Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 55(19): 2785-93, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27112409

RESUMEN

Human indoleamine 2,3-dioxygenase catalyzes the oxidative cleavage of tryptophan to N-formyl kynurenine, the initial and rate-limiting step in the kynurenine pathway. Additionally, this enzyme has been identified as a possible target for cancer therapy. A 20-amino acid protein segment (the JK loop), which connects the J and K helices, was not resolved in the reported hIDO crystal structure. Previous studies have shown that this loop undergoes structural rearrangement upon substrate binding. In this work, we apply a combination of replica exchange molecular dynamics simulations and site-directed mutagenesis experiments to characterize the structure and dynamics of this protein region. Our simulations show that the JK loop can be divided into two regions: the first region (JK loop(C)) displays specific and well-defined conformations and is within hydrogen bonding distance of the substrate, while the second region (JK loop(N)) is highly disordered and exposed to the solvent. The peculiar flexible nature of JK loop(N) suggests that it may function as a target for post-translational modifications and/or a mediator for protein-protein interactions. In contrast, hydrogen bonding interactions are observed between the substrate and Thr379 in the highly conserved "GTGG" motif of JK loop(C), thereby anchoring JK loop(C) in a closed conformation, which secures the appropriate substrate binding mode for catalysis. Site-directed mutagenesis experiments confirm the key role of this residue, highlighting the importance of the JK loop(C) conformation in regulating the enzymatic activity. Furthermore, the existence of the partially and totally open conformations in the substrate-free form suggests a role of JK loop(C) in controlling substrate and product dynamics.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/química , Secuencias de Aminoácidos , Catálisis , Cristalografía por Rayos X , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Relación Estructura-Actividad
2.
J Phys Chem B ; 116(4): 1401-13, 2012 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-22196056

RESUMEN

Indoleamine 2,3-dioxygenase (IDO) and tryptophan dioxygenase (TDO) are two heme proteins that catalyze the oxidation reaction of tryptophan (Trp) to N-formylkynurenine (NFK). Human IDO (hIDO) has recently been recognized as a potent anticancer drug target, a fact that triggered intense research on the reaction and inhibition mechanisms of hIDO. Our recent studies revealed that the dioxygenase reaction catalyzed by hIDO and TDO is initiated by addition of the ferric iron-bound superoxide to the C(2)═C(3) bond of Trp to form a ferryl and Trp-epoxide intermediate, via a 2-indolenylperoxo radical transition state. The data demonstrate that the two atoms of dioxygen are inserted into the substrate in a stepwise fashion, challenging the paradigm of heme-based dioxygenase chemistry. In the current study, we used QM/MM methods to decipher the mechanism by which the second ferryl oxygen is inserted into the Trp-epoxide to form the NFK product in hIDO. Our results show that the most energetically favored pathway involves proton transfer from Trp-NH(3)(+) to the epoxide oxygen, triggering epoxide ring opening and a concerted nucleophilic attack of the ferryl oxygen to the C(2) of Trp that leads to a metastable reaction intermediate. This intermediate subsequently converts to NFK, following C(2)-C(3) bond cleavage and the associated back proton transfer from the oxygen to the amino group of Trp. A comparative study with Xantomonas campestris TDO (xcTDO) indicates that the reaction follows a similar pathway, although subtle differences distinguishing the two enzyme reactions are evident. The results underscore the importance of the NH(3)(+) group of Trp in the two-step ferryl-based mechanism of hIDO and xcTDO, by acting as an acid catalyst to facilitate the epoxide ring-opening reaction and ferryl oxygen addition to the indole ring.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/química , Teoría Cuántica , Compuestos Epoxi/química , Éteres Cíclicos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/análogos & derivados , Quinurenina/química , Modelos Moleculares , Conformación Molecular , Oxígeno/química , Protones , Termodinámica
3.
Proteins ; 78(14): 2961-72, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20715188

RESUMEN

The first and rate-limiting step of the kynurenine pathway, in which tryptophan (Trp) is converted to N-formylkynurenine is catalyzed by two heme-containing proteins, Indoleamine 2,3-dioxygenase (IDO), and Tryptophan 2,3-dioxygenase (TDO). In mammals, TDO is found exclusively in liver tissue, IDO is found ubiquitously in all tissues. IDO has become increasingly popular in pharmaceutical research as it was found to be involved in many physiological situations, including immune escape of cancer. More importantly, small-molecule inhibitors of IDO are currently utilized in cancer therapy. One of the main concerns for the design of human IDO (hIDO) inhibitors is that they should be selective enough to avoid inhibition of TDO. In this work, we have used a combination of classical molecular dynamics (MD) and hybrid quantum-classical (QM/MM) methodologies to establish the structural basis that determine the differences in (a) the interactions of TDO and IDO with small ligands (CO/O(2)) and (b) the substrate stereo-specificity in hIDO and TDO. Our results indicate that the differences in small ligand bound structures of IDO and TDO arise from slight differences in the structure of the bound substrate complex. The results also show that substrate stereo-specificity of TDO is achieved by the perfect fit of L-Trp, but not D-Trp, which exhibits weaker interactions with the protein matrix. For hIDO, the presence of multiple stable binding conformations for L/D-Trp reveal the existence of a large and dynamic active site. Taken together, our data allow determination of key interactions useful for the future design of more potent hIDO-selective inhibitors.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Triptófano Oxigenasa/química , Triptófano Oxigenasa/metabolismo , Triptófano/química , Triptófano/metabolismo , Sitios de Unión , Catálisis , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Estereoisomerismo , Especificidad por Sustrato
4.
J Biol Inorg Chem ; 15(6): 811-23, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20361220

RESUMEN

Tryptophan dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) are two heme-containing enzymes which catalyze the conversion of L: -tryptophan to N-formylkynurenine (NFK). In mammals, TDO is mostly expressed in liver and is involved in controlling homeostatic serum tryptophan concentrations, whereas IDO is ubiquitous and is involved in modulating immune responses. Previous studies suggested that the first step of the dioxygenase reaction involves the deprotonation of the indoleamine group of the substrate by an evolutionarily conserved distal histidine residue in TDO and the heme-bound dioxygen in IDO. Here, we used classical molecular dynamics and hybrid quantum mechanical/molecular mechanical methods to evaluate the base-catalyzed mechanism. Our data suggest that the deprotonation of the indoleamine group of the substrate by either histidine in TDO or heme-bound dioxygen in IDO is not energetically favorable. Instead, the dioxygenase reaction can be initiated by a direct attack of heme-bound dioxygen on the C(2)=C(3) bond of the indole ring, leading to a protein-stabilized 2,3-alkylperoxide transition state and a ferryl epoxide intermediate, which subsequently recombine to generate NFK. The novel sequential two-step oxygen addition mechanism is fully supported by our recent resonance Raman data that allowed identification of the ferryl intermediate (Lewis-Ballester et al. in Proc Natl Acad Sci USA 106:17371-17376, 2009). The results reveal the subtle differences between the TDO and IDO reactions and highlight the importance of protein matrix in modulating stereoelectronic factors for oxygen activation and the stabilization of both transition and intermediate states.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Simulación de Dinámica Molecular , Oxígeno/metabolismo , Teoría Cuántica , Triptófano Oxigenasa/química , Triptófano Oxigenasa/metabolismo , Aminas/química , Aminas/metabolismo , Biocatálisis , Electrones , Estudios de Factibilidad , Humanos , Ligandos , Oxígeno/química , Conformación Proteica , Protones , Xanthomonas campestris/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA