Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.652
1.
Glob Chang Biol ; 30(6): e17362, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822565

The presence of alien species represents a major cause of habitat degradation and biodiversity loss worldwide, constituting a critical environmental challenge of our time. Despite sometimes experiencing reduced propagule pressure, leading to a reduced genetic diversity and an increased chance of inbreeding depression, alien invaders are often able to thrive in the habitats of introduction, giving rise to the so-called "genetic paradox" of biological invasions. The adaptation of alien species to the new habitats is therefore a complex aspect of biological invasions, encompassing genetic, epigenetic, and ecological processes. Albeit numerous studies and reviews investigated the mechanistic foundation of the invaders' success, and aimed to solve the genetic paradox, still remains a crucial oversight regarding the temporal context in which adaptation takes place. Given the profound knowledge and management implications, this neglected aspect of invasion biology should receive more attention when examining invaders' ability to thrive in the habitats of introduction. Here, we discuss the adaptation mechanisms exhibited by alien species with the purpose of highlighting the timing of their occurrence during the invasion process. We analyze each stage of the invasion separately, providing evidence that adaptation mechanisms play a role in all of them. However, these mechanisms vary across the different stages of invasion, and are also influenced by other factors, such as the transport speed, the reproduction type of the invader, and the presence of human interventions. Finally, we provide insights into the implications for management, and identify knowledge gaps, suggesting avenues for future research that can shed light on species adaptability. This, in turn, will contribute to a more comprehensive understanding of biological invasions.


Adaptation, Physiological , Ecosystem , Introduced Species , Biodiversity , Animals
2.
Biol Lett ; 20(6): 20240066, 2024 Jun.
Article En | MEDLINE | ID: mdl-38836647

Metabolism drives various biological processes, potentially influencing the ecological success and evolutionary fitness of species. Understanding diverse metabolic rates is fundamental in biology. Mechanisms underlying adaptation to factors like temperature and predation pressure remain unclear. Our study explored the role of temperature and predation pressure in shaping the metabolic scaling of an invasive mussel species (Brachidontes pharaonis). Specifically, we performed laboratory-based experiments to assess the effects of phenotypic plasticity on the metabolic scaling by exposing the mussels to water conditions with and without predator cues from another invasive species (the blue crab, Callinectes sapidus) across various temperature regimes. We found that temperature effects on metabolic scaling of the invasive mussels are mediated by the presence of chemical cues of an invasive predator, the blue crab. Investigating temperature-predator interactions underscores the importance of studying the ecological effects of global warming. Our research advances our understanding of how environmental factors jointly impact physiological processes.


Cues , Introduced Species , Predatory Behavior , Temperature , Animals , Brachyura/physiology , Bivalvia/physiology , Bivalvia/metabolism
3.
BMC Plant Biol ; 24(1): 511, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38844870

The invasion of Mikania micrantha by climbing and covering trees has rapidly caused the death of many shrubs and trees, seriously endangering forest biodiversity. In this study, M. micrantha seedlings were planted together with local tree species (Cryptocarya concinna) to simulate the process of M. micrantha climbing under the forest. We found that the upper part of the M. micrantha stem lost its support after climbing to the top of the tree, grew in a turning and creeping manner, and then grew branches rapidly to cover the tree canopy. Then, we simulated the branching process through turning treatment. We found that a large number of branches had been formed near the turning part of the M. micrantha stem (TP). Compared with the upper part of the main stem (UP), the contents of plant hormones (auxin, cytokinin, gibberellin), soluble sugars (sucrose, glucose, fructose) and trehalose-6-phosphate (T6P) were significantly accumulated at TP. Further combining the transcriptome data of different parts of the main stem under erect or turning treatment, a hypothetical regulation model to illustrate how M. micrantha can quickly cover trees was proposed based on the regulation of sugars and hormones on plant branching; that is, the lack of support after ascending the top of the tree led to turning growth of the main stem, and the enhancement of sugars and T6P levels in the TP may first drive the release of nearby dormant buds. Plant hormone accumulation may regulate the entrance of buds into sustained growth and maintain the elongation of branches together with sugars to successfully covering trees.


Introduced Species , Mikania , Trees , Mikania/growth & development , Trees/growth & development , Plant Growth Regulators/metabolism
4.
Harmful Algae ; 135: 102630, 2024 May.
Article En | MEDLINE | ID: mdl-38830708

Ships' ballast water and sediments have long been linked to the global transport and expansion of invasive species and thus have become a hot research topic and administrative challenge in the past decades. The relevant concerns, however, have been mainly about the ocean-to-ocean invasion and sampling practices have been almost exclusively conducted onboard. We examined and compared the dinoflagellate cysts assemblages in 49 sediment samples collected from ballast tanks of international and domestic routes ships, washing basins associated with a ship-repair yard, Jiangyin Port (PS), and the nearby area of Yangtze River (YR) during 2017-2018. A total of 43 dinoflagellates were fully identified to species level by metabarcoding, single-cyst PCR-based sequencing, cyst germination and phylogenetic analyses, including 12 species never reported from waters of China, 14 HABs-causing, 9 toxic, and 10 not strictly marine species. Our metabarcoding and single-cyst sequencing also detected many OTUs and cysts of dinoflagellates that could not be fully identified, indicating ballast tank sediments being a risky repository of currently unrecognizable invasive species. Particularly important, 10 brackish and fresh water species of dinoflagellate cysts (such as Tyrannodinium edax) were detected from the transoceanic ships, indicating these species may function as alien species potentially invading the inland rivers and adjacent lakes if these ships conduct deballast and other practices in fresh waterbodies. Significantly higher numbers of reads and OTUs of dinoflagellates in the ballast tanks and washing basins than that in PS and YR indicate a risk of releasing cysts by ships and the associated ship-repair yards to the surrounding waters. Phylogenetic analyses revealed high intra-species genetic diversity for multiple cyst species from different ballast tanks. Our work provides novel insights into the risk of bio-invasion to fresh waters conveyed in ship's ballast tank sediments and washing basins of shipyards.


Dinoflagellida , Fresh Water , Introduced Species , Phylogeny , Ships , Dinoflagellida/physiology , Dinoflagellida/genetics , Dinoflagellida/classification , Fresh Water/parasitology , China , Ecosystem , Geologic Sediments , Harmful Algal Bloom
5.
Sci Rep ; 14(1): 12689, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830863

The release of sterilized insects to control pest populations has been used successfully during the past 6 decades, but application of the method in vertebrates has largely been overlooked or met with failure. Here, we demonstrate for the first time in fish, that a small population of sea lamprey (Petromyzon marinus; Class Agnatha), arguably one of the most impactful invasive fish in the world, can be controlled by the release of sterilized males. Specifically, the release of high numbers of sterile males (~ 1000's) into a geographically isolated population of adult sea lamprey resulted in the first multiyear delay in pesticide treatment since treatments began during 1966. Estimates of percent reduction in recruitment of age-1 sea lamprey due to sterile male release ranged from 7 to 99.9% with the precision of the estimate being low because of substantial year-to-year variability in larval density and distribution. Additional monitoring that accounts for recruitment variability in time and space would reduce uncertainty in the degree to which sterile male release reduces recruitment rates. The results are relevant to vertebrate pest control programs worldwide, especially as technical opportunities to sterilize vertebrates and manipulate sex ratios expand.


Introduced Species , Petromyzon , Animals , Male , Petromyzon/physiology , Female , Pest Control, Biological/methods
6.
Sci Rep ; 14(1): 12708, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830943

Invasive Anoplophora glabripennis recently became established in Japan and has caused heavy damage to several street-tree species. Overseas, A. glabripennis infests trees of the genera Acer and Populus as common host plants, and Malus, Pyrus, and Prunus (Rosaceae), including apple, pear, and plum trees; it therefore poses a potential risk to the production of economically valuable fruits in Japan. Fruit farms in areas already invaded by A. glabripennis are now threatened with tree infestation. We aimed to determine the potential damage to major fruit species in Japan. In the laboratory, we determined if the adult beetle is attracted to the odor of each of these tree species' branches; two confirmed host plant species and five Rosaceae fruit species, as well as its feeding preferences among branches of one host plant and the five fruit trees and its oviposition preferences among them. Among the fruit species, cherry branch had the highest rate of odor orientation by males. The feeding-preference assay showed that, besides the host plant, Japanese pear was the most consumed among the fruit trees. The potential risk of A. glabripennis laying eggs on fruit-tree branches was high for Japanese pear and above zero for plum, apple, and cherry branches.


Coleoptera , Fruit , Trees , Animals , Japan , Fruit/parasitology , Coleoptera/physiology , Trees/parasitology , Male , Female , Oviposition/physiology , Introduced Species , Rosaceae/parasitology
7.
BMC Plant Biol ; 24(1): 494, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831264

BACKGROUND ACMELLA RADICANS: (Jacquin) R.K. Jansen is a new invasive species record for Yunnan Province, China. Native to Central America, it has also been recently recorded invading other parts of Asia. To prevent this weed from becoming a serious issue, an assessment of its ecological impacts and potential distribution is needed. We predicted the potential distribution of A. radicans in China using the MaxEnt model and its ecological impacts on local plant communities and soil nutrients were explored. RESULTS: Simulated training using model parameters produced an area under curve value of 0.974, providing a high degree of confidence in model predictions. Environmental variables with the greatest predictive power were precipitation of wettest month, isothermality, topsoil TEB (total exchangeable bases), and precipitation seasonality, with a cumulative contribution of more than 72.70% and a cumulative permutation importance of more than 69.20%. The predicted potential suitable area of A. radicans in China is concentrated in the southern region. Projected areas of A. radicans ranked as high and moderately suitable comprised 5425 and 26,338 km2, accounting for 0.06 and 0.27% of the Chinese mainland area, respectively. Over the 5 years of monitoring, the population density of A. radicans increased while at the same time the population density and importance values of most other plant species declined markedly. Community species richness, diversity, and evenness values significantly declined. Soil organic matter, total N, total P, available N, and available P concentrations decreased significantly with increasing plant cover of A. radicans, whereas pH, total K and available K increased. CONCLUSION: Our study was the first to show that A. radicans is predicted to expand its range in China and may profoundly affect plant communities, species diversity, and the soil environment. Early warning and monitoring of A. radicans must be pursued with greater vigilance in southern China to prevent its further spread.


Introduced Species , China , Soil/chemistry , Ecosystem
8.
PeerJ ; 12: e17425, 2024.
Article En | MEDLINE | ID: mdl-38832036

We report new data on non-indigenous invertebrates from the Mediterranean Sea (four ostracods and 20 molluscs), including five new records for the basin: the ostracods Neomonoceratina iniqua, Neomonoceratina aff. mediterranea, Neomonoceratina cf. entomon, Loxoconcha cf. gisellae (Arthropoda: Crustacea)-the first records of non-indigenous ostracods in the Mediterranean-and the bivalve Striarca aff. symmetrica (Mollusca). Additionally, we report for the first time Electroma vexillum from Israel, and Euthymella colzumensis, Joculator problematicus, Hemiliostraca clandestina, Pyrgulina nana, Pyrgulina microtuber, Turbonilla cangeyrani, Musculus aff. viridulus and Isognomon bicolor from Cyprus. We also report the second record of Fossarus sp. and of Cerithiopsis sp. cf. pulvis in the Mediterranean Sea, the first live collected specimens of Oscilla galilae from Cyprus and the northernmost record of Gari pallida in Israel (and the Mediterranean). Moreover, we report the earliest records of Rugalucina angela, Ervilia scaliola and Alveinus miliaceus in the Mediterranean Sea, backdating their first occurrence in the basin by 3, 5 and 7 years, respectively. We provide new data on the presence of Spondylus nicobaricus and Nudiscintilla aff. glabra in Israel. Finally, yet importantly, we use both morphological and molecular approaches to revise the systematics of the non-indigenous genus Isognomon in the Mediterranean Sea, showing that two species currently co-occur in the basin: the Caribbean I. bicolor, distributed in the central and eastern Mediterranean, and the Indo-Pacific I. aff. legumen, at present reported only from the eastern Mediterranean and whose identity requires a more in-depth taxonomic study. Our work shows the need of taxonomic expertise and investigation, the necessity to avoid the unfounded sense of confidence given by names in closed nomenclature when the NIS belong to taxa that have not enjoyed ample taxonomic work, and the necessity to continue collecting samples-rather than relying on visual censuses and bio-blitzes-to enable accurate detection of non-indigenous species.


Bivalvia , Animals , Mediterranean Sea , Bivalvia/classification , Crustacea/classification , Mollusca/classification , Israel , Animal Distribution , Introduced Species
9.
PLoS One ; 19(6): e0303638, 2024.
Article En | MEDLINE | ID: mdl-38833460

Arthraxon hispidus is an introduced, rapidly spreading, and newly invasive grass in the eastern United States, yet little is known about the foundational biology of this aggressive invader. Germination responses to environmental factors including salinity, pH, osmotic potential, temperature, and burial depth were investigated to better understand its germination niche. Seeds from six populations in the Mid-Atlantic US germinated 95% with an average mean time to germination of 3.42 days of imbibition in the dark at 23°C. Germination occurred across a temperature range of 8-37°C and a pH range of 5-10 (≥83%), suggesting that neither pH nor temperature will limit germination in many environments. Arthraxon hispidus germination occurred in high salinity (342 mM NaCl) and osmotic potentials as low as -0.83MPa. The NaCl concentration required to reduce germination by 50% exceeded salinity concentrations found in soil and some brackish water saltmarsh systems. While drought adversely affects A. hispidus, 50% germination occurred at osmotic potentials ranging from -0.25 to -0.67 MPa. Given the climatic conditions of North America, drought stress is unlikely to restrict germination in large regions. Finally, emergence greatly decreased with burial depth. Emergence was reduced to 45% at 1-2 cm burial depths, and 0% at 8 cm. Emergence depths in concert with adequate moisture, germination across a range of temperatures, and rapid germination suggests A. hispidus' seed bank may be short-lived in moist environments, but further investigation is warranted. Given the broad abiotic tolerances of A. hispidus and a widespread native range, A. hispidus has the potential to germinate in novel territories beyond its currently observed invaded range.


Germination , Introduced Species , Temperature , Germination/physiology , Poaceae/physiology , Poaceae/growth & development , Salinity , Hydrogen-Ion Concentration , Seeds/growth & development , Seeds/physiology , Droughts
10.
J Insect Sci ; 24(3)2024 May 01.
Article En | MEDLINE | ID: mdl-38717262

Climate change is a prominent factor reshaping the distribution of invasive species. Metcalfa pruinosa (Say 1830) (Hemiptera: Flatidae), native to North America, has invaded other continents and poses a serious threat to various agricultural crops and the human residential environment. Understanding the distribution of M. pruinosa based on climatic conditions is a critical first step to prevent its further invasion. Therefore, based on its occurrence records and associated environmental variables, a Maxent model was developed to predict suitable areas for this species in the present and future on a global scale. The model exhibited outstanding performance, with a mean area under the receiver operating characteristic curve and true skill statistic values of 0.9329 and 0.926, respectively. The model also indicated that annual precipitation (Bio12) and max temperature of the warmest month (Bio5) were the key environmental variables limiting the distribution of M. pruinosa. Moreover, the model revealed that the current suitable area is 1.01 × 107 km2 worldwide, with southern China, southern Europe, and the eastern United States predicted to be the primary and highly suitable areas in the latter 2 regions. This area is expected to increase under future climate scenarios, mainly in the northern direction. The study's findings contribute to our understanding of climate change's impact on M. pruinosa distribution, and they will aid governments in developing appropriate pest management strategies, including global monitoring and strict quarantine measures.


Animal Distribution , Climate Change , Introduced Species , Animals , Hemiptera/physiology , Insect Control/methods
11.
PLoS One ; 19(5): e0302935, 2024.
Article En | MEDLINE | ID: mdl-38717978

Introduction and establishment of non-indigenous species (NIS) has been accelerated on a global scale by climate change. NIS Magallana gigas' (formerly Crassostrea gigas') global spread over the past several decades has been linked to warming waters, specifically during summer months, raising the specter of more spread due to predicted warming. We tracked changes in density and size distribution of M. gigas in two southern California, USA bays over the decade spanning 2010-2020 using randomly placed quadrats across multiple intertidal habitats (e.g., cobble, seawalls, riprap) and documented density increases by 2.2 to 32.8 times at 7 of the 8 sites surveyed across the two bays. These increases in density were coincident with 2-4° C increases in median monthly seawater temperature during summer months, consistent with global spread of M. gigas elsewhere. Size frequency distribution data, with all size classes represented across sites, suggest now-regular recruitment of M. gigas. Our data provide a baseline against which to compare future changes in density and abundance of a globally-spread NIS of significant concern.


Climate Change , Estuaries , Introduced Species , California , Animals , Ecosystem , Seasons , Crassostrea , Temperature
12.
PLoS One ; 19(5): e0301456, 2024.
Article En | MEDLINE | ID: mdl-38718023

The round goby (Neogobius melanostomus) is an invasive benthic fish first introduced to the Laurentian Great Lakes in 1990 that has negatively impacted native fishes through increased competition for food and habitat, aggressive interactions, and egg predation. While complete eradication of the round goby is currently not possible, intensive trapping in designated areas during spawning seasons could potentially protect critical native fish spawning habitats. Baited minnow traps were spaced 10 meters apart in shallow water along a 100-meter stretch of shoreline within the Duluth-Superior Harbor during the round goby breeding period (June to October) with captured round gobies removed from interior traps (N = 10) every 48 hours. These traps were bracketed by two pairs of reference traps deployed weekly for 48 hours, from which round gobies were also tagged and released. The number of round gobies captured in the interior traps declined by 67% compared to reference traps over the course of the study, with extended periods of no captures. The tagged round gobies showed high site affinity, with 82.8% of tagged fish recaptured at the previous release site. The results indicate that even at open water sites, which allow natural migration of round gobies into the area, extensive trapping could reduce local population numbers.


Introduced Species , Animals , Ecosystem , Population Density , Perciformes/physiology , Fishes/physiology , Lakes
13.
ScientificWorldJournal ; 2024: 5521245, 2024.
Article En | MEDLINE | ID: mdl-38708123

Ethiopia is among the world's poorest nations, and its economy is growing extremely slowly; thus, the government's budget to manage environmental amenities is not always sufficient. Thus, for the provision of environmental management services such as the eradication of Prosopis juliflora, the participation of local households and other stakeholders is crucial. This study is therefore initiated with the objective of assessing rural households' demands for mitigating Prosopis juliflora invasion in the Afar Region of Ethiopia. A multistage sampling technique was employed to obtain the 313 sample rural households that were used in the analysis, and those sample households were selected randomly and independently from the Amibara and Awash Fentale districts of Afar National Regional State, Ethiopia. In doing this, a seemingly unrelated bivariate probit model was used to determine factors affecting rural households' demands for mitigating Prosopis juliflora invasion. Consequently, as per the inferential statistical results, there was a significant mean/percentage difference between willing and nonwilling households for the hypothesized variables, except for some variables such as farm experience; years lived in the area, distance from the market, and dependency ratio. Furthermore, the seemingly unrelated bivariate probit model result indicates that sex, family size, tenure security, livestock holding, frequency of extension contact, and years lived in the area were important factors influencing the willingness to participate in Prosopis juliflora management practices positively, whereas age, off-farm/nonincome, and bid value affected willingness to pay negatively and significantly. Hence, to improve the participation level of households, policymakers should target these variables.


Family Characteristics , Prosopis , Rural Population , Ethiopia , Prosopis/growth & development , Humans , Male , Female , Introduced Species , Conservation of Natural Resources/methods , Adult
14.
Sci Rep ; 14(1): 10159, 2024 05 03.
Article En | MEDLINE | ID: mdl-38698043

Invasive alien species are becoming more and more prevalent worldwide, Erigeron bonariensis and Bidens pilosa are two invasive species of Asteraceae in Egypt. To mitigate their detrimental effects and understand their differences in invasiveness, we compared the allelopathic potentials of E. bonariensis and B. pilosa using leachates, decaying residues, and volatilization processes. Notably, the allelopathic variances in leachates were significant, influenced by plant types, concentrations, and response patterns of target plant traits, as indicated by EC50. The relative phytotoxicity of the invasive species decayed residues peaked between 20 and 25 days in the soil, with a positive correlation with concentrations and soil properties. The highest quantities of phenolic acids were chlorogenic acid and caffeic acid reaching (5.41 and 4.39 µg g-1) E. bonariensis and (4.53 and 4.46 µg g-1) B. pilosa, in leachates extracts respectively, while in the soil extract of decayed residues were coumaric acid and ferulic acid measuring (1.66 and 1.67 µg g-1) E. bonariensis and (1.47 and 1.57 µg g-1) B. pilosa, respectively. Using GC/MS analysis, the main volatile components in E. bonariensis were 1, 8 cineole (5.62%), and α-terpinene (5.43%) and iso-Caryophyllene (5.2%) which showed the greatest inhibitory effects. While B. pilosa main constituents were trans-sabinene (5.39%) and Camphene (5.11%), respectively. Finally, the high invasion level displayed from E. bonariensis (0.221) compared with B. pilosa (0.094) which correlated with the stronger allelopathic activities against plant species, and soil properties. Therefore, the allelopathic potentialities of these species are critically relevant to their invasion success.


Allelopathy , Bidens , Erigeron , Introduced Species , Soil , Soil/chemistry , Erigeron/chemistry , Egypt , Hydroxybenzoates
15.
PeerJ ; 12: e17307, 2024.
Article En | MEDLINE | ID: mdl-38742097

Invasive species threaten biodiversity globally. Amphibians are one of the most threatened vertebrate taxa and are particularly sensitive to invasive species, including other amphibians. African clawed frogs (Xenopus laevis) are native to Southern Africa but have subsequently become invasive on multiple continents-including multiple parts of North America-due to releases from the pet and biomedical trades. Despite their prevalence as a global invader, the impact of X. laevis remains understudied. This includes the Pacific Northwest of the USA, which now hosts multiple expanding X. laevis populations. For many amphibians, chemical cues communicate important information, including the presence of predators. Here, we tested the role chemical cues may play in mediating interactions between feral X. laevis and native amphibians in the Pacific Northwest. We tested whether native red-legged frog (Rana aurora) tadpoles display an antipredator response to non-native frog (X. laevis) or native newt (rough-skinned newts, Taricha granulosa) predator chemical stimuli. We found that R. aurora tadpoles exhibited pronounced anti-predator responses when exposed to chemical cues from T. granulosa but did not display anti-predator response to invasive X. laevis chemical cues. We also began experimentally testing whether T. granulosa-which produce a powerful neurotoxin tetrodotoxin (TTX)-may elicit an anti-predator response in X. laevis, that could serve to deter co-occupation. However, our short-duration experiments found that X. laevis were attracted to newt chemical stimuli rather than deterred. Our findings show that X. laevis likely poses a threat to native amphibians, and that these native species may also be particularly vulnerable to this invasive predator, compared to native predators, because toxic native newts may not limit X. laevis invasions. Our research provides some of the first indications that native Pacific Northwest species may be threatened by feral X. laevis and provides a foundation for future experiments testing potential management techniques for X. laevis.


Cues , Introduced Species , Salamandridae , Xenopus laevis , Animals , Washington , Salamandridae/physiology , Larva , Predatory Behavior , Ranidae
16.
Sci Rep ; 14(1): 10803, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734771

The northern giant hornet Vespa mandarinia (NGH) is a voracious predator of other insect species, including honey bees. NGH's native range spans subtropical and temperate regions across much of east and southeast Asia and, in 2019, exotic populations of the species were discovered in North America. Despite this broad range and invasive potential, investigation of the population genomic structure of NGH across its native and introduced ranges has thus far been limited to a small number of mitochondrial samples. Here, we present analyses of genomic data from NGH individuals collected across the species' native range and from exotic individuals collected in North America. We provide the first survey of whole-genome population variation for any hornet species, covering this species' native and invasive ranges, and in doing so confirm likely origins in Japan and South Korea for the two introductions. We additionally show that, while this introduced population exhibited strongly elevated levels of inbreeding, these signatures of inbreeding are also present in some long-standing native populations, which may indicate that inbreeding depression alone is insufficient to prevent the persistence of NGH populations. As well as highlighting the importance of ongoing monitoring and eradication efforts to limit the spread of this species outside of its natural range, our data will serve as a foundational database for future genomic studies into introduced hornet populations.


Introduced Species , Wasps , Animals , North America , Wasps/genetics , Genetics, Population , Genomics/methods , Genetic Variation , Inbreeding , Genome, Insect
17.
Sci Total Environ ; 932: 173030, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38719043

Antibiotic pollution and biological invasion pose significant risks to freshwater biodiversity and ecosystem health. However, few studies have compared the ecological adaptability and ciprofloxacin (CIPR) degradation potential between alien and native macrophytes. We examined growth, physiological response, and CIPR accumulation, translocation and metabolic abilities of two alien plants (Eichhornia crassipes and Myriophyllum aquaticum) and one native submerged species (Vallisneria natans) exposed to CIPR at 0, 1 and 10 mg/L. We found that E. crassipes and M. aquaticum's growth were unaffected by CIPR while V. natans was significantly hindered under the 10 mg/L treatment. CIPR significantly decreased the maximal quantum yield of PSII, actual quantum yield of PSII and relative electron transfer rate in E. crassipes and V. natans but didn't impact these photosynthetic characteristics in M. aquaticum. All the plants can accumulate, translocate and metabolize CIPR. M. aquaticum and E. crassipes in the 10 mg/L treatment group showed greater CIPR accumulation potential than V. natans indicated by higher CIPR contents in their roots. The oxidative cleavage of the piperazine ring acts as a key pathway for these aquatic plants to metabolize CIPR and the metabolites mainly distributed in plant roots. M. aquaticum and E. crassipes showed a higher production of CIPR metabolites compared to V. natans, with M. aquaticum exhibiting the strongest CIPR metabolic ability, as indicated by the most extensive structural breakdown of CIPR and the largest number of potential metabolic pathways. Taken together, alien species outperformed the native species in ecological adaptability, CIPR accumulation and metabolic capacity. These findings may shed light on the successful invasion mechanisms of alien aquatic species under antibiotic pressure and highlight the potential ecological impacts of alien species, particularly M. aquaticum. Additionally, the interaction of antibiotic contamination and invasion might further challenge the native submerged macrophytes and pose greater risks to freshwater ecosystems.


Ciprofloxacin , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Introduced Species , Eichhornia/metabolism , Eichhornia/physiology , Anti-Bacterial Agents/toxicity , Hydrocharitaceae/physiology , Hydrocharitaceae/metabolism , Biodegradation, Environmental
18.
Sci Rep ; 14(1): 11088, 2024 05 15.
Article En | MEDLINE | ID: mdl-38750079

Many studies seeking to understand the success of biological invasions focus on species' escape from negative interactions, such as damage from herbivores, pathogens, or predators in their introduced range (enemy release). However, much less work has been done to assess the possibility that introduced species might shed mutualists such as pollinators, seed dispersers, and mycorrhizae when they are transported to a new range. We ran a cross-continental field study and found that plants were being visited by 2.6 times more potential pollinators with 1.8 times greater richness in their native range than in their introduced range. Understanding both the positive and negative consequences of introduction to a new range can help us predict, monitor, and manage future invasion events.


Introduced Species , Animals , Pollination , Mycorrhizae/physiology , Symbiosis , Plants , Seed Dispersal , Ecosystem
19.
Proc Biol Sci ; 291(2023): 20232849, 2024 May.
Article En | MEDLINE | ID: mdl-38775542

Recent experiments have demonstrated that carnivores and ungulates in Africa, Asia, Europe and North America fear the human 'super predator' far more than other predators. Australian mammals have been a focus of research on predator naiveté because it is suspected they show atypical antipredator responses. To experimentally test if mammals in Australia also most fear humans, we quantified the responses of four native marsupials (eastern grey kangaroo, Bennett's wallaby, Tasmanian pademelon, common brushtail possum) and introduced fallow deer to playbacks of predator (human, dog, Tasmanian devil, wolf) or non-predator control (sheep) vocalizations. Native marsupials most feared the human 'super predator', fleeing humans 2.4 times more often than the next most frightening predator (dogs), and being most, and significantly, vigilant to humans. These results demonstrate that native marsupials are not naïve to the peril humans pose, substantially expanding the taxonomic and geographic scope of the growing experimental evidence that wildlife worldwide generally perceive humans as the planet's most frightening predator. Introduced fallow deer fled humans, but not more than other predators, which we suggest may result from their being introduced. Our results point to both challenges concerning marsupial conservation and opportunities for exploiting fear of humans as a wildlife management tool.


Deer , Fear , Marsupialia , Predatory Behavior , Animals , Deer/physiology , Humans , Marsupialia/physiology , Australia , Introduced Species , Wolves/physiology , Dogs , Vocalization, Animal
20.
Parasit Vectors ; 17(1): 234, 2024 May 22.
Article En | MEDLINE | ID: mdl-38773521

BACKGROUND: Snail-borne trematodes afflict humans, livestock, and wildlife. Recognizing their zoonotic potential and possible hybridization, a One Health approach is essential for effective control. Given the dearth of knowledge on African trematodes, this study aimed to map snail and trematode diversity, focusing on (i) characterizing gastropod snail species and their trematode parasites, (ii) determining infection rates of snail species as intermediate hosts for medically, veterinary, and ecologically significant trematodes, and (iii) comparing their diversity across endemic regions. METHODS: A cross-sectional study conducted in 2021 in Chiredzi and Wedza districts in Zimbabwe, known for high human schistosomiasis prevalence, involved malacological surveys at 56 sites. Trematode infections in snails were detected through shedding experiments and multiplex rapid diagnostic polymerase chain reactions (RD-PCRs). Morphological and molecular analyses were employed to identify snail and trematode species. RESULTS: Among 3209 collected snail specimens, 11 species were identified, including schistosome and fasciolid competent snail species. We report for the first time the invasive exotic snail Tarebia granifera in Zimbabwe, which was highly abundant, mainly in Chiredzi, occurring at 29 out of 35 sites. Shedding experiments on 1303 snails revealed a 2.24% infection rate, with 15 trematode species identified through molecular genotyping. Five species were exclusive to Chiredzi: Bolbophorus sp., Schistosoma mansoni, Schistosoma mattheei, Calicophoron sp., and Uvulifer sp. Eight were exclusive to Wedza, including Trichobilharzia sp., Stephanoprora amurensis, Spirorchid sp., and Echinostoma sp. as well as an unidentified species of the Plagiorchioidea superfamily. One species, Tylodelphys mashonensis, was common to both regions. The RD-PCR screening of 976 non-shedding snails indicated a 35.7% trematode infection rate, including the presence of schistosomes (1.1%) Fasciola nyanzae (0.6%). In Chiredzi, Radix natalensis had the highest trematode infection prevalence (33.3%), while in Wedza, R. natalensis (55.4%) and Bulinus tropicus (53.2%) had the highest infection prevalence. CONCLUSIONS: Our xenomonitoring approach unveiled 15 trematode species, including nine new records in Zimbabwe. Schistosoma mansoni persists in the study region despite six mass deworming rounds. The high snail and parasite diversity, including the presence of exotic snail species that can impact endemic species and biomedically important trematodes, underscores the need for increased monitoring.


Fresh Water , Introduced Species , Snails , Trematoda , Animals , Zimbabwe/epidemiology , Snails/parasitology , Trematoda/genetics , Trematoda/classification , Trematoda/isolation & purification , Trematoda/physiology , Cross-Sectional Studies , Fresh Water/parasitology , One Health , Humans , Trematode Infections/parasitology , Trematode Infections/veterinary , Trematode Infections/epidemiology , Biodiversity , Prevalence , Schistosomiasis/epidemiology , Schistosomiasis/parasitology , Schistosomiasis/veterinary
...