Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Alzheimers Dement ; 20(8): 5398-5410, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38934107

RESUMEN

INTRODUCTION: Impaired brain protein synthesis, synaptic plasticity, and memory are major hallmarks of Alzheimer's disease (AD). The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to modulate protein synthesis, but its effects on memory in AD models remain elusive. METHODS: We investigated the effects of HNK on hippocampal protein synthesis, long-term potentiation (LTP), and memory in AD mouse models. RESULTS: HNK activated extracellular signal-regulated kinase 1/2 (ERK1/2), mechanistic target of rapamycin (mTOR), and p70S6 kinase 1 (S6K1)/ribosomal protein S6 signaling pathways. Treatment with HNK rescued hippocampal LTP and memory deficits in amyloid-ß oligomers (AßO)-infused mice in an ERK1/2-dependent manner. Treatment with HNK further corrected aberrant transcription, LTP and memory in aged APP/PS1 mice. DISCUSSION: Our findings demonstrate that HNK induces signaling and transcriptional responses that correct synaptic and memory deficits in AD mice. These results raise the prospect that HNK could serve as a therapeutic approach in AD. HIGHLIGHTS: The ketamine metabolite HNK activates hippocampal ERK/mTOR/S6 signaling pathways. HNK corrects hippocampal synaptic and memory defects in two mouse models of AD. Rescue of synaptic and memory impairments by HNK depends on ERK signaling. HNK corrects aberrant transcriptional signatures in APP/PS1 mice.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Hipocampo , Ketamina , Ratones Transgénicos , Plasticidad Neuronal , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ketamina/análogos & derivados , Ketamina/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Ratones , Potenciación a Largo Plazo/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , ARN Mensajero/metabolismo , Memoria/efectos de los fármacos , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Ratones Endogámicos C57BL , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Humanos
2.
Cell Rep Med ; 5(6): 101593, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38843842

RESUMEN

Aging compromises brain function leading to cognitive decline. A cyclic ketogenic diet (KD) improves memory in aged mice after long-term administration; however, short-term effects later in life and the molecular mechanisms that govern such changes remain unclear. Here, we explore the impact of a short-term KD treatment starting at elderly stage on brain function of aged mice. Behavioral testing and long-term potentiation (LTP) recordings reveal that KD improves working memory and hippocampal LTP. Furthermore, the synaptosome proteome of aged mice fed a KD long-term evidence changes predominantly at the presynaptic compartment associated to the protein kinase A (PKA) signaling pathway. These findings were corroborated in vivo by western blot analysis, with high BDNF abundance and PKA substrate phosphorylation. Overall, we show that a KD modifies brain function even when it is administered later in life and recapitulates molecular features of long-term administration, including the PKA signaling pathway, thus promoting synaptic plasticity at advanced age.


Asunto(s)
Envejecimiento , Proteínas Quinasas Dependientes de AMP Cíclico , Dieta Cetogénica , Potenciación a Largo Plazo , Memoria , Proteoma , Transducción de Señal , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Envejecimiento/fisiología , Envejecimiento/metabolismo , Dieta Cetogénica/métodos , Proteoma/metabolismo , Ratones , Masculino , Memoria/fisiología , Potenciación a Largo Plazo/fisiología , Ratones Endogámicos C57BL , Hipocampo/metabolismo , Sinapsis/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Plasticidad Neuronal/fisiología , Fosforilación
3.
Br J Pharmacol ; 181(16): 2701-2724, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38631821

RESUMEN

BACKGROUND AND PURPOSE: Transient hypofunction of the NMDA receptor represents a convergence point for the onset and further development of psychiatric disorders, including schizophrenia. Although the cumulative evidence indicates dysregulation of the hippocampal formation in schizophrenia, the integrity of the synaptic transmission and plasticity conveyed by the somatosensorial inputs to the dentate gyrus, the perforant pathway synapses, have barely been explored in this pathological condition. EXPERIMENTAL APPROACH: We identified a series of synaptic alterations of the lateral and medial perforant paths in animals postnatally treated with the NMDA antagonist MK-801. This dysregulation suggests decreased cognitive performance, for which the dentate gyrus is critical. KEY RESULTS: We identified alterations in the synaptic properties of the lateral and medial perforant paths to the dentate gyrus synapses in slices from MK-801-treated animals. Altered glutamate release and decreased synaptic strength precede an impairment in the induction and expression of long-term potentiation (LTP) and CB1 receptor-mediated long-term depression (LTD). Remarkably, by inhibiting the degradation of 2-arachidonoylglycerol (2-AG), an endogenous ligand of the CB1 receptor, we restored the LTD in animals treated with MK-801. Additionally, we showed for the first time, that spatial discrimination, a cognitive task that requires dentate gyrus integrity, is impaired in animals exposed to transient hypofunction of NMDA receptors. CONCLUSION AND IMPLICATIONS: Dysregulation of glutamatergic transmission and synaptic plasticity from the entorhinal cortex to the dentate gyrus has been demonstrated, which may explain the cellular dysregulations underlying the altered cognitive processing in the dentate gyrus associated with schizophrenia.


Asunto(s)
Giro Dentado , Maleato de Dizocilpina , Plasticidad Neuronal , Vía Perforante , Receptores de N-Metil-D-Aspartato , Animales , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Maleato de Dizocilpina/farmacología , Vía Perforante/efectos de los fármacos , Vía Perforante/fisiología , Plasticidad Neuronal/efectos de los fármacos , Masculino , Ratas , Endocannabinoides/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Ratas Wistar , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciación a Largo Plazo/efectos de los fármacos
4.
Neurobiol Learn Mem ; 205: 107845, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37865264

RESUMEN

The presentation of novel stimuli induces a reliable dopamine release in the insular cortex (IC) from the ventral tegmental area (VTA). The novel stimuli could be associated with motivational and emotional signals induced by cortical glutamate release from the basolateral amygdala (BLA). Dopamine and glutamate are essential for acquiring and maintaining behavioral tasks, including visual and taste recognition memories. In this study, we hypothesize that the simultaneous activation of dopaminergic and glutamatergic projections to the neocortex can underlie synaptic plasticity. High-frequency stimulation of the BLA-IC circuit has demonstrated a reliable long-term potentiation (LTP), a widely acknowledged synaptic plasticity that underlies memory consolidation. Therefore, the concurrent optogenetic stimulation of the insula's glutamatergic and dopaminergic terminal fibers would induce reliable LTP. Our results confirmed that combined photostimulation of the VTA and BLA projections to the IC induces a slow-onset LTP. We also found that optogenetically-induced LTP in the IC relies on both glutamatergic NMDA receptors and dopaminergic D1/D5 receptors, suggesting that the combined effects of these neurotransmitters can trigger synaptic plasticity in the neocortex. Overall, our findings provide compelling evidence supporting the essential role of both dopaminergic and glutamatergic projections in modulating synaptic plasticity within the IC. Furthermore, our results suggest that the synergistic actions of these projections have a pivotal influence on the formation of motivational memories.


Asunto(s)
Complejo Nuclear Basolateral , Potenciación a Largo Plazo , Ratas , Animales , Potenciación a Largo Plazo/fisiología , Área Tegmental Ventral/fisiología , Corteza Insular , Ratas Wistar , Dopamina/farmacología , Glutamatos/farmacología
5.
Biomolecules ; 13(6)2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37371467

RESUMEN

Pannexin-1 (Panx1) hemichannel is a non-selective transmembrane channel that may play important roles in intercellular signaling by allowing the permeation of ions and metabolites, such as ATP. Although recent evidence shows that the Panx1 hemichannel is involved in controlling excitatory synaptic transmission, the role of Panx1 in inhibitory transmission remains unknown. Here, we studied the contribution of Panx1 to the GABAergic synaptic efficacy onto CA1 pyramidal neurons (PyNs) by using patch-clamp recordings and pharmacological approaches in wild-type and Panx1 knock-out (Panx1-KO) mice. We reported that blockage of the Panx1 hemichannel with the mimetic peptide 10Panx1 increases the synaptic level of endocannabinoids (eCB) and the activation of cannabinoid receptors type 1 (CB1Rs), which results in a decrease in hippocampal GABAergic efficacy, shifting excitation/inhibition (E/I) balance toward excitation and facilitating the induction of long-term potentiation. Our finding provides important insight unveiling that Panx1 can strongly influence the overall neuronal excitability and play a key role in shaping synaptic changes affecting the amplitude and direction of plasticity, as well as learning and memory processes.


Asunto(s)
Hipocampo , Proteínas del Tejido Nervioso , Plasticidad Neuronal , Células Piramidales , Animales , Ratones , Conexinas/genética , Conexinas/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Células Piramidales/metabolismo , Células Piramidales/fisiología , Transmisión Sináptica
6.
Neurosci Lett ; 808: 137292, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37156440

RESUMEN

Caffeic acid is a polyphenolic compound present in a vast array of dietary components. We previously showed that caffeic acid reduces the burden of brain ischemia joining evidence by others that it can attenuate different brain diseases. However, it is unknown if caffeic acid affects information processing in neuronal networks. Thus, we now used electrophysiological recordings in mouse hippocampal slices to test if caffeic acid directly affected synaptic transmission, plasticity and dysfunction caused by oxygen-glucose deprivation (OGD), an in vitro ischemia model. Caffeic acid (1-10 µM) was devoid of effect on synaptic transmission and paired-pulse facilitation in Schaffer collaterals-CA1 pyramidal synapses. Also, the magnitude of either hippocampal long-term potentiation (LTP) or the subsequent depotentiation were not significantly modified by 10 µM caffeic acid. However, caffeic acid (10 µM) increased the recovery of synaptic transmission upon re-oxygenation following 7 min of OGD. Furthermore, caffeic acid (10 µM) also recovered plasticity after OGD, as heralded by the increased magnitude of LTP after exposure. These findings show that caffeic acid does not directly affect synaptic transmission and plasticity but can indirectly affect other cellular targets to correct synaptic dysfunction. Unraveling the molecular mechanisms of action of caffeic acid may allow the design of hitherto unrecognized novel neuroprotective strategies.


Asunto(s)
Hipocampo , Transmisión Sináptica , Ratones , Animales , Transmisión Sináptica/fisiología , Potenciación a Largo Plazo/fisiología , Isquemia , Plasticidad Neuronal/fisiología
7.
Hippocampus ; 33(8): 906-921, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36938755

RESUMEN

Experimental manipulations that interfere with the functional expression of N-methyl-D-aspartate receptors (NMDARs) during prenatal neurodevelopment or critical periods of postnatal development are models that mimic behavioral and neurophysiological abnormalities of schizophrenia. Blockade of NMDARs with MK-801 during early postnatal development alters glutamate release and impairs the induction of NMDAR-dependent long-term plasticity at the CA1 area of the hippocampus. However, it remains unknown if other forms of hippocampal plasticity, such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated short- and long-term potentiation, are compromised in response to neonatal treatment with MK-801. Consistent with this tenet, short- and long-term potentiation between dentate gyrus axons, the mossy fibers (MF), onto CA3 pyramidal cells (CA3 PCs) are mediated by AMPARs. By combining whole-cell patch clamp and extracellular recordings, we have demonstrated that transient blockade of NMDARs during early postnatal development induces a series of pre- and postsynaptic modifications at the MF-CA3 synapse. We found reduced glutamate release from the mossy boutons, increased paired-pulse ratio, and reduced AMPAR-mediated MF LTP levels. At the postsynaptic level, we found an altered NMDA/AMPA ratio and dysregulation of several potassium conductances that increased the excitability of CA3 PCs. In addition, MK-801-treated animals exhibited impaired spatial memory retrieval in the Barnes maze task. Our data demonstrate that transient hypofunction of NMDARs impacts NMDAR-independent forms of synaptic plasticity of the hippocampus.


Asunto(s)
Potenciación a Largo Plazo , Receptores de N-Metil-D-Aspartato , Animales , Potenciación a Largo Plazo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Fibras Musgosas del Hipocampo/fisiología , Maleato de Dizocilpina/farmacología , Células Piramidales/fisiología , Hipocampo/metabolismo , Sinapsis/fisiología , Glutamatos , Transmisión Sináptica/fisiología
8.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835133

RESUMEN

It has recently been demonstrated that aromatic bromination at C(2) abolishes all typical psychomotor, and some key prosocial effects of the entactogen MDMA in rats. Nevertheless, the influence of aromatic bromination on MDMA-like effects on higher cognitive functions remains unexplored. In the present work, the effects of MDMA and its brominated analog 2Br-4,5-MDMA (1 mg/kg and 10 mg/kg i.p. each) on visuospatial learning, using a radial, octagonal Olton maze (4 × 4) which may discriminate between short-term and long-term memory, were compared with their influence on in vivo long-term potentiation (LTP) in the prefrontal cortex in rats. The results obtained indicate that MDMA diminishes both short- and long-term visuospatial memory but increases LTP. In contrast, 2Br-4,5-MDMA preserves long-term visuospatial memory and slightly accelerates the occurrence of short-term memory compared to controls, but increases LTP, like MDMA. Taken together, these data are consistent with the notion that the modulatory effects induced by the aromatic bromination of the MDMA template, which abolishes typical entactogenic-like responses, might be extended to those effects affecting higher cognitive functions, such as visuospatial learning. This effect seems not to be associated with the increase of LTP in the prefrontal cortex.


Asunto(s)
N-Metil-3,4-metilenodioxianfetamina , Ratas , Animales , N-Metil-3,4-metilenodioxianfetamina/farmacología , Potenciación a Largo Plazo , Halogenación , Aprendizaje , Corteza Prefrontal , Aprendizaje por Laberinto
9.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194909, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682583

RESUMEN

Protein kinase M zeta, PKMζ, is a brain enriched kinase with a well characterized role in Long-Term Potentiation (LTP), the activity-dependent strengthening of synapses involved in long-term memory formation. However, little is known about the molecular mechanisms that maintain the tissue specificity of this kinase. Here, we characterized the epigenetic factors, mainly DNA methylation, regulating PKMζ expression in the human brain. The PRKCZ gene has an upstream promoter regulating Protein kinase C ζ (PKCζ), and an internal promoter driving PKMζ expression. A demethylated region, including a canonical CREB binding site, situated at the internal promoter was only observed in human CNS tissues. The induction of site-specific hypermethylation of this region resulted in decreased CREB1 binding and downregulation of PKMζ expression. Noteworthy, CREB binding sites were absent in the upstream promoter of PRKCZ locus, suggesting a specific mechanism for regulating PKMζ expression. These observations were validated using a system of human neuronal differentiation from induced pluripotent stem cells (iPSCs). CREB1 binding at the internal promoter was detected only in differentiated neurons, where PKMζ is expressed. The same epigenetic mechanism in the context of CREB binding site was identified in other genes involved in neuronal differentiation and LTP. Additionally, aberrant DNA hypermethylation at the internal promoter was observed in cases of Alzheimer's disease, correlating with decreased expression of PKMζ in patient brains. Altogether, we present a conserved epigenetic mechanism regulating PKMζ expression and other genes enhanced in the CNS with possible implications in neuronal differentiation and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Metilación de ADN , Epigénesis Genética , Potenciación a Largo Plazo/fisiología , Encéfalo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética
10.
Sci Rep ; 12(1): 21015, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470912

RESUMEN

Important functions of the prefrontal cortex (PFC) are established during early life, when neurons exhibit enhanced synaptic plasticity and synaptogenesis. This developmental stage drives the organization of cortical connectivity, responsible for establishing behavioral patterns. Serotonin (5-HT) emerges among the most significant factors that modulate brain activity during postnatal development. In the PFC, activated 5-HT receptors modify neuronal excitability and interact with intracellular signaling involved in synaptic modifications, thus suggesting that 5-HT might participate in early postnatal plasticity. To test this hypothesis, we employed intracellular electrophysiological recordings of PFC layer 5 neurons to study the modulatory effects of 5-HT on plasticity induced by theta-burst stimulation (TBS) in two postnatal periods of rats. Our results indicate that 5-HT is essential for TBS to result in synaptic changes during the third postnatal week, but not later. TBS coupled with 5-HT2A or 5-HT1A and 5-HT7 receptors stimulation leads to long-term depression (LTD). On the other hand, TBS and synergic activation of 5-HT1A, 5-HT2A, and 5-HT7 receptors lead to long-term potentiation (LTP). Finally, we also show that 5-HT dependent synaptic plasticity of the PFC is impaired in animals that are exposed to early-life chronic stress.


Asunto(s)
Plasticidad Neuronal , Corteza Prefrontal , Serotonina , Animales , Ratas , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Corteza Prefrontal/crecimiento & desarrollo , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Ritmo Teta
11.
Neural Plast ; 2022: 7432842, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213614

RESUMEN

The dentate gyrus (DG) is the gateway of sensory information arriving from the perforant pathway (PP) to the hippocampus. The adequate integration of incoming information into the DG is paramount in the execution of hippocampal-dependent cognitive functions. An abnormal DG granule cell layer (GCL) widening due to granule cell dispersion has been reported under hyperexcitation conditions in animal models as well as in patients with mesial temporal lobe epilepsy, but also in patients with no apparent relation to epilepsy. Strikingly, it is unclear whether the presence and severity of GCL widening along time affect synaptic processing arising from the PP and alter the performance in hippocampal-mediated behaviors. To evaluate the above, we injected excitotoxic kainic acid (KA) unilaterally into the DG of mice and analyzed the evolution of GCL widening at 10 and 30 days post injection (dpi), while analyzing if KA-induced GCL widening affected in vivo long-term potentiation (LTP) in the PP-DG pathway, as well as the performance in learning and memory through contextual fear conditioning. Our results show that at 10 dpi, when a subtle GCL widening was observed, LTP induction, as well as contextual fear memory, were impaired. However, at 30 dpi when a pronounced increase in GCL widening was found, LTP induction and contextual fear memory were already reestablished. These results highlight the plastic potential of the DG to recover some of its functions despite a major structural alteration such as abnormal GCL widening.


Asunto(s)
Giro Dentado , Potenciación a Largo Plazo , Animales , Cognición , Giro Dentado/metabolismo , Miedo , Ácido Kaínico/metabolismo , Ácido Kaínico/toxicidad , Potenciación a Largo Plazo/fisiología , Plásticos/metabolismo
12.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077313

RESUMEN

The noradrenergic system is implicated in neuropathologies contributing to major disorders of the memory, including post-traumatic stress disorder and Alzheimer's disease. Determining the impact of norepinephrine on cellular function and plasticity is thus essential for making inroads into our understanding of these brain conditions, while expanding our capacity for treating them. Norepinephrine is a neuromodulator within the mammalian central nervous system which plays important roles in cognition and associated synaptic plasticity. Specifically, norepinephrine regulates the formation of memory through the stimulation of ß-ARs, increasing the dynamic range of synaptic modifiability. The mechanisms through which NE influences neural circuit function have been extended to the level of the epigenome. This review focuses on recent insights into how the noradrenergic recruitment of epigenetic modifications, including DNA methylation and post-translational modification of histones, contribute to homo- and heterosynaptic plasticity. These advances will be placed in the context of synaptic changes associated with memory formation and linked to brain disorders and neurotherapeutic applications.


Asunto(s)
Potenciación a Largo Plazo , Norepinefrina , Animales , Epigénesis Genética , Potenciación a Largo Plazo/fisiología , Mamíferos/metabolismo , Plasticidad Neuronal/genética , Norepinefrina/fisiología , Receptores Adrenérgicos beta/metabolismo , Sinapsis/metabolismo
13.
Immunol Lett ; 249: 43-52, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36031026

RESUMEN

The Bacille Calmette-Guérin (BCG) is a potent immunomodulator. It was initially used by oral administration, but it is mostly used subcutaneously nowadays. This study shows that oral BCG vaccination modifies the immune response to a second non-related antigen (Ovalbumin) systemic immunization. Airway Ovalbumin challenge six months after the systemic intraperitoneal immunization resulted in a potent γδ+ T cell response in the lungs biased to IFN-γ and IL-17 production ex vivo and a mixed TH1, TH2, and TH17 T cells upon further stimulation with anti-CD3 mAb in vitro. Higher percentages of CD4+ T cells accompanied the augmented T cell response in oral BCG vaccinated mice. Also, the proportion of Foxp3+ Tregs was diminished compared to PBS-gavaged and OVA-immunized mice. The anti-OVA-specific antibody response was also influenced by oral exposure to BCG so that these mice produced more IgG2a and less IgE detected in the sera. These results suggest that oral BCG vaccination can modify future immune responses to vaccines and improve immunity to pathogen infections, especially in the mucosal interfaces.


Asunto(s)
Vacuna BCG , Interleucina-17 , Animales , Vacuna BCG/farmacología , Factores de Transcripción Forkhead , Inmunidad , Inmunoglobulina E , Inmunoglobulina G , Interferón gamma , Potenciación a Largo Plazo , Ratones , Ovalbúmina , Vacunación/métodos
14.
Behav Brain Res ; 417: 113589, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34547342

RESUMEN

Synaptic plasticity is a key mechanism of neural plasticity involved in learning and memory. A reduced or impaired synaptic plasticity could lead to a deficient learning and memory. On the other hand, besides reducing hipocampal dependent learning and memory, fimbria-fornix lesion affects LTP. However, we have consistently shown that stimulation of the basolateral amygdala (BLA) 15 min after water maze training is able to improve spatial learning and memory in fimbria fornix lesioned rats while also inducing changes in the expression of plasticity-related genes expression in memory associated brain regions like the hippocampus and prefrontal cortex. In this study we test that hypothesis: whether BLA stimulation 15 min after water maze training can improve LTP in the hippocampus of fimbria-fornix lesioned rats. To address this question, we trained fimbria-fornix lesioned rats in water maze for four consecutive days, and the BLA was bilaterally stimulated 15 min after each training session.Our data show that trained fimbria-fornix lesioned rats develop a partially improved LTP in dentated gyrus compared with the non-trained fimbria-fornix lesioned rats. In contrast, dentated gyrus LTP in trained and BLA stimulated fimbria-fornix lesioned rats improved significantly compared to the trained fimbria-fornix lesioned rats, but was not different from that shown by healthy animals. BLA stimulation in non-trained FF lesioned rats did not improve LTP; instead produces a transient synaptic depression. Restoration of the ability to develop LTP by the combination of training and BLA stimulation would be one of the mechanisms involved in ameliorating memory deficits in lesioned animals.


Asunto(s)
Complejo Nuclear Basolateral/fisiología , Giro Dentado/fisiología , Potenciación a Largo Plazo/fisiología , Aprendizaje por Laberinto/fisiología , Aprendizaje Espacial/fisiología , Memoria Espacial/fisiología , Animales , Fórnix/lesiones , Masculino , Plasticidad Neuronal/fisiología , Corteza Prefrontal/fisiología , Ratas , Ratas Wistar
15.
Neuroscience ; 475: 197-205, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34464664

RESUMEN

Peripheral facial axotomy induces functional and structural central nervous system changes beyond facial motoneurons, causing, among others, changes in sensorimotor cortex and impairment in hippocampal-dependent memory tasks. Here, we explored facial nerve axotomy effects on basal transmission and long-term plasticity of commissural CA3-to-CA1 synapses. Adult, male rats were submitted to unilateral axotomy of the buccal and mandibular branches of facial nerve and allowed 1, 3, 7, or 21 days of recovery before performing electrophysiological recordings of contralateral CA3 (cCA3) stimulation-evoked CA1 field postsynaptic potential in basal conditions and after high frequency stimulation (HFS) (six, one-second length, 100 Hz stimuli trains). Facial nerve axotomy induced transient release probability enhancement during the first week after surgery, without significant changes in basal synaptic strength. In addition, peripheral axotomy caused persistent long-term potentiation (LTP) induction impairment, affecting mainly its presynaptic component. Such synaptic changes may underlie previously reported impairments in hippocampal-dependent memory tasks and suggest a direct hippocampal implication in sensorimotor integration in whisking behavior.


Asunto(s)
Nervio Facial , Hipocampo , Animales , Axotomía , Región CA1 Hipocampal , Potenciación a Largo Plazo , Masculino , Plasticidad Neuronal , Ratas , Sinapsis , Transmisión Sináptica
16.
Exp Neurol ; 344: 113796, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34224736

RESUMEN

Early ethanol exposure affects respiratory neuroplasticity; a risk factor associated with the Sudden Infant Death Syndrome. High and chronic ethanol doses exert long-lasting effects upon respiratory rates, apneic episodes and ventilatory processes triggered by hypoxia. The present study was performed in 3-9-day-old rat pups. Respiratory processes under normoxic and hypoxic conditions were analyzed in pups intoxicated with different ethanol doses which were pre-exposed or not to the drug. A second major goal was to examine if acute and/or chronic early ethanol exposure affects blood parameters related with hypercapnic or hypoxic states. In Experiment 1, at postnatal day 9, animals previously treated with ethanol (2.0 g/kg) or vehicle (0.0 g/kg) were tested sober or intoxicated with 0.75, 1.37 or 2.00 g/kg ethanol. The test involved sequential air conditions defined as initial normoxia, hypoxia and recovery normoxia. Motor activity was also evaluated. In Experiment 2, blood parameters indicative of possible hypoxic and hypercapnic states were assessed as a function of early chronic or acute experiences with the drug. The main results of Experiment 1 were as follows: i) ethanol's depressant effects upon respiratory rates increased as a function of sequential treatment with the drug (sensitization); ii) ethanol inhibited apneic episodes even when employing the lowest dose at test (0.75 g/kg); iii) the hyperventilatory response caused by hypoxia negatively correlated with the ethanol dose administered at test; iv) ventilatory long-term facilitation (LTF) during recovery normoxia was observed in pups pre-exposed to the drug and in pups that received the different ethanol doses at test; v) self-grooming increased in pups treated with either 1.37 or 2.00 g/kg ethanol. The main result of Experiment 2 indicated that acute as well as chronic ethanol exposure results in acidosis-hypercapnia. The results indicate that early and brief experiences with ethanol are sufficient to affect different respiratory plasticity processes as well as blood biomarkers indicative of acidosis-hypercapnia. An association between the LTF process and the acidosis-hypercapnic state caused by ethanol seems to exist. The mentioned experiences with the drug are sufficient to result in an anomalous programming of respiratory patterns and metabolic conditions.


Asunto(s)
Depresores del Sistema Nervioso Central/toxicidad , Etanol/toxicidad , Hipercapnia/fisiopatología , Hipoxia/fisiopatología , Respiración/efectos de los fármacos , Animales , Animales Recién Nacidos , Femenino , Hipercapnia/sangre , Hipoxia/sangre , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Ratas , Ratas Wistar
17.
Sci Rep ; 11(1): 9521, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947925

RESUMEN

Mounting evidence implicates dysfunctional GABAAR-mediated neurotransmission as one of the underlying causes of learning and memory deficits observed in the Ts65Dn mouse model of Down syndrome (DS). The specific origin and nature of such dysfunction is still under investigation, which is an issue with practical consequences to preclinical and clinical research, as well as to the care of individuals with DS and anxiety disorder or those experiencing seizures in emergency room settings. Here, we investigated the effects of GABAAR positive allosteric modulation (PAM) by diazepam on brain activity, synaptic plasticity, and behavior in Ts65Dn mice. We found Ts65Dn mice to be less sensitive to diazepam, as assessed by electroencephalography, long-term potentiation, and elevated plus-maze. Still, diazepam pre-treatment displayed typical effectiveness in reducing susceptibility and severity to picrotoxin-induced seizures in Ts65Dn mice. These findings fill an important gap in the understanding of GABAergic function in a key model of DS.


Asunto(s)
Diazepam/farmacología , Síndrome de Down/tratamiento farmacológico , Fenómenos Electrofisiológicos/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Femenino , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Picrotoxina/farmacología , Convulsiones/inducido químicamente , Transmisión Sináptica/efectos de los fármacos
18.
Psychoneuroendocrinology ; 127: 105178, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33706043

RESUMEN

Increasing evidence suggests that long-term consumption of high-caloric diets increases the risk of developing cognitive dysfunctions. In the present study, we assessed the catecholaminergic activity in the hippocampus as a modulatory mechanism that is altered in rats exposed to six months of a high-sucrose diet (HSD). Male Wistar rats fed with this diet developed a metabolic disorder and showed impaired spatial memory in both water maze and object location memory (OLM) tasks. Intrahippocampal free-movement microdialysis showed a diminished dopaminergic and noradrenergic response to object exploration during OLM acquisition compared to rats fed with normal diet. In addition, electrophysiological results revealed an impaired long-term potentiation (LTP) of the perforant to dentate gyrus pathway in rats exposed to a HSD. Local administration of nomifensine, a catecholaminergic reuptake inhibitor, prior to OLM acquisition or LTP induction, improved long-term memory and electrophysiological responses, respectively. These results suggest that chronic exposure to HSD induces a hippocampal deterioration which impacts on cognitive and neural plasticity events negatively; these impairments can be ameliorated by increasing or restituting the affected catecholaminergic activity.


Asunto(s)
Catecolaminas , Sacarosa en la Dieta , Hipocampo , Animales , Catecolaminas/fisiología , Sacarosa en la Dieta/efectos adversos , Hipocampo/fisiopatología , Potenciación a Largo Plazo/fisiología , Masculino , Trastornos de la Memoria/fisiopatología , Ratas , Ratas Wistar , Memoria Espacial/fisiología
19.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R541-R546, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33533311

RESUMEN

Physical exercise attenuates the development of l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia (LID) in 6-hydroxydopamine-induced hemiparkinsonian mice through unknown mechanisms. We now tested if exercise normalizes the aberrant corticostriatal neuroplasticity associated with experimental murine models of LID. C57BL/6 mice received two unilateral intrastriatal injections of 6-hydroxydopamine (12 µg) and were treated after 3 wk with l-DOPA/benserazide (25/12.5 mg/kg) for 4 wk, with individualized moderate-intensity running (60%-70% V̇o2peak) or not (untrained). l-DOPA converted the pattern of plasticity in corticostriatal synapses from a long-term depression (LTD) into a long-term potentiation (LTP). Exercise reduced LID severity and decreased aberrant LTP. These results suggest that exercise attenuates abnormal corticostriatal plasticity to decrease LID.


Asunto(s)
Antiparkinsonianos/toxicidad , Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Discinesia Inducida por Medicamentos/prevención & control , Terapia por Ejercicio , Levodopa/toxicidad , Plasticidad Neuronal/efectos de los fármacos , Trastornos Parkinsonianos/tratamiento farmacológico , Animales , Benserazida/toxicidad , Corteza Cerebral/fisiopatología , Cuerpo Estriado/fisiopatología , Dihidroxifenilalanina/análogos & derivados , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/etiología , Discinesia Inducida por Medicamentos/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/fisiopatología , Carrera , Factores de Tiempo
20.
Neuroscience ; 460: 145-160, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33493620

RESUMEN

Increase in proton concentration [H+] or decrease in local and global extracellular pH occurs in both physiological and pathological conditions. Acid-sensing ion channels (ASICs), belonging to the ENaC/Deg superfamily, play an important role in signal transduction as proton sensor. ASICs and in particular ASIC1a (one of the six ASICs subunits) which is permeable to Ca2+, are involved in many physiological processes including synaptic plasticity and neurodegenerative diseases. Activity-dependent long-term potentiation (LTP) is a major type of long-lasting synaptic plasticity in the CNS, associated with learning, memory, development, fear and persistent pain. Neurons in the anterior cingulate cortex (ACC) play critical roles in pain perception and chronic pain and express ASIC1a channels. During synaptic transmission, acidification of the synaptic cleft presumably due to the co-release of neurotransmitter and H+ from synaptic vesicles activates postsynaptic ASIC1a channels in ACC of mice. This generates ASIC1a synaptic currents that add to the glutamatergic excitatory postsynaptic currents (EPSCs). Here we report that modulators like histamine and corticosterone, acting through ASIC1a regulate synaptic plasticity, reducing the threshold for LTP induction of glutamatergic EPSCs. Our findings suggest a new role for ASIC1a mediating the neuromodulator action of histamine and corticosterone regulating specific forms of synaptic plasticity in the mouse ACC.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Potenciación a Largo Plazo , Canales Iónicos Sensibles al Ácido/metabolismo , Animales , Corticosterona , Giro del Cíngulo/metabolismo , Histamina , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA