Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.591
Filtrar
1.
Sci Rep ; 14(1): 16133, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997414

RESUMEN

Nickel(Ni)-containing materials have been widely used in a wide range of medical applications, including orthopaedics. Despite their excellent properties, there is still a problem with the release of nickel ions into the patient's body, which can cause changes in the behaviour of surrounding cells and tissues. This study aims to evaluate the effects of Ni on bone cells with an emphasis on the determination of Ni localization in cellular compartments in time. For these purposes, one of the most suitable models for studying the effects induced by metal implants was used-the patient's osteoarthritic cells. Thanks to this it was possible to simulate the pathophysiological conditions in the patient's body, as well as to evaluate the response of the cells which come into direct contact with the material after the implantation of the joint replacement. The largest differences in cell viability, proliferation and cell cycle changes occurred between Ni 0.5 mM and 1 mM concentrations. Time-dependent localization of Ni in cells showed that there is a continuous transport of Ni ions between the nucleus and the cytoplasm, as well as between the cell and the environment. Moreover, osteoarthritic osteoblasts showed faster changes in concentration and ability to accumulate more Ni, especially in the nucleus, than physiological osteoblasts. The differences in Ni accumulation process explains the higher sensitivity of patient osteoblasts to Ni and may be crucial in further studies of implant-derived cytotoxic effects.


Asunto(s)
Proliferación Celular , Supervivencia Celular , Níquel , Osteoartritis , Osteoblastos , Níquel/metabolismo , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Humanos , Osteoartritis/metabolismo , Osteoartritis/patología , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Iones/metabolismo , Ciclo Celular/efectos de los fármacos , Células Cultivadas
2.
BMC Plant Biol ; 24(1): 572, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890574

RESUMEN

BACKGROUND: Nitrogen (N) availability is crucial in regulating plants' abiotic stress resistance, particularly at the seedling stage. Nevertheless, plant responses to N under salinity conditions may vary depending on the soil's NH4+ to NO3- ratio. METHODS: In this study, we investigated the effects of different NH4+:NO3- ratios (100/0, 0/100, 25/75, 50/50, and 75/25) on the growth and physio-biochemical responses of soybean seedlings grown under controlled and saline stress conditions (0-, 50-, and 100-mM L- 1 NaCl and Na2SO4, at a 1:1 molar ratio). RESULTS: We observed that shoot length, root length, and leaf-stem-root dry weight decreased significantly with increased saline stress levels compared to control. Moreover, there was a significant accumulation of Na+, Cl-, hydrogen peroxide (H2O2), and malondialdehyde (MDA) but impaired ascorbate-glutathione pools (AsA-GSH). They also displayed lower photosynthetic pigments (chlorophyll-a and chlorophyll-b), K+ ion, K+/Na+ ratio, and weakened O2•--H2O2-scavenging enzymes such as superoxide dismutase, catalase, peroxidase, monodehydroascorbate reductase, glutathione reductase under both saline stress levels, while reduced ascorbate peroxidase, and dehydroascorbate reductase under 100-mM stress, demonstrating their sensitivity to a saline environment. Moreover, the concentrations of proline, glycine betaine, total phenolic, flavonoids, and abscisic acid increased under both stresses compared to the control. They also exhibited lower indole acetic acid, gibberellic acid, cytokinins, and zeatine riboside, which may account for their reduced biomass. However, NH4+:NO3- ratios caused a differential response to alleviate saline stress toxicity. Soybean seedlings supplemented with optimal ratios of NH4+:NO3- (T3 = 25:75 and T = 4 50:50) displayed lower Na+ and Cl- and ABA but improved K+ and K+/Na+, pigments, growth hormones, and biomass compared to higher NH4+:NO3- ratios. They also exhibited higher O2•--H2O2-scavenging enzymes and optimized H2O2, MDA, and AsA-GSH pools status in favor of the higher biomass of seedlings. CONCLUSIONS: In summary, the NH4+ and NO3- ratios followed the order of 50:50 > 25:75 > 0:100 > 75:25 > 100:0 for regulating the morpho-physio-biochemical responses in seedlings under SS conditions. Accordingly, we suggest that applying optimal ratios of NH4+ and NO3- (25/75 and 50:50) can improve the resistance of soybean seedlings grown in saline conditions.


Asunto(s)
Antioxidantes , Glycine max , Nitratos , Reguladores del Crecimiento de las Plantas , Tolerancia a la Sal , Plantones , Glycine max/fisiología , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Plantones/fisiología , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Antioxidantes/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Estrés Salino , Iones/metabolismo
3.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892004

RESUMEN

Vedolizumab (VDZ) is used for treating inflammatory bowel disease (IBD) patients. A study investigating colonic epithelial barrier function ex vivo following VDZ is lacking. This work aims to evaluate ex vivo the colonic epithelial barrier function in IBD patients at baseline and during VDZ treatment, and to investigate the relationships between barrier function and clinical parameters. Colonic specimens were obtained from 23 IBD patients before, and at 24 and 52 weeks after VDZ treatment, and from 26 healthy volunteers (HV). Transepithelial electrical resistance (TEER, permeability to ions) and paracellular permeability were measured in Ussing chambers. IBD patients showed increased epithelial permeability to ions (TEER, 13.80 ± 1.04 Ω × cm2 vs. HV 20.70 ± 1.52 Ω × cm2, p < 0.001) without changes in paracellular permeability of a 4 kDa probe. VDZ increased TEER (18.09 ± 1.44 Ω × cm2, p < 0.001) after 52 weeks. A clinical response was observed in 58% and 25% of patients at week 24, and in 62% and 50% at week 52, in ulcerative colitis and Crohn's disease, respectively. Clinical and endoscopic scores were strongly associated with TEER. TEER < 14.65 Ω × cm2 predicted response to VDZ (OR 11; CI 2-59). VDZ reduces the increased permeability to ions observed in the colonic epithelium of IBD patients before treatment, in parallel to a clinical, histological (inflammatory infiltrate), and endoscopic improvement. A low TEER predicts clinical response to VDZ therapy.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Colon , Enfermedades Inflamatorias del Intestino , Mucosa Intestinal , Permeabilidad , Humanos , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Masculino , Femenino , Adulto , Persona de Mediana Edad , Permeabilidad/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Iones/metabolismo , Fármacos Gastrointestinales/farmacología , Fármacos Gastrointestinales/uso terapéutico , Impedancia Eléctrica , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Anciano
4.
Nat Commun ; 15(1): 5140, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886375

RESUMEN

Holliday junction resolution is a crucial process in homologous recombination and DNA double-strand break repair. Complete Holliday junction resolution requires two stepwise incisions across the center of the junction, but the precise mechanism of metal ion-catalyzed Holliday junction cleavage remains elusive. Here, we perform a metal ion-triggered catalysis in crystals to investigate the mechanism of Holliday junction cleavage by MOC1. We capture the structures of MOC1 in complex with a nicked Holliday junction at various catalytic states, including the ground state, the one-metal ion binding state, and the two-metal ion binding state. Moreover, we also identify a third metal ion that may aid in the nucleophilic attack on the scissile phosphate. Further structural and biochemical analyses reveal a metal ion-mediated allosteric regulation between the two active sites, contributing to the enhancement of the second strand cleavage following the first strand cleavage, as well as the precise symmetric cleavage across the Holliday junction. Our work provides insights into the mechanism of metal ion-catalyzed Holliday junction resolution by MOC1, with implications for understanding how cells preserve genome integrity during the Holliday junction resolution phase.


Asunto(s)
ADN Cruciforme , ADN Cruciforme/metabolismo , ADN Cruciforme/química , ADN Cruciforme/genética , Metales/metabolismo , Metales/química , Resolvasas de Unión Holliday/metabolismo , Resolvasas de Unión Holliday/química , Dominio Catalítico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Cristalografía por Rayos X , Iones/metabolismo , Roturas del ADN de Doble Cadena , Modelos Moleculares , Regulación Alostérica
5.
Front Immunol ; 15: 1379365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915413

RESUMEN

Metal ions play an essential role in regulating the functions of immune cells by transmitting intracellular and extracellular signals in tumor microenvironment (TME). Among these immune cells, we focused on the impact of metal ions on T cells because they can recognize and kill cancer cells and play an important role in immune-based cancer treatment. Metal ions are often used in nanomedicines for tumor immunotherapy. In this review, we discuss seven metal ions related to anti-tumor immunity, elucidate their roles in immunotherapy, and provide novel insights into tumor immunotherapy and clinical applications.


Asunto(s)
Inmunoterapia , Metales , Neoplasias , Microambiente Tumoral , Microambiente Tumoral/inmunología , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Metales/inmunología , Animales , Inmunoterapia/métodos , Iones/metabolismo , Linfocitos T/inmunología
6.
Chembiochem ; 25(13): e202400237, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38712989

RESUMEN

C-terminal truncated variants (A, VA, NVA, ANVA, FANVA and GFANVA) of our recently identified Cu(II) specific peptide "HGFANVA" were displayed on filamentous fd phages. Wild type fd-tet and engineered virus variants were treated with 100 mM Cu(II) solution at a final phage concentration of 1011 vir/ml and 1012 vir/ml. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) imaging before Cu(II) exposure showed ≈6-8 nm thick filamentous virus layer formation. Cu(II) treatment resulted in aggregated bundle-like assemblies with mineral deposition. HGFANVA phage formed aggregates with an excessive mineral coverage. As the virus concentration was 10-fold decreased, nanowire-like assemblies were observed for shorter peptide variants A, NVA and ANVA. Wild type fd phages did not show any mineral formation. Energy dispersive X-ray spectroscopy (EDX) analyses revealed the presence of C and N peaks on phage organic material. Cu peak was only detected for engineered viruses. Metal ion binding of viruses was next investigated by enzyme-linked immunosorbent assay (ELISA) analyses. Engineered viruses were able to bind Cu(II) forming mineralized intertwined structures although no His (H) unit was displayed. Such genetically reprogrammed virus based biological materials can be further applied for bioremediation studies to achieve a circular economy.


Asunto(s)
Cobre , Cobre/química , Cobre/metabolismo , Iones/química , Iones/metabolismo , Péptidos/química , Péptidos/metabolismo
7.
Nature ; 630(8016): 493-500, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718835

RESUMEN

The introduction of AlphaFold 21 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design2-6. Here we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture that is capable of predicting the joint structure of complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy over many previous specialized tools: far greater accuracy for protein-ligand interactions compared with state-of-the-art docking tools, much higher accuracy for protein-nucleic acid interactions compared with nucleic-acid-specific predictors and substantially higher antibody-antigen prediction accuracy compared with AlphaFold-Multimer v.2.37,8. Together, these results show that high-accuracy modelling across biomolecular space is possible within a single unified deep-learning framework.


Asunto(s)
Aprendizaje Profundo , Ligandos , Modelos Moleculares , Proteínas , Programas Informáticos , Humanos , Anticuerpos/química , Anticuerpos/metabolismo , Antígenos/metabolismo , Antígenos/química , Aprendizaje Profundo/normas , Iones/química , Iones/metabolismo , Simulación del Acoplamiento Molecular , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Unión Proteica , Conformación Proteica , Proteínas/química , Proteínas/metabolismo , Reproducibilidad de los Resultados , Programas Informáticos/normas
8.
ACS Chem Neurosci ; 15(11): 2132-2143, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38743904

RESUMEN

Element dysregulation is a pathophysiologic hallmark of ischemic stroke. Prior characterization of post-stroke element dysregulation in the photothrombotic model demonstrated significant element changes for ions that are essential for the function of the neurovascular unit. To characterize the dynamic changes during the early hyperacute phase (<6 h), we employed a temporary large-vessel occlusion stroke model. The middle cerebral artery was temporarily occluded for 30 min in male C57BL/6 mice, and coronal brain sections were prepared for histology and X-ray fluorescence microscopy from 5 to 120 min post-reperfusion. Ion dysregulation was already apparent by 5 min post-reperfusion, evidenced by reduced total potassium in the lesion. Later time points showed further dysregulation of phosphorus, calcium, copper, and zinc. By 60 min post-reperfusion, the central portion of the lesion showed pronounced element dysregulation and could be differentiated from a surrounding region of moderate dysregulation. Despite reperfusion, the lesion continued to expand dynamically with increasing severity of element dysregulation throughout the time course. Given that the earliest time point investigated already demonstrated signs of ion disruption, we anticipate such changes may be detectable even earlier. The profound ion dysregulation at the tissue level after reperfusion may contribute to hindering treatments aimed at functional recovery of the neurovascular unit.


Asunto(s)
Infarto de la Arteria Cerebral Media , Ratones Endogámicos C57BL , Animales , Masculino , Ratones , Infarto de la Arteria Cerebral Media/metabolismo , Homeostasis/fisiología , Accidente Cerebrovascular/metabolismo , Calcio/metabolismo , Modelos Animales de Enfermedad , Zinc/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Potasio/metabolismo , Cobre/metabolismo , Iones/metabolismo
10.
PLoS One ; 19(5): e0303822, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38771746

RESUMEN

This paper provides a comprehensive and computationally efficient case study for uncertainty quantification (UQ) and global sensitivity analysis (GSA) in a neuron model incorporating ion concentration dynamics. We address how challenges with UQ and GSA in this context can be approached and solved, including challenges related to computational cost, parameters affecting the system's resting state, and the presence of both fast and slow dynamics. Specifically, we analyze the electrodiffusive neuron-extracellular-glia (edNEG) model, which captures electrical potentials, ion concentrations (Na+, K+, Ca2+, and Cl-), and volume changes across six compartments. Our methodology includes a UQ procedure assessing the model's reliability and susceptibility to input uncertainty and a variance-based GSA identifying the most influential input parameters. To mitigate computational costs, we employ surrogate modeling techniques, optimized using efficient numerical integration methods. We propose a strategy for isolating parameters affecting the resting state and analyze the edNEG model dynamics under both physiological and pathological conditions. The influence of uncertain parameters on model outputs, particularly during spiking dynamics, is systematically explored. Rapid dynamics of membrane potentials necessitate a focus on informative spiking features, while slower variations in ion concentrations allow a meaningful study at each time point. Our study offers valuable guidelines for future UQ and GSA investigations on neuron models with ion concentration dynamics, contributing to the broader application of such models in computational neuroscience.


Asunto(s)
Modelos Neurológicos , Neuronas , Neuronas/fisiología , Incertidumbre , Iones/metabolismo , Potenciales de la Membrana/fisiología , Potenciales de Acción/fisiología , Humanos , Animales , Neuroglía/metabolismo , Neuroglía/fisiología
11.
Channels (Austin) ; 18(1): 2341077, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38601983

RESUMEN

Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca2+) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca2+) and Ca2+ occupancy of the channel ion pore. Analogous to the "non-canonical" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca2+ without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca2+ binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca2+ binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca2+. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.


Asunto(s)
Canales de Calcio , Calcio , Calcio/metabolismo , Canales de Calcio/metabolismo , Transducción de Señal , Acoplamiento Excitación-Contracción , Iones/metabolismo , Señalización del Calcio/fisiología , Canales de Calcio Tipo L/metabolismo
12.
Appl Environ Microbiol ; 90(4): e0014624, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38557120

RESUMEN

The metal-resistant bacterium Cupriavidus metallidurans occurs in metal-rich environments. In auriferous soils, the bacterium is challenged by a mixture of copper ions and gold complexes, which exert synergistic toxicity. The previously used, self-made Au(III) solution caused a synergistic toxicity of copper and gold that was based on the inhibition of the CupA-mediated efflux of cytoplasmic Cu(I) by Au(I) in this cellular compartment. In this publication, the response of the bacterium to gold and copper was investigated by using a commercially available Au(III) solution instead of the self-made solution. The new solution was five times more toxic than the previously used one. Increased toxicity was accompanied by greater accumulation of gold atoms by the cells. The contribution of copper resistance determinants to the commercially available Au(III) solution and synergistic gold-copper toxicity was studied using single- and multiple-deletion mutants. The commercially available Au(III) solution inhibited periplasmic Cu(I) homeostasis, which is required for the allocation of copper ions to copper-dependent proteins in this compartment. The presence of the gene for the periplasmic Cu(I) and Au(I) oxidase, CopA, decreased the cellular copper and gold content. Transcriptional reporter gene fusions showed that up-regulation of gig, encoding a minor contributor to copper resistance, was strictly glutathione dependent. Glutathione was also required to resist synergistic gold-copper toxicity. The new data indicated a second layer of synergistic copper-gold toxicity caused by the commercial Au(III) solution, inhibition of the periplasmic copper homeostasis in addition to the cytoplasmic one.IMPORTANCEWhen living in auriferous soils, Cupriavidus metallidurans is not only confronted with synergistic toxicity of copper ions and gold complexes but also by different gold species. A previously used gold solution made by using aqua regia resulted in the formation of periplasmic gold nanoparticles, and the cells were protected against gold toxicity by the periplasmic Cu(I) and Au(I) oxidase CopA. To understand the role of different gold species in the environment, another Au(III) solution was commercially acquired. This compound was more toxic due to a higher accumulation of gold atoms by the cells and inhibition of periplasmic Cu(I) homeostasis. Thus, the geo-biochemical conditions might influence Au(III) speciation. The resulting Au(III) species may subsequently interact in different ways with C. metallidurans and its copper homeostasis system in the cytoplasm and periplasm. This study reveals that the geochemical conditions may decide whether bacteria are able to form gold nanoparticles or not.


Asunto(s)
Cupriavidus , Nanopartículas del Metal , Cobre/metabolismo , Oro/toxicidad , Oro/metabolismo , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Cupriavidus/genética , Cupriavidus/metabolismo , Proteínas Bacterianas/metabolismo , Iones/metabolismo , Suelo , Glutatión/metabolismo , Oxidorreductasas/metabolismo
13.
Eur Biophys J ; 53(4): 183-192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38647542

RESUMEN

The sensitivity of cytosol water's microwave dielectric (MD) response to D-glucose uptake in Red Blood Cells (RBCs) allows the detailed study of cellular mechanisms as a function of controlled exposures to glucose and other related analytes like electrolytes. However, the underlying mechanism behind the sensitivity to glucose exposure remains a topic of debate. In this research, we utilize MDS within the frequency range of 0.5-40 GHz to explore how ionic redistributions within the cell impact the microwave dielectric characteristics associated with D-glucose uptake in RBC suspensions. Specifically, we compare glucose uptake in RBCs exposed to the physiological concentration of Ca2+ vs. Ca-free conditions. We also investigate the potential involvement of Na+/K+ redistribution in glucose-mediated dielectric response by studying RBCs treated with a specific Na+/K+ pump inhibitor, ouabain. We present some insights into the MD response of cytosol water when exposed to Ca2+ in the absence of D-glucose. The findings from this study confirm that ion-induced alterations in bound/bulk water balance do not affect the MD response of cytosol water during glucose uptake.


Asunto(s)
Citosol , Eritrocitos , Glucosa , Microondas , Agua , Citosol/metabolismo , Glucosa/metabolismo , Agua/metabolismo , Eritrocitos/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/citología , Calcio/metabolismo , Humanos , Transporte Biológico , Iones/metabolismo , Ouabaína/farmacología , Sodio/metabolismo
14.
FEMS Yeast Res ; 242024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38658183

RESUMEN

Maintenance of asymmetric ion concentrations across cellular membranes is crucial for proper yeast cellular function. Disruptions of these ionic gradients can significantly impact membrane electrochemical potential and the balance of other ions, particularly under stressful conditions such as exposure to acetic acid. This weak acid, ubiquitous to both yeast metabolism and industrial processes, is a major inhibitor of yeast cell growth in industrial settings and a key determinant of host colonization by pathogenic yeast. Acetic acid toxicity depends on medium composition, especially on the pH (H+ concentration), but also on other ions' concentrations. Regulation of ion fluxes is essential for effective yeast response and adaptation to acetic acid stress. However, the intricate interplay among ion balancing systems and stress response mechanisms still presents significant knowledge gaps. This review offers a comprehensive overview of the mechanisms governing ion homeostasis, including H+, K+, Zn2+, Fe2+/3+, and acetate, in the context of acetic acid toxicity, adaptation, and tolerance. While focus is given on Saccharomyces cerevisiae due to its extensive physiological characterization, insights are also provided for biotechnologically and clinically relevant yeast species whenever available.


Asunto(s)
Ácido Acético , Adaptación Fisiológica , Homeostasis , Iones , Saccharomyces cerevisiae , Estrés Fisiológico , Ácido Acético/metabolismo , Ácido Acético/farmacología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Iones/metabolismo , Concentración de Iones de Hidrógeno
15.
Biomed Pharmacother ; 174: 116574, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593706

RESUMEN

Gastrointestinal (GI) cancer is one of the most severe types of cancer, with a significant impact on human health worldwide. Due to the urgent demand for more effective therapeutic strategies against GI cancers, novel research on metal ions for treating GI cancers has attracted increasing attention. Currently, with accumulating research on the relationship between metal ions and cancer therapy, several metal ions have been discovered to induce cell death. In particular, the three novel modes of cell death, including ferroptosis, cuproptosis, and calcicoptosis, have become focal points of research in the field of cancer. Meanwhile, other metal ions have also been found to trigger cell death through various mechanisms. Accordingly, this review focuses on the mechanisms of metal ion-induced cell death in GI cancers, hoping to provide theoretical support for further GI cancer therapies.


Asunto(s)
Muerte Celular , Neoplasias Gastrointestinales , Metales , Humanos , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/tratamiento farmacológico , Animales , Muerte Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Iones/metabolismo , Antineoplásicos/farmacología
16.
J Membr Biol ; 257(1-2): 79-89, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38436710

RESUMEN

The gastric H+,K+-ATPase is an integral membrane protein which derives energy from the hydrolysis of ATP to transport H+ ions from the parietal cells of the gastric mucosa into the stomach in exchange for K+ ions. It is responsible for the acidic environment of the stomach, which is essential for digestion. Acid secretion is regulated by the recruitment of the H+,K+-ATPase from intracellular stores into the plasma membrane on the ingestion of food. The similar amino acid sequences of the lysine-rich N-termini α-subunits of the H+,K+- and Na+,K+-ATPases, suggests similar acute regulation mechanisms, specifically, an electrostatic switch mechanism involving an interaction of the N-terminal tail with the surface of the surrounding membrane and a modulation of the interaction via regulatory phosphorylation by protein kinases. From a consideration of sequence alignment of the H+,K+-ATPase and an analysis of its coevolution with protein kinase C and kinases of the Src family, the evidence points towards a phosphorylation of tyrosine-7 of the N-terminus by either Lck or Yes in all vertebrates except cartilaginous fish. The results obtained will guide and focus future experimental research.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio , Estómago , Animales , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Transporte Biológico , ATPasa Intercambiadora de Hidrógeno-Potásio/química , Iones/metabolismo
17.
ACS Infect Dis ; 10(4): 1185-1200, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38499199

RESUMEN

New drugs with novel modes of action are needed to safeguard malaria treatment. In recent years, millions of compounds have been tested for their ability to inhibit the growth of asexual blood-stage Plasmodium falciparum parasites, resulting in the identification of thousands of compounds with antiplasmodial activity. Determining the mechanisms of action of antiplasmodial compounds informs their further development, but remains challenging. A relatively high proportion of compounds identified as killing asexual blood-stage parasites show evidence of targeting the parasite's plasma membrane Na+-extruding, H+-importing pump, PfATP4. Inhibitors of PfATP4 give rise to characteristic changes in the parasite's internal [Na+] and pH. Here, we designed a "pH fingerprint" assay that robustly identifies PfATP4 inhibitors while simultaneously allowing the detection of (and discrimination between) inhibitors of the lactate:H+ transporter PfFNT, which is a validated antimalarial drug target, and the V-type H+ ATPase, which was suggested as a possible target of the clinical candidate ZY19489. In our pH fingerprint assays and subsequent secondary assays, ZY19489 did not show evidence for the inhibition of pH regulation by the V-type H+ ATPase, suggesting that it has a different mode of action in the parasite. The pH fingerprint assay also has the potential to identify protonophores, inhibitors of the acid-loading Cl- transporter(s) (for which the molecular identity(ies) remain elusive), and compounds that act through inhibition of either the glucose transporter PfHT or glycolysis. The pH fingerprint assay therefore provides an efficient starting point to match a proportion of antiplasmodial compounds with their mechanisms of action.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Antimaláricos/farmacología , Antimaláricos/química , Plasmodium falciparum/metabolismo , Homeostasis , Proteínas de Transporte de Membrana/metabolismo , Iones/metabolismo , Antagonistas del Ácido Fólico/metabolismo , Concentración de Iones de Hidrógeno , ATPasas de Translocación de Protón/metabolismo
18.
Nature ; 627(8005): 905-914, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448589

RESUMEN

A string of nucleotides confined within a protein capsid contains all the instructions necessary to make a functional virus particle, a virion. Although the structure of the protein capsid is known for many virus species1,2, the three-dimensional organization of viral genomes has mostly eluded experimental probes3,4. Here we report all-atom structural models of an HK97 virion5, including its entire 39,732 base pair genome, obtained through multiresolution simulations. Mimicking the action of a packaging motor6, the genome was gradually loaded into the capsid. The structure of the packaged capsid was then refined through simulations of increasing resolution, which produced a 26 million atom model of the complete virion, including water and ions confined within the capsid. DNA packaging occurs through a loop extrusion mechanism7 that produces globally different configurations of the packaged genome and gives each viral particle individual traits. Multiple microsecond-long all-atom simulations characterized the effect of the packaged genome on capsid structure, internal pressure, electrostatics and diffusion of water, ions and DNA, and revealed the structural imprints of the capsid onto the genome. Our approach can be generalized to obtain complete all-atom structural models of other virus species, thereby potentially revealing new drug targets at the genome-capsid interface.


Asunto(s)
Bacteriófagos , Cápside , ADN Viral , Genoma Viral , Virión , Ensamble de Virus , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/crecimiento & desarrollo , Bacteriófagos/metabolismo , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Difusión , ADN Viral/química , ADN Viral/genética , ADN Viral/metabolismo , Iones/análisis , Iones/química , Iones/metabolismo , Electricidad Estática , Virión/química , Virión/genética , Virión/metabolismo , Ensamble de Virus/genética , Agua/análisis , Agua/química , Agua/metabolismo
19.
Front Cell Infect Microbiol ; 14: 1360880, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529472

RESUMEN

Metal ions are essential trace elements for all living organisms and play critical catalytic, structural, and allosteric roles in many enzymes and transcription factors. Mycobacterium tuberculosis (MTB), as an intracellular pathogen, is usually found in host macrophages, where the bacterium can survive and replicate. One of the reasons why Tuberculosis (TB) is so difficult to eradicate is the continuous adaptation of its pathogen. It is capable of adapting to a wide range of harsh environmental stresses, including metal ion toxicity in the host macrophages. Altering the concentration of metal ions is the common host strategy to limit MTB replication and persistence. This review mainly focuses on transcriptional regulatory proteins in MTB that are involved in the regulation of metal ions such as iron, copper and zinc. The aim is to offer novel insights and strategies for screening targets for TB treatment, as well as for the development and design of new therapeutic interventions.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculosis/microbiología , Metales/metabolismo , Homeostasis/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Iones/metabolismo
20.
BMC Biotechnol ; 24(1): 15, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521922

RESUMEN

BACKGROUND: Removal of heavy metals from water and soil is a pressing challenge in environmental engineering, and biosorption by microorganisms is considered as one of the most cost-effective methods. In this study, the metal-binding proteins MerR and ChrB derived from Cupriavidus metallidurans were separately expressed in Escherichia coli BL21 to construct adsorption strains. To improve the adsorption performance, surface display and codon optimization were carried out. RESULTS: In this study, we constructed 24 adsorption engineering strains for Hg2+ and Cr6+, utilizing different strategies. Among these engineering strains, the M'-002 and B-008 had the strongest heavy metal ion absorption ability. The M'-002 used the flexible linker and INPN to display the merRopt at the surface of the E. coli BL21, whose maximal adsorption capacity reached 658.40 µmol/g cell dry weight under concentrations of 300 µM Hg2+. And the B-008 overexpressed the chrB in the intracellular, its maximal capacity was 46.84 µmol/g cell dry weight under concentrations 500 µM Cr6+. While in the case of mixed ions solution (including Pb2+, Cd2+, Cr6+ and Hg2+), the total amount of ions adsorbed by M'-002 and B-008 showed an increase of up to 1.14- and 4.09-folds, compared to the capacities in the single ion solution. CONCLUSION: The construction and optimization of heavy metal adsorption strains were carried out in this work. A comparison of the adsorption behavior between single bacteria and mixed bacteria systems was investigated in both a single ion and a mixed ion environment. The Hg2+ absorption capacity is reached the highest reported to date with the engineered strain M'-002, which displayed the merRopt at the surface of chassis cell, indicating the strain's potential for its application in practical environments.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Iones/metabolismo , Mercurio/metabolismo , Metales Pesados/metabolismo , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...