransferase, has been linked to multiple cancer types, particularly mixed lineage leukemia (MLL) gene rearranged leukemia, but its contribution to lymphoma is yet to be delineated. Analysis from the TCGA database displayed that DOT1L was highly expressed in lymphoma and leukemia. RESULTS: We initially demonstrated that DOT1L served as a new target gene controlled by GR, and the downregulation of DOT1L was critical for the killing of B-lymphoma cells by Dex. Further study revealed that Dex had no impact on the transcriptional activity of the DOT1L promoter, rather it reduced the mRNA level of DOT1L at the posttranscriptional level. In addition, knockdown of DOT1L remarkably inhibited the B-lymphoma cell growth. CONCLUSIONS: Overall, our findings indicated that DOT1L may serve as a potential drug target and a promising biomarker of Dex sensitivity when it comes to treating B lymphoma.


Asunto(s)
Proliferación Celular , Dexametasona , N-Metiltransferasa de Histona-Lisina , Linfoma de Células B , Metiltransferasas , Receptores de Glucocorticoides , Humanos , Dexametasona/farmacología , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/patología , Linfoma de Células B/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Metiltransferasas/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos
9.
Bull Exp Biol Med ; 177(4): 431-435, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39259464

RESUMEN

The effects of HIF1A knockdown by RNA interference on the histone H3K9 methylation in human umbilical cord mesenchymal stromal cells in vitro under conditions of 24-h exposure to hypoxia (1% O2) were studied. Evaluation of transcriptional activity of genes involved in the regulation of H3K9 methylation (KDM3A, KDM4A, and EHMT2) and the cytofluorimetric analysis of the expression of the corresponding antigens and H3K9 methylation level demonstrated a pronounced stimulating effect of hypoxic exposure. Moreover, the expression of KDM4A and EHMT2 was regulated by HIF1A-mediated mechanism, unlike KDM3A; the level of the corresponding proteins depended on HIF1A. In addition, the HIF-1-dependent regulation of KDM3A, KDM4A, and EHMT2/G9a, and directly the H3K9 methylation level in mesenchymal stromal cells also took place under normoxia conditions.


Asunto(s)
Hipoxia de la Célula , Histonas , Subunidad alfa del Factor 1 Inducible por Hipoxia , Histona Demetilasas con Dominio de Jumonji , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Humanos , Histonas/metabolismo , Histonas/genética , Metilación , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia de la Célula/genética , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Interferencia de ARN , Cordón Umbilical/citología , Cordón Umbilical/metabolismo , Células Cultivadas , Técnicas de Silenciamiento del Gen , Regulación de la Expresión Génica
10.
Sci Rep ; 14(1): 20771, 2024 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237663

RESUMEN

G9a is a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9 (H3K9), which is involved in the regulation of gene expression. We had previously reported that G9a is expressed in developing tendons in vivo and in vitro and that G9a-deficient tenocytes show impaired proliferation and differentiation in vitro. In this study, we investigated the functions of G9a in tendon development in vivo by using G9a conditional knockout (G9a cKO) mice. We crossed Sox9Cre/+ mice with G9afl/fl mice to generate G9afl/fl; Sox9Cre/+ mice. The G9a cKO mice showed hypoplastic tendon formation at 3 weeks of age. Bromodeoxyuridine labeling on embryonic day 16.5 (E16.5) revealed decreased cell proliferation in the tenocytes of G9a cKO mice. Immunohistochemical analysis revealed decreased expression levels of G9a and its substrate, H3K9me2, in the vertebral tendons of G9a cKO mice. The tendon tissue of the vertebrae and limbs of G9a cKO mice showed reduced expression of a tendon marker, tenomodulin (Tnmd), and col1a1 genes, suggesting that tenocyte differentiation was suppressed. Overexpression of G9a resulted in enhancement of Tnmd and col1a1 expression in tenocytes in vitro. These results suggest that G9a regulates the proliferation and differentiation of tendon progenitor cells during tendon development. Thus, our results suggest that G9a plays an essential role in tendon development.


Asunto(s)
Diferenciación Celular , Proliferación Celular , N-Metiltransferasa de Histona-Lisina , Ratones Noqueados , Tendones , Animales , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Tendones/metabolismo , Tendones/embriología , Ratones , Tenocitos/metabolismo , Histonas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Cadena alfa 1 del Colágeno Tipo I/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética
11.
Sci Rep ; 14(1): 20832, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242621

RESUMEN

Pluripotent stem cells can differentiate into distinct cell types but the intracellular pathways controlling cell fate choice are not well understood. The social amoeba Dictyostelium discoideum is a simplified system to study choice preference as proliferating amoebae enter a developmental cycle upon starvation and differentiate into two major cell types, stalk and spores, organised in a multicellular fruiting body. Factors such as acidic vesicle pH predispose amoebae to one fate. Here we show that the mechanistic target of rapamycin complex 1 (mTORC1) pathway has a role in cell fate bias in Dictyostelium. Inhibiting the mTORC1 pathway activity by disruption of Rheb (activator Ras homolog enriched in brain), or treatment with the mTORC1 inhibitor rapamycin prior to development, biases cells to a spore cell fate. Conversely activation of the pathway favours stalk cell differentiation. The Set1 histone methyltransferase, responsible for histone H3 lysine4 methylation, in Dictyostelium cells regulates transcription at the onset of development. Disruption of Set1 leads to high mTORC1 pathway activity and stalk cell predisposition. The ability of the mTORC1 pathway to regulate cell fate bias of cells undergoing differentiation offers a potential target to increase the efficiency of stem cell differentiation into a particular cell type.


Asunto(s)
Diferenciación Celular , Dictyostelium , Diana Mecanicista del Complejo 1 de la Rapamicina , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Dictyostelium/metabolismo , Dictyostelium/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Sirolimus/farmacología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética
12.
J Exp Med ; 221(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39235528

RESUMEN

The translocation t(14;18) activates BCL2 and is considered the initiating genetic lesion in most follicular lymphomas (FL). Surprisingly, FL patients fail to respond to the BCL2 inhibitor, Venetoclax. We show that mutations and deletions affecting the histone lysine methyltransferase SETD1B (KMT2G) occur in 7% of FLs and 16% of diffuse large B cell lymphomas (DLBCL). Deficiency in SETD1B confers striking resistance to Venetoclax and an experimental MCL-1 inhibitor. SETD1B also acts as a tumor suppressor and cooperates with the loss of KMT2D in lymphoma development in vivo. Consistently, loss of SETD1B in human lymphomas typically coincides with loss of KMT2D. Mechanistically, SETD1B is required for the expression of several proapoptotic BCL2 family proteins. Conversely, inhibitors of the KDM5 histone H3K4 demethylases restore BIM and BIK expression and synergize with Venetoclax in SETD1B-deficient lymphomas. These results establish SETD1B as an epigenetic regulator of cell death and reveal a pharmacological strategy to augment Venetoclax sensitivity in lymphoma.


Asunto(s)
Apoptosis , N-Metiltransferasa de Histona-Lisina , Mutación , Proteínas Proto-Oncogénicas c-bcl-2 , Animales , Humanos , Ratones , Apoptosis/genética , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/patología , Linfoma de Células B/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sulfonamidas/farmacología
13.
Nat Genet ; 56(9): 1890-1902, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39227744

RESUMEN

Functional genomic screens in two-dimensional cell culture models are limited in identifying therapeutic targets that influence the tumor microenvironment. By comparing targeted CRISPR-Cas9 screens in a two-dimensional culture with xenografts derived from the same cell line, we identified MEN1 as the top hit that confers differential dropout effects in vitro and in vivo. MEN1 knockout in multiple solid cancer types does not impact cell proliferation in vitro but significantly promotes or inhibits tumor growth in immunodeficient or immunocompetent mice, respectively. Mechanistically, MEN1 knockout redistributes MLL1 chromatin occupancy, increasing H3K4me3 at repetitive genomic regions, activating double-stranded RNA expression and increasing neutrophil and CD8+ T cell infiltration in immunodeficient and immunocompetent mice, respectively. Pharmacological inhibition of the menin-MLL interaction reduces tumor growth in a CD8+ T cell-dependent manner. These findings reveal tumor microenvironment-dependent oncogenic and tumor-suppressive functions of MEN1 and provide a rationale for targeting MEN1 in solid cancers.


Asunto(s)
Linfocitos T CD8-positivos , Sistemas CRISPR-Cas , N-Metiltransferasa de Histona-Lisina , Proteínas Proto-Oncogénicas , Microambiente Tumoral , Animales , Femenino , Humanos , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Neoplasias/genética , Neoplasias/patología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
14.
Genes (Basel) ; 15(9)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39336709

RESUMEN

Germline variants in the NSD1 gene are responsible for Sotos syndrome, while somatic variants promote neoplastic cell transformation. Our previous studies revealed three alternative RNA isoforms of NSD1 present in fibroblast cell lines (FBs): the canonical full transcript and 2 alternative transcripts, termed AT2 (NSD1 Δ5Δ7) and AT3 (NSD1 Δ19-23 at the 5' end). The precise molecular pathways affected by each specific isoform of NSD1 are uncharacterized to date. To elucidate the role of these isoforms, their expression was suppressed by siRNA knockdown in FBs and protein expression and transcriptome data was explored. We demonstrate that one gene target of NSD1 isoform AT2 is ARP3 actin-related protein 3 homolog B (ACTR3B). We show that loss of both canonical NSD1 and AT2 isoforms impaired the ability of fibroblasts to regulate the actin cytoskeleton, and we observed that this caused selective loss of stress fibers. Our findings provide novel insights into NSD1 function by distinguishing isoform function and demonstrating an essential role of NSD1 in regulating the actin cytoskeleton and stress fiber formation in fibroblasts.


Asunto(s)
Citoesqueleto de Actina , Fibroblastos , N-Metiltransferasa de Histona-Lisina , Isoformas de Proteínas , Fibroblastos/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , División Celular/genética , Línea Celular , Empalme Alternativo , Fibras de Estrés/metabolismo
15.
Cell Death Dis ; 15(9): 694, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39341827

RESUMEN

SETD8 is a methyltransferase that is overexpressed in several cancers, which monomethylates H4K20 as well as other non-histone targets such as PCNA or p53. We here report novel SETD8 inhibitors, which were discovered while trying to identify chemicals that prevent 53BP1 foci formation, an event mediated by H4K20 methylation. Consistent with previous reports, SETD8 inhibitors induce p53 expression, although they are equally toxic for p53 proficient or deficient cells. Thermal stability proteomics revealed that the compounds had a particular impact on nucleoli, which was confirmed by fluorescent and electron microscopy. Similarly, Setd8 deletion generated nucleolar stress and impaired ribosome biogenesis, supporting that this was an on-target effect of SETD8 inhibitors. Furthermore, a genome-wide CRISPR screen identified an enrichment of nucleolar factors among those modulating the toxicity of SETD8 inhibitors. Accordingly, the toxicity of SETD8 inhibition correlated with MYC or mTOR activity, key regulators of ribosome biogenesis. Together, our study provides a new class of SETD8 inhibitors and a novel biomarker to identify tumors most likely to respond to this therapy.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Ribosomas , Humanos , Ribosomas/metabolismo , Ribosomas/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Nucléolo Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética
17.
J Med Chem ; 67(18): 16056-16071, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39230932

RESUMEN

The histone lysine methyltransferase NSD2 has been recognized as an attractive target for cancer treatment, due to the functional implication of its dysregulation in the initiation and progression of many cancers. Although considerable efforts have been made to develop NSD2 small-molecule inhibitors, highly potent and selective ones are still rarely available till now. Here, we report the discovery of a series of novel NSD2 inhibitors via an extensive SAR exploration of the privileged quinazoline scaffold within compound 8. The most promising compound 42 showed excellent NSD2 enzymatic inhibitory activity and good antiproliferative activity in cells. In addition, it demonstrated favorable pharmacokinetic properties and significantly inhibited the tumor growth in a RS411 tumor xenograft model with good safety. Taken together, compound 42 could be a promising NSD2 inhibitor and deserves further investigation.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Animales , Relación Estructura-Actividad , Quinazolinas/farmacología , Quinazolinas/química , Quinazolinas/síntesis química , Quinazolinas/farmacocinética , Ratones , Descubrimiento de Drogas , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Ratas
18.
J Med Chem ; 67(18): 16248-16269, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39255403

RESUMEN

Given the considerable potential of DOT1LR231Q inhibitors in lung cancer therapy and the problematic pharmacokinetics of nucleoside inhibitors, our group launched a development program of non-nucleoside DOT1LR231Q inhibitors to improve the pharmacokinetic properties. Herein, two series of non-nucleoside compounds bearing piperidine or 3-(aminomethyl)pyrrolidin-3-ol as "ribose mimics" were designed and evaluated through antiproliferation assay and western blot analysis. The optimal TB22 inhibited the proliferation of H460R231Q cells with an IC50 value of 2.85 µM, about 13-fold more potent than SGC0946. Notably, TB22 demonstrated significant in vivo efficacy (TGI = 60.57%) in H460R231Q cell-derived xenograft models and improved pharmacokinetic properties (t1/2 = 6.06 ± 2.94 h and CL = 55.18 ± 8.56 mL/kg/min). Moreover, a mechanism study validated that TB22 suppressed malignant phenotypes of lung cancer cells harboring R231Q mutation via the MAPK/ERK signaling pathway. This work provides a promising molecule for lung cancer therapy in favor of clinical patients.


Asunto(s)
Antineoplásicos , Proliferación Celular , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Animales , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Ratones , Línea Celular Tumoral , Relación Estructura-Actividad , Ratones Desnudos , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C , N-Metiltransferasa de Histona-Lisina
19.
STAR Protoc ; 5(3): 103295, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39243379

RESUMEN

The histone lysine methyltransferase SUV420H1 preferentially targets the H2A.Z-containing nucleosome core particle (H2A.Z-NCP) and catalyzes the H4K20me2 modification at replication origins. Here, we present a protocol for preparing SUV420H1 in complex with the nucleosome containing H2A.Z and H4K20Ecx for structure determination. We describe steps for the installation of S-ethyl-cysteine (Ecx), nucleosome and complex preparation, and performing the cryoelectron microscopy (cryo-EM) sample check. This protocol substitutes lysine 20 in histone H4 with S-ethyl-cysteine (H4K20Ecx), which enhances the stability of the interaction between SUV420H1 and nucleosomes. For complete details on the use and execution of this protocol, please refer to Huang et al.1.


Asunto(s)
Microscopía por Crioelectrón , N-Metiltransferasa de Histona-Lisina , Histonas , Nucleosomas , Nucleosomas/metabolismo , Nucleosomas/química , Histonas/metabolismo , Histonas/química , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/química , Microscopía por Crioelectrón/métodos , Humanos
20.
JCI Insight ; 9(19)2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39250432

RESUMEN

Immune cell-mediated inflammation is important in normal tissue regeneration but can be pathologic in diabetic wounds. Limited literature exists on the role of CD4+ T cells in normal or diabetic wound repair; however, the imbalance of CD4+ Th17/Tregs has been found to promote inflammation in other diabetic tissues. Here, using human tissue and murine transgenic models, we identified that the histone methyltransferase Mixed-lineage-leukemia-1 (MLL1) directly regulates the Th17 transcription factor RORγ via an H3K4me3 mechanism and increases expression of Notch receptors and downstream Notch signaling. Furthermore, we found that Notch receptor signaling regulates CD4+ Th cell differentiation and is critical for normal wound repair, and loss of upstream Notch pathway mediators or receptors in CD4+ T cells resulted in the loss of CD4+ Th cell differentiation in wounds. In diabetes, MLL1 and Notch-receptor signaling was upregulated in wound CD4+ Th cells, driving CD4+ T cells toward the Th17 cell phenotype. Treatment of diabetic wound CD4+ T cells with a small molecule inhibitor of MLL1 (MI-2) yielded a significant reduction in CD4+ Th17 cells and IL-17A. This is the first study to our knowledge to identify the MLL1-mediated mechanisms responsible for regulating the Th17/Treg balance in normal and diabetic wounds and to define the complex role of Notch signaling in CD4+ T cells in wounds, where increased or decreased Notch signaling both result in pathologic wound repair. Therapeutic targeting of MLL1 in diabetic CD4+ Th cells may decrease pathologic inflammation through regulation of CD4+ T cell differentiation.


Asunto(s)
Diferenciación Celular , N-Metiltransferasa de Histona-Lisina , Proteína de la Leucemia Mieloide-Linfoide , Receptores Notch , Transducción de Señal , Cicatrización de Heridas , Animales , Humanos , Ratones , Receptores Notch/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Células Th17/inmunología , Células Th17/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Masculino , Ratones Transgénicos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Fenotipo , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA