Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.634
1.
Virol J ; 21(1): 134, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849961

BACKGROUND: The coronavirus pandemic that started in 2019 has caused the highest mortality and morbidity rates worldwide. Data on the role of long non-coding RNAs (lncRNAs) in coronavirus disease 2019 (COVID-19) is scarce. We aimed to elucidate the relationship of three important lncRNAs in the inflammatory states, H19, taurine upregulated gene 1 (TUG1), and colorectal neoplasia differentially expressed (CRNDE) with key factors in inflammation and fibrosis induction including signal transducer and activator of transcription3 (STAT3), alpha smooth muscle actin (α-SMA), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) in COVID-19 patients with moderate to severe symptoms. METHODS: Peripheral blood mononuclear cells from 28 COVID-19 patients and 17 healthy controls were collected. The real-time quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the expression of RNAs and lncRNAs. Western blotting analysis was also performed to determine the expression levels of STAT3 and α-SMA proteins. Machine learning and receiver operating characteristic (ROC) curve analysis were carried out to evaluate the distinguishing ability of lncRNAs. RESULTS: The expression levels of H19, TUG1, and CRNDE were significantly overexpressed in COVID-19 patients compared to healthy controls. Moreover, STAT3 and α-SMA expression levels were remarkedly increased at both transcript and protein levels in patients with COVID-19 compared to healthy subjects and were correlated with Three lncRNAs. Likewise, IL-6 and TNF-α were considerably upregulated in COVID-19 patients. Machine learning and ROC curve analysis showed that CRNDE-H19 panel has the proper ability to distinguish COVID-19 patients from healthy individuals (area under the curve (AUC) = 0.86). CONCLUSION: The overexpression of three lncRNAs in COVID-19 patients observed in this study may align with significant manifestations of COVID-19. Furthermore, their co-expression with STAT3 and α-SMA, two critical factors implicated in inflammation and fibrosis induction, underscores their potential involvement in exacerbating cardiovascular, pulmonary and common symptoms and complications associated with COVID-19. The combination of CRNDE and H19 lncRNAs seems to be an impressive host-based biomarker panel for screening and diagnosis of COVID-19 patients from healthy controls. Research into lncRNAs can provide a robust platform to find new viral infection-related mediators and propose novel therapeutic strategies for viral infections and immune disorders.


COVID-19 , Machine Learning , RNA, Long Noncoding , SARS-CoV-2 , STAT3 Transcription Factor , Humans , RNA, Long Noncoding/genetics , COVID-19/diagnosis , COVID-19/virology , COVID-19/genetics , Male , Female , Middle Aged , SARS-CoV-2/genetics , STAT3 Transcription Factor/genetics , Adult , ROC Curve , Leukocytes, Mononuclear/virology , Interleukin-6/genetics , Interleukin-6/blood , Aged , Actins/genetics , Tumor Necrosis Factor-alpha/genetics
2.
BMC Infect Dis ; 24(1): 567, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844850

This study investigates the longitudinal dynamic changes in immune cells in COVID-19 patients over an extended period after recovery, as well as the interplay between immune cells and antibodies. Leveraging single-cell mass spectrometry, we selected six COVID-19 patients and four healthy controls, dissecting the evolving landscape within six months post-viral RNA clearance, alongside the levels of anti-spike protein antibodies. The T cell immunophenotype ascertained via single-cell mass spectrometry underwent validation through flow cytometry in 37 samples. Our findings illuminate that CD8 + T cells, gamma-delta (gd) T cells, and NK cells witnessed an increase, in contrast to the reduction observed in monocytes, B cells, and double-negative T (DNT) cells over time. The proportion of monocytes remained significantly elevated in COVID-19 patients compared to controls even after six-month. Subpopulation-wise, an upsurge manifested within various T effector memory subsets, CD45RA + T effector memory, gdT, and NK cells, whereas declines marked the populations of DNT, naive and memory B cells, and classical as well as non-classical monocytes. Noteworthy associations surfaced between DNT, gdT, CD4 + T, NK cells, and the anti-S antibody titer. This study reveals the changes in peripheral blood mononuclear cells of COVID-19 patients within 6 months after viral RNA clearance and sheds light on the interactions between immune cells and antibodies. The findings from this research contribute to a better understanding of immune transformations during the recovery from COVID-19 and offer guidance for protective measures against reinfection in the context of viral variants.


COVID-19 , Flow Cytometry , Leukocytes, Mononuclear , RNA, Viral , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/blood , COVID-19/virology , Leukocytes, Mononuclear/virology , Leukocytes, Mononuclear/immunology , SARS-CoV-2/immunology , Male , Female , Middle Aged , RNA, Viral/blood , Adult , Longitudinal Studies , Single-Cell Analysis/methods , Killer Cells, Natural/immunology , Antibodies, Viral/blood , Immunophenotyping , Aged
3.
Nat Commun ; 15(1): 5318, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38909022

During primary varicella zoster virus (VZV) infection, infected lymphocytes drive primary viremia, causing systemic dissemination throughout the host, including the skin. This results in cytokine expression, including interferons (IFNs), which partly limit infection. VZV also spreads from skin keratinocytes to lymphocytes prior to secondary viremia. It is not clear how VZV achieves this while evading the cytokine response. Here, we show that VZV glycoprotein C (gC) binds IFN-γ and modifies its activity, increasing the expression of a subset of IFN-stimulated genes (ISGs), including intercellular adhesion molecule 1 (ICAM1), chemokines and immunomodulatory genes. The higher ICAM1 protein level at the plasma membrane of keratinocytes facilitates lymphocyte function-associated antigen 1-dependent T cell adhesion and expression of gC during infection increases VZV spread to peripheral blood mononuclear cells. This constitutes the discovery of a strategy to modulate IFN-γ activity, upregulating a subset of ISGs, promoting enhanced lymphocyte adhesion and virus spread.


Cell Adhesion , Herpesvirus 3, Human , Intercellular Adhesion Molecule-1 , Interferon-gamma , Keratinocytes , T-Lymphocytes , Humans , Interferon-gamma/metabolism , Interferon-gamma/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Keratinocytes/virology , Keratinocytes/metabolism , Keratinocytes/immunology , Herpesvirus 3, Human/physiology , Varicella Zoster Virus Infection/immunology , Varicella Zoster Virus Infection/virology , Leukocytes, Mononuclear/virology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Viral Envelope Proteins/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism
4.
Viruses ; 16(6)2024 Jun 07.
Article En | MEDLINE | ID: mdl-38932217

Wheezing children infected with rhinovirus (RV) have a markedly increased risk of subsequently developing recurrencies and asthma. No previous studies have assessed the association between cytokine response and the severity of acute illness in the first wheezing episode in children infected with RV. Forty-seven children treated both as inpatients and as outpatients infected with RV only, aged 3-23 months, with severe first wheezing episodes were recruited. During acute illness, peripheral blood mononuclear cells (PBMCs) were isolated and stimulated with anti-CD3/anti-CD28 in vitro. A multiplex ELISA was used to quantitatively identify 56 different cytokines. The mean age of the children was 17 months, 74% were males, 79% were hospitalized, and 33% were sensitized. In adjusted analyses, the inpatient group was characterized by decreased expressions of interferon gamma (IFN-γ), interleukin 10 (IL-10), macrophage inflammatory protein 1 alpha (MIP-1α), RANTES (CCL5), and tumor necrosis factor-alpha (TNF-α) and an increased expression of ENA-78 (CXCL5) compared to the outpatient group. The cytokine response profiles from the PBMCs were different between the inpatient and outpatient groups. Our results support that firmly controlled interplay between pro-inflammatory and anti-inflammatory responses are required during acute viral infection to absolve the initial infection leading, to less severe illness.


Cytokines , Leukocytes, Mononuclear , Picornaviridae Infections , Respiratory Sounds , Rhinovirus , Humans , Male , Rhinovirus/immunology , Female , Cytokines/metabolism , Infant , Respiratory Sounds/etiology , Picornaviridae Infections/immunology , Picornaviridae Infections/virology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Severity of Illness Index
5.
Viruses ; 16(5)2024 04 30.
Article En | MEDLINE | ID: mdl-38793599

Breast cancer is the most common neoplasm worldwide. Viral infections are involved with carcinogenesis, especially those caused by oncogenic Human Papillomavirus (HPV) genotypes. Despite the detection of HPV in breast carcinomas, the virus's activity against this type of cancer remains controversial. HPV infection promotes remodeling of the host's immune response, resulting in an immunosuppressive profile. This study assessed the individual role of HPV oncogenes in the cell line MDA-MB-231 transfected with the E5, E6, and E7 oncogenes and co-cultured with peripheral blood mononuclear cells. Immunophenotyping was conducted to evaluate immune system modulation. There was an increase in CD4+ T cell numbers when compared with non-transfected and transfected MDA-MB-231, especially in the Treg profile. Pro-inflammatory intracellular cytokines, such as IFN-γ, TNF-α, and IL-17, were impaired by transfected cells, and a decrease in the cytolytic activity of the CD8+ and CD56+ lymphocytes was observed in the presence of HPV oncogenes, mainly with E6 and E7. The E6 and E7 oncogenes decrease monocyte expression, activating the expected M1 profile. In the monocytes found, a pro-inflammatory role was observed according to the cytokines released in the supernatant. In conclusion, the MDA-MB-231 cell lineage transfected with HPV oncogenes can downregulate the number and function of lymphocytes and monocytes.


Breast Neoplasms , Cytokines , Humans , Female , Cytokines/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/virology , Breast Neoplasms/genetics , Cell Line, Tumor , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Transfection , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/immunology , Oncogene Proteins, Viral/metabolism , Papillomaviridae/genetics , Papillomaviridae/immunology , Human Papillomavirus Viruses
6.
Sci Rep ; 14(1): 11179, 2024 05 16.
Article En | MEDLINE | ID: mdl-38750069

During a SARS-CoV-2 infection, macrophages recognize viral components resulting in cytokine production. While this response fuels virus elimination, overexpression of cytokines can lead to severe COVID-19. Previous studies suggest that the spike protein (S) of SARS-CoV-2 can elicit cytokine production via the transcription factor NF-κB and the toll-like receptors (TLRs). In this study, we found that: (i) S and the S2 subunit induce CXCL10, a chemokine implicated in severe COVID-19, gene expression by human macrophage cells (THP-1); (ii) a glycogen synthase kinase-3 inhibitor attenuates this induction; (iii) S and S2 do not activate NF-κB but do activate the transcription factor IRF; (iv) S and S2 do not require TLR2 to elicit CXCL10 production or activate IRF; and (v) S and S2 elicit CXCL10 production by peripheral blood mononuclear cells (PBMCs). We also discovered that the cellular response, or lack thereof, to S and S2 is a function of the recombinant S and S2 used. While such a finding raises the possibility of confounding LPS contamination, we offer evidence that potential contaminating LPS does not underly induced increases in CXCL10. Combined, these results provide insights into the complex immune response to SARS-CoV-2 and suggest possible therapeutic targets for severe COVID-19.


COVID-19 , Chemokine CXCL10 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Chemokine CXCL10/metabolism , Humans , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/immunology , COVID-19/virology , COVID-19/immunology , COVID-19/metabolism , Macrophages/metabolism , Macrophages/immunology , Macrophages/virology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , NF-kappa B/metabolism , THP-1 Cells
7.
mBio ; 15(6): e0073624, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38695564

Sindbis virus (SINV) infection of mice provides a model system for studying the pathogenesis of alphaviruses that infect the central nervous system (CNS) to cause encephalomyelitis. While studies of human viral infections typically focus on accessible cells from the blood, this compartment is rarely evaluated in mice. To bridge this gap, single-cell RNA sequencing (scRNAseq) was combined with flow cytometry to characterize the transcriptional and phenotypic changes of peripheral blood mononuclear cells (PBMCs) from SINV-infected mice. Twenty-one clusters were identified by scRNAseq at 7 days after infection, with a unique cluster and overall increase in naive B cells for infected mice. Uninfected mice had fewer immature T cells and CCR9+ CD4 T cells and a unique immature T cell cluster. Gene expression was most altered in the Ki67+ CD8 T cell cluster, with chemotaxis and proliferation-related genes upregulated. Global analysis indicated metabolic changes in myeloid cells and increased expression of Ccl5 by NK cells. Phenotypes of PBMCs and cells infiltrating the CNS were analyzed by flow cytometry over 14 days after infection. In PBMCs, CD8 and Th1 CD4 T cells increased in representation, while B cells showed a transient decrease at day 5 in total, Ly6a+, and naive cells, and an increase in activated B cells. In the brain, CD8 T cells increased for the first 7 days, while Th1 CD4 T cells and naive and Ly6a+ B cells continued to accumulate for 14 days. Therefore, dynamic immune cell changes can be identified in the blood as well as the CNS during viral encephalomyelitis. IMPORTANCE: The outcome of viral encephalomyelitis is dependent on the host immune response, with clearance and resolution of infection mediated by the adaptive immune response. These processes are frequently studied in mouse models of infection, where infected tissues are examined to understand the mechanisms of clearance and recovery. However, studies of human infection typically focus on the analysis of cells from the blood, a compartment rarely examined in mice, rather than inaccessible tissue. To close this gap, we used single-cell RNA sequencing and flow cytometry to profile the transcriptomic and phenotypic changes of peripheral blood mononuclear cells (PBMCs) before and after central nervous system (CNS) infection in mice. Changes to T and B cell gene expression and cell composition occurred in PBMC and during entry into the CNS, with CCL5 being a differentially expressed chemokine. Therefore, dynamic changes occur in the blood as well as the CNS during the response of mice to virus infection, which will inform the analysis of human studies.


Alphavirus Infections , Leukocytes, Mononuclear , Animals , Mice , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Alphavirus Infections/virology , Alphavirus Infections/immunology , Alphavirus Infections/genetics , Sindbis Virus/genetics , Sindbis Virus/immunology , Mice, Inbred C57BL , Phenotype , Female , Disease Models, Animal , Encephalitis, Viral/immunology , Encephalitis, Viral/virology , Encephalitis, Viral/genetics , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Single-Cell Analysis
8.
Sci Rep ; 14(1): 10709, 2024 05 10.
Article En | MEDLINE | ID: mdl-38729980

Three years after SARS-CoV-2 emerged as a global infectious threat, the virus has become endemic. The neurological complications such as depression, anxiety, and other CNS complications after COVID-19 disease are increasing. The brain, and CSF have been shown as viral reservoirs for SARS-CoV-2, yielding a potential hypothesis for CNS effects. Thus, we investigated the CNS pharmacology of orally dosed nirmatrelvir/ritonavir (NMR/RTV). Using both an in vitro and an in vivo rodent model, we investigated CNS penetration and potential pharmacodynamic activity of NMR. Through pharmacokinetic modeling, we estimated the median CSF penetration of NMR to be low at 18.11% of plasma with very low accumulation in rodent brain tissue. Based on the multiples of the 90% maximal effective concentration (EC90) for SARS-CoV-2, NMR concentrations in the CSF and brain do not achieve an exposure level similar to that of plasma. A median of only 16% of all the predicted CSF concentrations in rats were > 3xEC90 (unadjusted for protein binding). This may have implications for viral persistence and neurologic post-acute sequelae of COVID-19 if increased NMR penetration in the CNS leads to decreased CNS viral loads and decreased CNS inflammation.


Leukocytes, Mononuclear , Ritonavir , SARS-CoV-2 , Animals , Rats , Ritonavir/pharmacokinetics , SARS-CoV-2/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Humans , Male , Brain/metabolism , Brain/virology , COVID-19 Drug Treatment , COVID-19/virology , COVID-19/cerebrospinal fluid , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Rats, Sprague-Dawley , Central Nervous System/metabolism , Central Nervous System/virology
9.
AIDS ; 38(9): 1281-1291, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38626436

OBJECTIVES: Some drugs that augment cell-intrinsic defenses or modulate cell death/survival pathways have been reported to selectively kill cells infected with HIV or Simian Immunodeficiency Virus (SIV), but comparative studies are lacking. We hypothesized that these drugs may differ in their ability to kill cells infected with intact and defective proviruses. DESIGN: To investigate this hypothesis, drugs were tested ex vivo on peripheral blood mononuclear cells (PBMC) from nine antiretroviral therapy (ART)-suppressed individuals. METHODS: We tested drugs currently in clinical use or human trials, including auranofin (p53 modulator), interferon alpha2A, interferon gamma, acitretin (RIG-I inducer), GS-9620/vesatolimod (TLR7 agonist), nivolumab (PD-1 blocker), obatoclax (Bcl-2 inhibitor), birinapant [inhibitor of apoptosis proteins (IAP) inhibitor], bortezomib (proteasome inhibitor), and INK128/sapanisertib [mammalian target of rapamycin mTOR] [c]1/2 inhibitor). After 6 days of treatment, we measured cell counts/viabilities and quantified levels of total, intact, and defective HIV DNA by droplet digital PCR (Intact Proviral DNA Assay). RESULTS: Obatoclax reduced intact HIV DNA [median = 27-30% of dimethyl sulfoxide control (DMSO)] but not defective or total HIV DNA. Other drugs showed no statistically significant effects. CONCLUSION: Obatoclax and other Bcl-2 inhibitors deserve further study in combination therapies aimed at reducing the intact HIV reservoir in order to achieve a functional cure and/or reduce HIV-associated immune activation.


HIV Infections , Indoles , Leukocytes, Mononuclear , Proviruses , Pyrroles , Humans , Indoles/pharmacology , HIV Infections/drug therapy , HIV Infections/virology , Pyrroles/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Proviruses/drug effects
10.
Front Immunol ; 15: 1294020, 2024.
Article En | MEDLINE | ID: mdl-38646531

Endogenous retroviruses (ERVs) derived from the long terminal repeat (LTR) family of transposons constitute a significant portion of the mammalian genome, with origins tracing back to ancient viral infections. Despite comprising approximately 8% of the human genome, the specific role of ERVs in the pathogenesis of COVID-19 remains unclear. In this study, we conducted a genome-wide identification of ERVs in human peripheral blood mononuclear cells (hPBMCs) and primary lung epithelial cells from monkeys and mice, both infected and uninfected with SARS-CoV-2. We identified 405, 283, and 206 significantly up-regulated transposable elements (TEs) in hPBMCs, monkeys, and mice, respectively. This included 254, 119, 68, and 28 ERVs found in hPBMCs from severe and mild COVID-19 patients, monkeys, and transgenic mice expressing the human ACE2 receptor (hACE2) and infected with SARS-CoV-2. Furthermore, analysis using the Genomic Regions Enrichment of Annotations Tool (GREAT) revealed certain parental genomic sequences of these up-regulated ERVs in COVID-19 patients may be involved in various biological processes, including histone modification and viral replication. Of particular interest, we identified 210 ERVs specifically up-regulated in the severe COVID-19 group. The genes associated with these differentially expressed ERVs were enriched in processes such as immune response activation and histone modification. HERV1_I-int: ERV1:LTR and LTR7Y: ERV1:LTR were highlighted as potential biomarkers for evaluating the severity of COVID-19. Additionally, validation of our findings using RT-qPCR in Bone Marrow-Derived Macrophages (BMDMs) from mice infected by HSV-1 and VSV provided further support to our results. This study offers insights into the expression patterns and potential roles of ERVs following viral infection, providing a valuable resource for future studies on ERVs and their interaction with SARS-CoV-2.


COVID-19 , Endogenous Retroviruses , SARS-CoV-2 , Endogenous Retroviruses/genetics , Animals , Humans , COVID-19/immunology , COVID-19/virology , COVID-19/genetics , SARS-CoV-2/physiology , SARS-CoV-2/immunology , Mice , Leukocytes, Mononuclear/virology , Leukocytes, Mononuclear/immunology , Mice, Transgenic , DNA Transposable Elements/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Lung/virology , Lung/immunology
11.
J Infect Dis ; 229(6): 1781-1785, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38385222

Human immunodeficiency virus type 1 (HIV-1) disease manifestations differ between cisgender women and men, including better control of viral replication during primary infection and less frequent residual HIV-1 replication on antiretroviral therapy (ART) in cisgender women with HIV-1 (WWH). Investigating plasmacytoid dendritic cell (pDC) functions and HIV-1 reservoir sizes in 20 WWH on stable ART, we observed inverse correlations between interferon-α and tumor necrosis factor responses of pDCs to Toll-like receptor 7/8 stimulation and intact/total proviral HIV-1 DNA levels. Additionally, ISG15 mRNA levels in peripheral blood mononuclear cells correlated with cytokine responses of pDCs. These findings demonstrate an association between higher type I interferon responses and lower HIV-1 reservoir sizes in WWH on ART, warranting studies to identify the underlying mechanisms.


Dendritic Cells , HIV Infections , HIV-1 , Interferon Type I , Toll-Like Receptor 7 , Humans , Dendritic Cells/immunology , Dendritic Cells/virology , Female , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , Adult , Middle Aged , Virus Replication/drug effects , Viral Load , Anti-Retroviral Agents/therapeutic use , Leukocytes, Mononuclear/virology , Leukocytes, Mononuclear/immunology
12.
Microbiol Spectr ; 11(1): e0406022, 2023 02 14.
Article En | MEDLINE | ID: mdl-36533959

Measles virus and canine distemper virus (CDV) cause lethal infections in their respective hosts characterized by severe immunosuppression. To furtherly acknowledge the attenuated mechanisms of the regionally ongoing epidemic CDV isolates and provide novel perspectives for designing new vaccines and therapeutic drugs, a recombinant CDV rHBF-vacH was employed with a vaccine hemagglutinin (H) gene replacement by reverse genetics based on an infectious cDNA clone for the CDV wild-type HBF-1 strain. Interestingly, unlike previously published reports that a vaccine H protein completely changed a pathogenic wild-type CDV variant to be avirulent, rHBF-vacH was only partially attenuated by alleviating the degree of viral immunosuppression, and still caused 66.7% lethality in ferrets with a prolonged period of disease. Further comparisons of pathogenic mechanisms proved that the weaker but necessary invasions into peripheral blood mononuclear cells (PBMCs) of rHBF-vacH, and subsequently persistent viral replications in PBMCs and multiple organs, together contributed to its 66.7% mortality. In addition, despite significantly higher titers than the parent viruses, rHBF-vacH would not be a suitable candidate for a live vaccine, with great invasion and infection potentials of PBMCs from 16 tested kinds of host species. Altogether, sustained and severe viral replication in PBMCs with moderate immunosuppression was first proven to be an alternative novel pathogenic mechanism for CDV, which might help us to understand possible reasons for CDV fatal infections among domestic dogs and the highly susceptible wild species during natural transmission. IMPORTANCE Despite widespread vaccine campaigns for domestic dogs, CDV remained an important infectious disease in vaccinated carnivores and wild species. In recent years, the regionally ongoing epidemic CDV isolates have emphasized conservation threats to, and potentially disastrous epidemics in, endangered species worldwide. However, little is known about how to deal with the CDV variants constantly regional epidemic. In this study, we employed a recombinant CDV rHBF-vacH with a vaccine H gene replacement in a CDV wild-type HBF-1 context to attenuate the epidemic CDV variant to design a new vaccine candidate. Interestingly, rHBF-vacH was only partially attenuated by alleviating the degree of viral immunosuppression, and still caused 66.7% lethality in ferrets by weaker but necessary invasions into PBMCs, and subsequently persistent and severe viral replications in PBMCs. Significantly higher virus titers of rHBF-vacH in vitro might indicate the rapid cell-to-cell spreads in vivo that indirectly contribute to fatal infections of rHBF-vacH in ferrets.


Distemper Virus, Canine , Distemper , Leukocytes, Mononuclear , Virus Replication , Animals , Dogs , Distemper/immunology , Distemper/metabolism , Distemper/virology , Distemper Virus, Canine/genetics , Distemper Virus, Canine/pathogenicity , Ferrets , Immunosuppression Therapy , Leukocytes, Mononuclear/virology
13.
J Virol ; 96(13): e0012222, 2022 07 13.
Article En | MEDLINE | ID: mdl-35674431

Effective strategies to eliminate human immunodeficiency virus type 1 (HIV-1) reservoirs are likely to require more thorough characterizations of proviruses that persist on antiretroviral therapy (ART). The rarity of infected CD4+ T-cells and related technical challenges have limited the characterization of integrated proviruses. Current approaches using next-generation sequencing can be inefficient and limited sequencing depth can make it difficult to link proviral sequences to their respective integration sites. Here, we report on an efficient method by which HIV-1 proviruses and their sites of integration are amplified and sequenced. Across five HIV-1-positive individuals on clinically effective ART, a median of 41.2% (n = 88 of 209) of amplifications yielded near-full-length proviruses and their 5'-host-virus junctions containing a median of 430 bp (range, 18 to 1,363 bp) of flanking host sequence. Unexpectedly, 29.5% (n = 26 of 88) of the sequenced proviruses had structural asymmetries between the 5' and 3' long terminal repeats (LTRs), commonly in the form of major 3' deletions. Sequence-intact proviruses were detected in 3 of 5 donors, and infected CD4+ T-cell clones were detected in 4 of 5 donors. The accuracy of the method was validated by amplifying and sequencing full-length proviruses and flanking host sequences directly from peripheral blood mononuclear cell DNA. The individual proviral sequencing assay (IPSA) described here can provide an accurate, in-depth, and longitudinal characterization of HIV-1 proviruses that persist on ART, which is important for targeting proviruses for elimination and assessing the impact of interventions designed to eradicate HIV-1. IMPORTANCE The integration of human immunodeficiency virus type 1 (HIV-1) into chromosomal DNA establishes the long-term persistence of HIV-1 as proviruses despite effective antiretroviral therapy (ART). Characterizing proviruses is difficult because of their rarity in individuals on long-term suppressive ART, their highly polymorphic sequences and genetic structures, and the need for efficient amplification and sequencing of the provirus and its integration site. Here, we describe a novel, integrated, two-step method (individual proviral sequencing assay [IPSA]) that amplifies the host-virus junction and the full-length provirus except for the last 69 bp of the 3' long terminal repeat (LTR). Using this method, we identified the integration sites of proviruses, including those that are sequence intact and replication competent or defective. Importantly, this new method identified previously unreported asymmetries between LTRs that have implications for how proviruses are detected and quantified. The IPSA method reported is unaffected by LTR asymmetries, permitting a more accurate and comprehensive characterization of the proviral landscape.


HIV-1 , Proviruses , Terminal Repeat Sequences , HIV Infections/virology , HIV-1/genetics , HIV-1/metabolism , High-Throughput Nucleotide Sequencing , Humans , Leukocytes, Mononuclear/virology , Proviruses/genetics , Proviruses/metabolism , Terminal Repeat Sequences/genetics
14.
Genome Biol ; 23(1): 133, 2022 06 20.
Article En | MEDLINE | ID: mdl-35725628

The COVID-19 pandemic has emphasized the importance of accurate detection of known and emerging pathogens. However, robust characterization of pathogenic sequences remains an open challenge. To address this need we developed SeqScreen, which accurately characterizes short nucleotide sequences using taxonomic and functional labels and a customized set of curated Functions of Sequences of Concern (FunSoCs) specific to microbial pathogenesis. We show our ensemble machine learning model can label protein-coding sequences with FunSoCs with high recall and precision. SeqScreen is a step towards a novel paradigm of functionally informed synthetic DNA screening and pathogen characterization, available for download at www.gitlab.com/treangenlab/seqscreen .


Machine Learning , Bacteria/genetics , Bacteria/pathogenicity , COVID-19 , Humans , Leukocytes, Mononuclear/virology , Open Reading Frames
15.
J Virol ; 96(12): e0044522, 2022 06 22.
Article En | MEDLINE | ID: mdl-35638831

HIV persistence requires lifelong antiretroviral therapy (ART), calling for a cure. The histone deacetylase inhibitor, romidepsin, is used in the "shock and kill" approach with the goal of reactivating virus and subsequently clearing infected cells through cell-mediated immune responses. We tested serial and double infusions of romidepsin in a rhesus macaque (RM) model of SIV functional cure, which controls virus without ART. Off ART, romidepsin reactivated SIV in all RMs. Subsequent infusions resulted in diminished reactivation, and two RMs did not reactivate the virus after the second or third infusions. Therefore, those two RMs received CD8-depleting antibody to assess the replication competence of the residual reservoir. The remaining RMs received double infusions, i.e., two doses separated by 48-h. Double infusions were well tolerated, induced immune activation, and effectively reactivated SIV. Although reactivation was gradually diminished, cell-associated viral DNA was minimally changed, and viral outgrowth occurred in 4/5 RMs. In the RM which did not reactivate after CD8 depletion, viral outgrowth was not detected in peripheral blood mononuclear cells (PBMC)-derived CD4+ cells. The frequency of SIV-specific CD8+ T cells increased after romidepsin administration, and the increased SIV-specific immune responses were associated, although not statistically, with the diminished reactivation. Thus, our data showing sequential decreases in viral reactivation with repeated romidepsin administrations with all RMs and absence of viral reactivation after CD8+ T-cell depletion in one animal suggest that, in the context of healthy immune responses, romidepsin affected the inducible viral reservoir and gradually increased immune-mediated viral control. Given the disparities between the results of romidepsin administration to ART-suppressed SIVmac239-infected RMs and HIV-infected normal progressors compared to our immune-healthy model, our data suggest that improving immune function for greater SIV-specific responses should be the starting point of HIV cure strategies. IMPORTANCE HIV cure is sought after due to the prevalence of comorbidities that occur in persons with HIV. One of the most investigated HIV cure strategies is the "shock and kill" approach. Our study investigated the use of romidepsin, a histone deacetylase (HDAC) inhibitor, in our rhesus macaque model of functional cure, which allows for better resolution of viral reactivation due to the lack of antiretroviral therapy. We found that repeated rounds of romidepsin resulted in gradually diminished viral reactivation. One animal inevitably lacked replication-competent virus in the blood. With the accompanying enhancement of the SIV-specific immune response, our data suggest that there is a reduction of the viral reservoir in one animal by the cell-mediated immune response. With the differences observed between our model and persons living with HIV (PWH) treated with romidepsin, specifically in the context of a healthy immune system in our model, our data thereby indicate the importance of restoring the immune system for cure strategies.


Anti-Retroviral Agents , Depsipeptides , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Anti-Retroviral Agents/pharmacology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes , Depsipeptides/pharmacology , HIV Infections , Leukocytes, Mononuclear/virology , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Viral Load , Virus Activation/drug effects , Virus Replication
16.
J Virol ; 96(9): e0038022, 2022 05 11.
Article En | MEDLINE | ID: mdl-35435723

Crossing the endothelium from the entry site and spreading in the bloodstream are crucial but obscure steps in the pathogenesis of many emerging viruses. Previous studies confirmed that porcine epidemic diarrhea virus (PEDV) caused intestinal infection by intranasal inoculation. However, the role of the nasal endothelial barrier in PEDV translocation remains unclear. Here, we demonstrated that PEDV infection causes nasal endothelial dysfunction to favor viral dissemination. Intranasal inoculation with PEDV compromised the integrity of endothelial cells (ECs) in nasal microvessels. The matrix metalloproteinase 7 (MMP-7) released from the PEDV-infected nasal epithelial cells (NECs) contributed to the destruction of endothelial integrity by degrading the tight junctions, rather than direct PEDV infection. Moreover, the proinflammatory cytokines released from PEDV-infected NECs activated ECs to upregulate ICAM-1 expression, which favored peripheral blood mononuclear cells (PBMCs) migration. PEDV could further exploit migrated cells to favor viral dissemination. Together, our results reveal the mechanism by which PEDV manipulates the endothelial dysfunction to favor viral dissemination and provide novel insights into how coronavirus interacts with the endothelium. IMPORTANCE The endothelial barrier is the last but vital defense against systemic viral transmission. Porcine epidemic diarrhea virus (PEDV) can cause severe atrophic enteritis and acute viremia. However, the mechanisms by which the virus crosses the endothelial barrier and causes viremia are poorly understood. In this study, we revealed the mechanisms of endothelial dysfunction in PEDV infection. The viral infection activates NECs and causes the upregulation of MMP-7 and proinflammatory cytokines. Using NECs, ECs, and PBMCs as in vitro models, we determined that the released MMP-7 contributed to the destruction of endothelial barrier, and the released proinflammatory cytokines activated ECs to facilitate PBMCs migration. Moreover, the virus further exploited the migrated cells to promote viral dissemination. Thus, our results provide new insights into the mechanisms underlying endothelial dysfunction induced by coronavirus infection.


Coronavirus Infections , Endothelium , Porcine epidemic diarrhea virus , Swine Diseases , Virus Shedding , Animals , Coronavirus Infections/transmission , Coronavirus Infections/virology , Cytokines , Endothelium/virology , Intercellular Adhesion Molecule-1/genetics , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Matrix Metalloproteinase 7/metabolism , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/immunology , Swine Diseases/transmission , Swine Diseases/virology , Viremia
17.
Cell Rep ; 38(2): 110235, 2022 01 11.
Article En | MEDLINE | ID: mdl-34986327

We have analyzed BNT162b2 vaccine-induced immune responses in naive subjects and individuals recovered from coronavirus disease 2019 (COVID-19), both soon after (14 days) and later after (almost 8 months) vaccination. Plasma spike (S)-specific immunoglobulins peak after one vaccine shot in individuals recovered from COVID-19, while a second dose is needed in naive subjects, although the latter group shows reduced levels all along the analyzed period. Despite how the neutralization capacity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mirrors this behavior early after vaccination, both groups show comparable neutralizing antibodies and S-specific B cell levels late post-vaccination. When studying cellular responses, naive individuals exhibit higher SARS-CoV-2-specific cytokine production, CD4+ T cell activation, and proliferation than do individuals recovered from COVID-19, with patent inverse correlations between humoral and cellular variables early post-vaccination. However, almost 8 months post-vaccination, SARS-CoV-2-specific responses are comparable between both groups. Our data indicate that a previous history of COVID-19 differentially determines the functional T and B cell-mediated responses to BNT162b2 vaccination over time.


BNT162 Vaccine/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/virology , Chlorocebus aethiops , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Lymphocyte Activation/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vero Cells
18.
PLoS One ; 17(1): e0261242, 2022.
Article En | MEDLINE | ID: mdl-35007307

Hyperactive and damaging inflammation is a hallmark of severe rather than mild Coronavirus disease 2019 (COVID-19). To uncover key inflammatory differentiators between severe and mild COVID-19, we applied an unbiased single-cell transcriptomic analysis. We integrated two single-cell RNA-seq datasets with COVID-19 patient samples, one that sequenced bronchoalveolar lavage (BAL) cells and one that sequenced peripheral blood mononuclear cells (PBMCs). The combined cell population was then analyzed with a focus on genes associated with disease severity. The immunomodulatory long non-coding RNAs (lncRNAs) NEAT1 and MALAT1 were highly differentially expressed between mild and severe patients in multiple cell types. Within those same cell types, the concurrent detection of other severity-associated genes involved in cellular stress response and apoptosis regulation suggests that the pro-inflammatory functions of these lncRNAs may foster cell stress and damage. Thus, NEAT1 and MALAT1 are potential components of immune dysregulation in COVID-19 that may provide targets for severity related diagnostic measures or therapy.


COVID-19/genetics , Gene Expression Profiling/methods , Leukocytes, Mononuclear/metabolism , RNA, Long Noncoding/genetics , Single-Cell Analysis/methods , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/virology , COVID-19/virology , Cells, Cultured , Cluster Analysis , Gene Ontology , Humans , Inflammation/genetics , Inflammation/virology , Leukocytes, Mononuclear/virology , RNA-Seq/methods , SARS-CoV-2/physiology , Severity of Illness Index
19.
Cell Rep ; 38(2): 110214, 2022 01 11.
Article En | MEDLINE | ID: mdl-34968416

T cell immunity is crucial for control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and has been studied widely on a quantitative level. However, the quality of responses, in particular of CD8+ T cells, has only been investigated marginally so far. Here, we isolate T cell receptor (TCR) repertoires specific for immunodominant SARS-CoV-2 epitopes restricted to common human Leukocyte antigen (HLA) class I molecules in convalescent individuals. SARS-CoV-2-specific CD8+ T cells are detected up to 12 months after infection. TCR repertoires are diverse, with heterogeneous functional avidity and cytotoxicity toward virus-infected cells, as demonstrated for TCR-engineered T cells. High TCR functionality correlates with gene signatures that, remarkably, could be retrieved for each epitope:HLA combination analyzed. Overall, our data demonstrate that polyclonal and highly functional CD8+ TCRs-classic features of protective immunity-are recruited upon mild SARS-CoV-2 infection, providing tools to assess the quality of and potentially restore functional CD8+ T cell immunity.


CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Adult , Cells, Cultured , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunodominant Epitopes/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Male , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Cytotoxic/immunology
20.
Antiviral Res ; 197: 105220, 2022 01.
Article En | MEDLINE | ID: mdl-34848218

BACKGROUND: Virologic breakthrough (VBT) may occur in chronic hepatitis B (CHB) patients after switching from nucleos(t)ide analogues (NAs) to pegylated interferon alpha (Peg-IFN-ɑ). This study aimed to characterize the clinical and immunological features of VBT. METHODS: In NAs-treated patients switching to Peg-IFN-ɑ, innate and adaptive immune cell proportions were examined in peripheral blood and liver biopsy specimens. In vitro effect of IFN-ɑ on the expressions of toll-like receptors 2 (TLR2) and programmed cell death ligand 1 (PDL1) on monocytes, programmed cell death 1 (PD1) on CD8+T cells was examined. Peripheral blood mononuclear cells (PBMCs) were treated with TLR2 agonist and/or PDL1 blockade to evaluate their effect on HBV replication. RESULTS: 33 of 166 patients switching to Peg-IFN-ɑ experienced VBT after NA cessation, with majority being hepatitis B e antigen (HBeAg) positive or having higher hepatitis B core-related antigen (HBcrAg) levels. Patients with VBT exhibited lower proportions of TLR2+monocyte and increased PD1+HBV-specific CD8+T cell during the early phase of Peg-IFN-ɑ therapy after NA cessation in peripheral blood, as well as fewer TLR2+CD68+macrophages but more PDL1+CD68+macrophages and PD1+CD8+T cells in liver tissues. Simultaneous use of TLR2 agonist and PDL1 blockage ex vivo suppressed HBV replication by promoting cytokines production and CD8+T cells cytotoxicity. Upon in vitro IFN-ɑ stimulation, PDL1+monocytes and PD1+CD8+T cells were upregulated, whereas TLR2+monocytes were not increased in PBMC isolated from HBeAg-positive patients, or those with high HBcrAg titers. CONCLUSIONS: In NAs-treated patients, lower TLR2+monocyte and increased PD1+HBV-specific CD8+T cell proportions potentially contribute to VBT after switching to Peg-IFN-ɑ therapy. This insufficient immunity may be associated with the HBeAg status and HBcrAg levels.


Antiviral Agents/therapeutic use , Drug Substitution/adverse effects , Hepatitis B virus/drug effects , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/immunology , Interferon-alpha/therapeutic use , Nucleosides/therapeutic use , Adolescent , Adult , Aged , Antiviral Agents/pharmacology , Female , Hepatitis B, Chronic/virology , Humans , Immunity/drug effects , Interferon-alpha/pharmacokinetics , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Male , Middle Aged , Nucleosides/adverse effects , Nucleosides/analogs & derivatives , Young Adult
...