Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67.484
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38953732

RESUMEN

BACKGROUND: Cone beam computed tomography (CBCT)-guided bronchoscopic sampling of peripheral pulmonary lesions (PPLs) is associated with superior diagnostic outcomes. However, the added value of a robotic-assisted bronchoscopy platform in CBCT-guided diagnostic procedures is unknown. METHODS: We performed a retrospective review of 100 consecutive PPLs sampled using conventional flexible bronchoscopy under CBCT guidance (FB-CBCT) and 100 consecutive PPLs sampled using an electromagnetic navigation-guided robotic-assisted bronchoscopy platform under CBCT guidance (RB-CBCT). Patient demographics, PPL features, procedural characteristics, and procedural outcomes were compared between the 2 cohorts. RESULTS: Patient and PPL characteristics were similar between the FB-CBCT and RB-CBCT cohorts, and there were no significant differences in diagnostic yield (88% vs. 90% for RB-CBCT, P=0.822) or incidence of complications between the 2 groups. As compared with FB-CBCT cases, RB-CBCT cases were significantly shorter (median 58 min vs. 92 min, P<0.0001) and used significantly less diagnostic radiation (median dose area product 5114 µGy•m2 vs. 8755 µGy•m2, P<0.0001). CONCLUSION: CBCT-guided bronchoscopy with or without a robotic-assisted bronchoscopy platform is a safe and effective method for sampling PPLs, although the integration of a robotic-assisted platform was associated with significantly shorter procedure times and significantly less radiation exposure.


Asunto(s)
Broncoscopía , Tomografía Computarizada de Haz Cónico , Neoplasias Pulmonares , Humanos , Broncoscopía/métodos , Masculino , Estudios Retrospectivos , Femenino , Tomografía Computarizada de Haz Cónico/métodos , Persona de Mediana Edad , Anciano , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/diagnóstico por imagen , Adulto , Procedimientos Quirúrgicos Robotizados/métodos , Anciano de 80 o más Años , Robótica/instrumentación , Pulmón/diagnóstico por imagen , Pulmón/patología
2.
Minerva Surg ; 79(4): 443-447, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38953756

RESUMEN

BACKGROUND: Transthoracic needle biopsy of lung lesions is a well-established procedure for the diagnosis of lung lesions. The literature focuses on the diagnosis of malignant lesions with an often reported accuracy rate of more than 90%. Experience showed that biopsy can identify sometimes incidentally, also benign lesions. There are many reasons why a biopsy is performed for a "benign lesion." First of all, it may be an unexpected diagnosis, as some benign pathologies may have misleading presentations, that are very similar to lung cancer, otherwise the reason is only to make a diagnosis of exclusion, which leads to the benign pathology already being considered in the differential diagnosis. METHODS: This study was designed as a retrospective single-center study. We selected from our database all the lung biopsies performed under CT guidance, from 2015 to 2019 and retrospectively analysed the histological data. We selected only benign lesions describing the imaging feature and differential diagnosis with lung malignancy. RESULTS: In our patient population, among the 969 of them that underwent biopsy, we identified 93 benign lesions (10%). Hamartomas, granulomas, slow-resolving pneumonia and cryptogenic organizing pneumonia are the pathologies that most frequently can misinterpratedas lung cancer. CONCLUSIONS: In this brief report we want to show the percentage and type of benign lesions that are found in our lung trans-thoracic biopsy population. Among these, we identified the three most frequent benign lesions that most frequently enter the differential diagnosis with lung malignant lesions describing the classic and atypical imaging findings.


Asunto(s)
Hamartoma , Enfermedades Pulmonares , Neoplasias Pulmonares , Humanos , Estudios Retrospectivos , Diagnóstico Diferencial , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/diagnóstico por imagen , Enfermedades Pulmonares/patología , Enfermedades Pulmonares/diagnóstico , Hamartoma/patología , Hamartoma/diagnóstico , Hamartoma/diagnóstico por imagen , Femenino , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X , Anciano , Granuloma/patología , Granuloma/diagnóstico , Pulmón/patología , Pulmón/diagnóstico por imagen , Neumonía en Organización Criptogénica/patología , Neumonía en Organización Criptogénica/diagnóstico , Neumonía en Organización Criptogénica/diagnóstico por imagen , Biopsia Guiada por Imagen/métodos , Adulto
3.
Zhonghua Er Ke Za Zhi ; 62(7): 669-675, 2024 Jul 02.
Artículo en Chino | MEDLINE | ID: mdl-38955686

RESUMEN

Objective: To investigate and summarize pediatric patients with severe Mycoplasma pneumoniae pneumonia (MPP) presenting with varied clinical and chest imaging features in order to guide the individualized treatment. Methods: This was a retrospective cohort study. Medical records of clinical, imaging and laboratory data of 505 patients with MPP who were admitted to the Department Ⅱ of Respirology Center, Beijing Children's Hospital, Capital Medical University from January 2016 to October 2023 and met the enrollment criteria were included. They were divided into severe group and non-severe group according to whether lower airway obliterans was developed. The clinical and chest imaging features of the two groups were analyzed. Those severe cases with single lobe ≥2/3 consolidation (lobar consolidation) were further divided into subtype lung-necrosis and subtype non-lung-necrosis based on whether lung necrosis was developed. Comparison on the clinical manifestations, bronchoscopic findings, whole blood C-reactive protein (CRP) and other inflammatory indicators between the two subtypes was performed. Comparisons between two groups were achieved using independent-sample t-test, nonparametric test or chi-square test. Univariate receiver operating characteristic (ROC) curve analyses were performed on the indicators such as CRP of the two subtypes. Results: Of the 505 cases, 254 were male and 251 were female. The age of the onset was (8.2±2.9) years. There were 233 severe cases, among whom 206 were with lobar consolidation and 27 with diffuse bronchiolitis. The other 272 belonged to non-severe cases, with patchy, cloudy infiltrations or single lobe <2/3 uneven consolidation or localized bronchiolitis. Of the 206 cases (88.4%) severe cases with lobar consolidation, 88 harbored subtype lung-necrosis and 118 harbored subtype non-lung-necrosis. All 206 cases (100.0%) presented with persistent high fever, among whom 203 cases (98.5%) presented with inflammatory secretion obstruction and plastic bronchitis under bronchoscopy. Of those 88 cases with subtype lung-necrosis, there were 42 cases (47.7%) with dyspnea and 39 cases (44.3%) with moderate to massive amount of pleural effusion. There were 35 cases (39.8%) diagnosed with lung embolism during the disease course, of which other 34 cases (38.6%) were highly suspected. Extensive airway mucosal necrosis was observed in 46 cases (52.3%), and the level of their whole blood CRP was significantly higher than that of subtype non-lung-necrosis (131.5 (91.0, 180.0) vs. 25.5 (12.0, 43.1) mg/L, U=334.00, P<0.001). They were regarded as subtype "lung consolidation-atelectasis-necrosis". Of those 118 cases with subtype non-lung-necrosis, 27 cases (22.9%) presented with dyspnea and none were with moderate to massive amount of pleural effusion. Sixty-five cases (55.1%) presented with plastic bronchitis and localized airway mucosal necrosis was observed in 32 cases (27.1%). They were deemed as subtype "lung consolidation-atelectasis". ROC curve analyses revealed that whole blood CRP of 67.5 mg/L on the 6-10 th day of disease course exhibited a sensitivity of 0.96, a specificity of 0.89, and an area under the curve of 0.97 for distinguishing between these two subtypes among those with lobar consolidation. Conclusions: Pediatric patients with severe MPP present with lobar consolidation or diffuse bronchiolitis on chest imaging. Those with lobar consolidation harbor 2 subtypes as "lung consolidation-atelectasis-necrosis" and "lung consolidation-atelectasis". Whole blood CRP of 67.5 mg/L can be applied as an early discriminating indicator to discriminate between these two subtypes.


Asunto(s)
Proteína C-Reactiva , Pulmón , Mycoplasma pneumoniae , Fenotipo , Neumonía por Mycoplasma , Humanos , Femenino , Masculino , Neumonía por Mycoplasma/diagnóstico , Estudios Retrospectivos , Niño , Pulmón/patología , Pulmón/diagnóstico por imagen , Proteína C-Reactiva/análisis , Broncoscopía/métodos , Índice de Severidad de la Enfermedad , Preescolar , Necrosis , Bronquiolitis/diagnóstico , Bronquiolitis/patología
5.
Exp Dermatol ; 33(7): e15136, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38973310

RESUMEN

Interstitial lung disease (ILD) has been identified as a prevalent complication and significant contributor to mortality in individuals with pemphigus. In this study, a murine model of pemphigus was developed through the subcutaneous administration of serum IgG obtained from pemphigus patients, allowing for an investigation into the association between pemphigus and ILD. Pulmonary interstitial lesions were identified in the lungs of a pemphigus mouse model through histopathology, RT-qPCR and Sircol assay analyses. The severity of these lesions was found to be positively associated with the concentration of IgG in the injected serum. Additionally, DIF staining revealed the deposition of serum IgG in the lung tissue of pemphigus mice, indicating that the subcutaneous administration of human IgG directly impacted the lung tissue of the mice, resulting in damage. This study confirms the presence of pulmonary interstitial lesions in the pemphigus mouse model and establishes a link between pemphigus and ILD.


Asunto(s)
Modelos Animales de Enfermedad , Inmunoglobulina G , Enfermedades Pulmonares Intersticiales , Pénfigo , Pénfigo/patología , Animales , Ratones , Enfermedades Pulmonares Intersticiales/etiología , Enfermedades Pulmonares Intersticiales/patología , Inmunoglobulina G/sangre , Humanos , Pulmón/patología , Piel/patología , Femenino , Ratones Endogámicos BALB C
6.
Allergol Immunopathol (Madr) ; 52(4): 15-20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38970260

RESUMEN

BACKGROUND: Pulmonary fibrosis (PF) is a chronic, progressive, and irreversible heterogeneous disease of lung interstitial tissue. To combat progression of PF, new drugs are required to be developed. Rhizoma coptidis (COP), one of the main alkaloids of Coptis chinensis, is a traditional herbal medicine used to treat various inflammatory diseases. OBJECTIVE: To investigate the possible effects of Coptisine (Cop) on the growth, inflammation, as well as FMT of TNF-ß1-induced HFL1 cells and uncover the mechanism. MATERIAL AND METHODS: Human fetal lung fibroblast 1 (HFL1) was induced using 6ng/mL TGF-ß1 as a model of pulmonary fibrosis. CCK-8, Brdu, and transwell assays indicated the effects on cell growth as well as motility. qPCR and the corresponding kits indicted the effects on cell inflammation. Immunoblot showed the effects on FMT and further confirmed the mechanism. RESULTS: Coptisine inhibits excessive growth as well as motility of TNF-ß1-induced HFL1 cells. It further inhibits inflammation and ROS levels in TNF-ß1-induced HFL1 cells. Coptisine inhibits the FMT process of TNF-ß1-induced HFL1 cells. Mechanically, coptisine promotes the Nrf2/HO-1 pathway. CONCLUSION: Coptisine can inhibit the excessive growth, inflammation as well as FMT of lung fibroblasts into myofibroblasts. It could serve as a promising drug of PF.


Asunto(s)
Berberina , Proliferación Celular , Fibroblastos , Pulmón , Miofibroblastos , Humanos , Proliferación Celular/efectos de los fármacos , Berberina/farmacología , Berberina/análogos & derivados , Miofibroblastos/efectos de los fármacos , Pulmón/patología , Pulmón/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Factor de Crecimiento Transformador beta1/metabolismo , Línea Celular , Coptis , Hemo-Oxigenasa 1/metabolismo , Transducción de Señal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular/efectos de los fármacos , Antiinflamatorios/farmacología
7.
Cell Mol Life Sci ; 81(1): 287, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970705

RESUMEN

Lung type 2 pneumocytes (T2Ps) and alveolar macrophages (AMs) play crucial roles in the synthesis, recycling and catabolism of surfactant material, a lipid/protein fluid essential for respiratory function. The liver X receptors (LXR), LXRα and LXRß, are transcription factors important for lipid metabolism and inflammation. While LXR activation exerts anti-inflammatory actions in lung injury caused by lipopolysaccharide (LPS) and other inflammatory stimuli, the full extent of the endogenous LXR transcriptional activity in pulmonary homeostasis is incompletely understood. Here, using mice lacking LXRα and LXRß as experimental models, we describe how the loss of LXRs causes pulmonary lipidosis, pulmonary congestion, fibrosis and chronic inflammation due to defective de novo synthesis and recycling of surfactant material by T2Ps and defective phagocytosis and degradation of excess surfactant by AMs. LXR-deficient T2Ps display aberrant lamellar bodies and decreased expression of genes encoding for surfactant proteins and enzymes involved in cholesterol, fatty acids, and phospholipid metabolism. Moreover, LXR-deficient lungs accumulate foamy AMs with aberrant expression of cholesterol and phospholipid metabolism genes. Using a house dust mite aeroallergen-induced mouse model of asthma, we show that LXR-deficient mice exhibit a more pronounced airway reactivity to a methacholine challenge and greater pulmonary infiltration, indicating an altered physiology of LXR-deficient lungs. Moreover, pretreatment with LXR agonists ameliorated the airway reactivity in WT mice sensitized to house dust mite extracts, confirming that LXR plays an important role in lung physiology and suggesting that agonist pharmacology could be used to treat inflammatory lung diseases.


Asunto(s)
Homeostasis , Receptores X del Hígado , Macrófagos Alveolares , Neumonía , Surfactantes Pulmonares , Transducción de Señal , Animales , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Surfactantes Pulmonares/metabolismo , Ratones , Neumonía/metabolismo , Neumonía/patología , Macrófagos Alveolares/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Pulmón/metabolismo , Pulmón/patología , Células Epiteliales Alveolares/metabolismo , Asma/metabolismo , Asma/patología , Asma/genética , Colesterol/metabolismo , Metabolismo de los Lípidos , Fagocitosis
8.
Front Immunol ; 15: 1424374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966641

RESUMEN

At the beginning of the COVID-19 pandemic those with underlying chronic lung conditions, including tuberculosis (TB), were hypothesized to be at higher risk of severe COVID-19 disease. However, there is inconclusive clinical and preclinical data to confirm the specific risk SARS-CoV-2 poses for the millions of individuals infected with Mycobacterium tuberculosis (M.tb). We and others have found that compared to singly infected mice, mice co-infected with M.tb and SARS-CoV-2 leads to reduced SARS-CoV-2 severity compared to mice infected with SARS-CoV-2 alone. Consequently, there is a large interest in identifying the molecular mechanisms responsible for the reduced SARS-CoV-2 infection severity observed in M.tb and SARS-CoV-2 co-infection. To address this, we conducted a comprehensive characterization of a co-infection model and performed mechanistic in vitro modeling to dynamically assess how the innate immune response induced by M.tb restricts viral replication. Our study has successfully identified several cytokines that induce the upregulation of anti-viral genes in lung epithelial cells, thereby providing protection prior to challenge with SARS-CoV-2. In conclusion, our study offers a comprehensive understanding of the key pathways induced by an existing bacterial infection that effectively restricts SARS-CoV-2 activity and identifies candidate therapeutic targets for SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Coinfección , Inmunidad Innata , Mycobacterium tuberculosis , SARS-CoV-2 , COVID-19/inmunología , Animales , Mycobacterium tuberculosis/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Ratones , Coinfección/inmunología , Humanos , Tuberculosis/inmunología , Tuberculosis/microbiología , Citocinas/metabolismo , Citocinas/inmunología , Modelos Animales de Enfermedad , Índice de Severidad de la Enfermedad , Pulmón/inmunología , Pulmón/virología , Pulmón/microbiología , Pulmón/patología , Replicación Viral , Ratones Endogámicos C57BL , Femenino
9.
BMC Pulm Med ; 24(1): 313, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961422

RESUMEN

BACKGROUND: Primary pulmonary myxoid sarcoma (PPMS) is a rare, low-grade malignant tumor, constituting approximately 0.2% of all lung tumors. Despite its rarity, PPMS possesses distinctive histological features and molecular alterations, notably the presence of EWSR1-CREB1 gene fusion. However, its precise tissue origin remains elusive, posing challenges in clinical diagnosis. CASE DEMONSTRATION: A 20-year-old male patient underwent a routine physical examination 6 months prior, revealing a pulmonary mass. Following surgical excision, microscopic evaluation unveiled predominantly short spindle-shaped tumor cells organized in a fascicular, beam-like, or reticular pattern. The stromal matrix exhibited abundant mucin, accompanied by lymphocytic and plasma cell infiltration, with Russell bodies evident in focal areas. Immunophenotypic profiling revealed positive expression of vimentin and epithelial membrane antigen in tumor cells, whereas smooth muscle actin and S-100, among others, were negative. Ki-67 proliferation index was approximately 5%. Subsequent second-generation sequencing identified the characteristic EWSR1-CREB1 gene fusion. The definitive pathological diagnosis established PPMS. The patient underwent no adjuvant chemotherapy or radiotherapy and remained recurrence-free during a 30-month follow-up period. CONCLUSIONS: We report a rare case of PPMS located within the left lung lobe interlobar fissure, featuring Russell body formation within the tumor stroma, a novel finding in PPMS. Furthermore, the histomorphological characteristics of this case highlight the diagnostic challenge it poses, as it may mimic inflammatory myofibroblastic tumor, extraskeletal myxoid chondrosarcoma, or hemangiopericytoma-like fibrous histiocytoma. Therefore, accurate diagnosis necessitates an integrated approach involving morphological, immunohistochemical, and molecular analyses.


Asunto(s)
Neoplasias Pulmonares , Humanos , Masculino , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Adulto Joven , Proteínas de Fusión Oncogénica/genética , Tomografía Computarizada por Rayos X , Mixosarcoma/patología , Mixosarcoma/genética , Mixosarcoma/cirugía , Mixosarcoma/diagnóstico , Sarcoma/genética , Sarcoma/patología , Sarcoma/diagnóstico , Sarcoma/cirugía , Pulmón/patología , Pulmón/diagnóstico por imagen
10.
J Transl Med ; 22(1): 615, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961500

RESUMEN

OBJECTIVE: To explore the correlation between asthma risk and genetic variants affecting the expression or function of lipid-lowering drug targets. METHODS: We conducted Mendelian randomization (MR) analyses using variants in several genes associated with lipid-lowering medication targets: HMGCR (statin target), PCSK9 (alirocumab target), NPC1L1 (ezetimibe target), APOB (mipomersen target), ANGPTL3 (evinacumab target), PPARA (fenofibrate target), and APOC3 (volanesorsen target), as well as LDLR and LPL. Our objective was to investigate the relationship between lipid-lowering drugs and asthma through MR. Finally, we assessed the efficacy and stability of the MR analysis using the MR Egger and inverse variance weighted (IVW) methods. RESULTS: The elevated triglyceride (TG) levels associated with the APOC3, and LPL targets were found to increase asthma risk. Conversely, higher LDL-C levels driven by LDLR were found to decrease asthma risk. Additionally, LDL-C levels (driven by APOB, NPC1L1 and HMGCR targets) and TG levels (driven by the LPL target) were associated with improved lung function (FEV1/FVC). LDL-C levels driven by PCSK9 were associated with decreased lung function (FEV1/FVC). CONCLUSION: In conclusion, our findings suggest a likely causal relationship between asthma and lipid-lowering drugs. Moreover, there is compelling evidence indicating that lipid-lowering therapies could play a crucial role in the future management of asthma.


Asunto(s)
Asma , Hipolipemiantes , Análisis de la Aleatorización Mendeliana , Humanos , Asma/genética , Asma/tratamiento farmacológico , Hipolipemiantes/uso terapéutico , Hipolipemiantes/farmacología , Proproteína Convertasa 9/genética , Estudios de Asociación Genética , Pulmón/efectos de los fármacos , Pulmón/patología , Lipoproteína Lipasa/genética , Triglicéridos/sangre , Receptores de LDL/genética , Hidroximetilglutaril-CoA Reductasas/genética , Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina/genética , Apolipoproteína C-III/genética , Apolipoproteínas B/genética , Pruebas de Función Respiratoria , LDL-Colesterol/sangre , Proteínas de Transporte de Membrana , PPAR alfa
11.
J Med Primatol ; 53(4): e12722, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38949157

RESUMEN

BACKGROUND: Tuberculosis (TB) kills approximately 1.6 million people yearly despite the fact anti-TB drugs are generally curative. Therefore, TB-case detection and monitoring of therapy, need a comprehensive approach. Automated radiological analysis, combined with clinical, microbiological, and immunological data, by machine learning (ML), can help achieve it. METHODS: Six rhesus macaques were experimentally inoculated with pathogenic Mycobacterium tuberculosis in the lung. Data, including Computed Tomography (CT), were collected at 0, 2, 4, 8, 12, 16, and 20 weeks. RESULTS: Our ML-based CT analysis (TB-Net) efficiently and accurately analyzed disease progression, performing better than standard deep learning model (LLM OpenAI's CLIP Vi4). TB-Net based results were more consistent than, and confirmed independently by, blinded manual disease scoring by two radiologists and exhibited strong correlations with blood biomarkers, TB-lesion volumes, and disease-signs during disease pathogenesis. CONCLUSION: The proposed approach is valuable in early disease detection, monitoring efficacy of therapy, and clinical decision making.


Asunto(s)
Biomarcadores , Aprendizaje Profundo , Macaca mulatta , Mycobacterium tuberculosis , Tomografía Computarizada por Rayos X , Animales , Biomarcadores/sangre , Tomografía Computarizada por Rayos X/veterinaria , Tuberculosis/veterinaria , Tuberculosis/diagnóstico por imagen , Modelos Animales de Enfermedad , Tuberculosis Pulmonar/diagnóstico por imagen , Masculino , Femenino , Pulmón/diagnóstico por imagen , Pulmón/patología , Pulmón/microbiología , Enfermedades de los Monos/diagnóstico por imagen , Enfermedades de los Monos/microbiología
13.
FASEB J ; 38(13): e23756, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38949649

RESUMEN

Asthma is a chronic pulmonary disease with the worldwide prevalence. The structural alterations of airway walls, termed as "airway remodeling", are documented as the core contributor to the airway dysfunction during chronic asthma. Forkhead box transcription factor FOXK2 is a critical regulator of glycolysis, a metabolic reprogramming pathway linked to pulmonary fibrosis. However, the role of FOXK2 in asthma waits further explored. In this study, the chronic asthmatic mice were induced via ovalbumin (OVA) sensitization and repetitive OVA challenge. FOXK2 was upregulated in the lungs of OVA mice and downregulated after adenovirus-mediated FOXK2 silencing. The lung inflammation, peribronchial collagen deposition, and glycolysis in OVA mice were obviously attenuated after FOXK2 knockdown. Besides, the expressions of FOXK2 and SIRT2 in human bronchial epithelial cells (BEAS-2B) were increasingly upregulated upon TGF-ß1 stimulation and downregulated after FOXK2 knockdown. Moreover, the functional loss of FOXK2 remarkably suppressed TGF-ß1-induced epithelial-mesenchymal transition (EMT) and glycolysis in BEAS-2B cells, as manifested by the altered expressions of EMT markers and glycolysis enzymes. The glycolysis inhibitor 2-deoxy-d-glucose (2-DG) inhibited the EMT in TGF-ß1-induced cells, making glycolysis a driver of EMT. The binding of FOXK2 to SIRT2 was validated, and SIRT2 overexpression blocked the FOXK2 knockdown-mediated inhibition of EMT and glycolysis in TGF-ß1-treated cells, which suggests that FOXK2 regulates EMT and glycolysis in TGF-ß1-treated cells in a SIRT2-dependnet manner. Collectively, this study highlights the protective effect of FOXK2 knockdown on airway remodeling during chronic asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma , Factores de Transcripción Forkhead , Glucólisis , Sirtuina 2 , Asma/metabolismo , Asma/patología , Animales , Sirtuina 2/metabolismo , Sirtuina 2/genética , Ratones , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Humanos , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Transición Epitelial-Mesenquimal , Ratones Endogámicos BALB C , Femenino , Factor de Crecimiento Transformador beta1/metabolismo , Pulmón/metabolismo , Pulmón/patología , Línea Celular
14.
Front Immunol ; 15: 1379570, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957465

RESUMEN

There is a reciprocal relationship between extracellular matrix (ECM) remodelling and inflammation that could be operating in the progression of severe COVID-19. To explore the immune-driven ECM remodelling in COVID-19, we in this explorative study analysed these interactions in hospitalised COVID-19 patients. RNA sequencing and flow analysis were performed on peripheral blood mononuclear cells. Inflammatory mediators in plasma were measured by ELISA and MSD, and clinical information from hospitalised COVID-19 patients (N=15) at admission was included in the analysis. Further, we reanalysed two publicly available datasets: (1) lung tissue RNA-sequencing dataset (N=5) and (2) proteomics dataset from PBCM. ECM remodelling pathways were enriched in PBMC from COVID-19 patients compared to healthy controls. Patients treated at the intensive care unit (ICU) expressed distinct ECM remodelling gene profiles compared to patients in the hospital ward. Several markers were strongly correlated to immune cell subsets, and the dysregulation in the ICU patients was positively associated with plasma levels of inflammatory cytokines and negatively associated with B-cell activating factors. Finally, our analysis of publicly accessible datasets revealed (i) an augmented ECM remodelling signature in inflamed lung tissue compared to non-inflamed tissue and (ii) proteomics analysis of PBMC from severe COVID-19 patients demonstrated an up-regulation in an ECM remodelling pathway. Our results may suggest the presence of an interaction between ECM remodelling, inflammation, and immune cells, potentially initiating or perpetuating pulmonary pathology in severe COVID-19.


Asunto(s)
COVID-19 , Matriz Extracelular , Leucocitos Mononucleares , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/sangre , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Matriz Extracelular/metabolismo , Masculino , Femenino , Persona de Mediana Edad , SARS-CoV-2/fisiología , SARS-CoV-2/inmunología , Anciano , Citocinas/sangre , Proteómica/métodos , Pulmón/inmunología , Pulmón/patología , Adulto
15.
Sci Transl Med ; 16(754): eadi6887, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959328

RESUMEN

Virulent infectious agents such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and methicillin-resistant Staphylococcus aureus (MRSA) induce tissue damage that recruits neutrophils, monocyte, and macrophages, leading to T cell exhaustion, fibrosis, vascular leak, epithelial cell depletion, and fatal organ damage. Neutrophils, monocytes, and macrophages recruited to pathogen-infected lungs, including SARS-CoV-2-infected lungs, express phosphatidylinositol 3-kinase gamma (PI3Kγ), a signaling protein that coordinates both granulocyte and monocyte trafficking to diseased tissues and immune-suppressive, profibrotic transcription in myeloid cells. PI3Kγ deletion and inhibition with the clinical PI3Kγ inhibitor eganelisib promoted survival in models of infectious diseases, including SARS-CoV-2 and MRSA, by suppressing inflammation, vascular leak, organ damage, and cytokine storm. These results demonstrate essential roles for PI3Kγ in inflammatory lung disease and support the potential use of PI3Kγ inhibitors to suppress inflammation in severe infectious diseases.


Asunto(s)
COVID-19 , Fosfatidilinositol 3-Quinasa Clase Ib , Inflamación , SARS-CoV-2 , COVID-19/patología , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Animales , Inflamación/patología , Humanos , Tratamiento Farmacológico de COVID-19 , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Pulmón/patología , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Permeabilidad Capilar/efectos de los fármacos , Ratones Endogámicos C57BL , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/patología
16.
Georgian Med News ; (349): 54-59, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38963202

RESUMEN

Doxorubicin is the common chemotherapeutic agent that has been harnessed for the treatment of various types of malignancy including the treatment of soft tissue and osteosarcoma and cancers of the vital organs like breast, ovary, bladder, and thyroid. It is also used to treat leukaemia and lymphoma, however, this is an obstacle because of their prominent side effects including cardiotoxicity and lung fibrosis, we do aim to determine the role of CoQ10 as an antioxidant on the impeding the deleterious impacts of doxorubicin on tissue degenerative effects. To do so, 27 rats were subdivided into 3 groups of 9 each; CoQ10 exposed group, Doxorubicin exposed group, and CoQ10 plus Doxorubicin group. At the end of the study, the animals were sacrificed and lungs with hearts were harvested, and slides were prepared for examination under a microscope. The results indicated that doxorubicin induced abnormal cellular structure resulting in damaging cellular structures of the lung and heart while CoQ10 impeded these damaging effects and nearly restoring normal tissue structure. As a result, CoQ10 will maintain normal tissue of the lung and heart.


Asunto(s)
Doxorrubicina , Pulmón , Ubiquinona , Animales , Doxorrubicina/efectos adversos , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ratas , Pulmón/efectos de los fármacos , Pulmón/patología , Antibióticos Antineoplásicos/efectos adversos , Antibióticos Antineoplásicos/toxicidad , Miocardio/patología , Masculino , Antioxidantes/farmacología , Cardiotoxicidad/etiología , Cardiotoxicidad/patología , Corazón/efectos de los fármacos
17.
PLoS One ; 19(7): e0305058, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954702

RESUMEN

OBJECTIVES: Astragaloside IV (AS-IV) is a natural triterpenoid saponin compound with a variety of pharmacological effects, and several studies have clarified its anti-inflammatory effects, which may make it an effective alternative treatment against inflammation. In the study, we aimed to investigate whether AS-IV could attenuate the inflammatory response to acute lung injury and its mechanisms. METHODS: Different doses of AS-IV (20mg·kg-1, 40mg·kg-1, and 80mg·kg-1) were administered to the ALI rat model, followed by collection of serum and broncho alveolar lavage fluid (BALF) for examination of the inflammatory response, and HE staining of the lung and colon tissues, and interpretation of the potential molecular mechanisms by quantitative real-time PCR (qRT-PCR), Western blotting (WB). In addition, fecal samples from ALI rats were collected and analyzed by 16S rRNA sequencing. RESULTS: AS-IV decreased the levels of TNF-α, IL-6, and IL-1ß in serum and BALF of mice with Acute lung injury (ALI). Lung and colon histopathology confirmed that AS-IV alleviated inflammatory infiltration, tissue edema, and structural changes. qRT-PCR and WB showed that AS-IV mainly improved inflammation by inhibiting the expression of PI3K, AKT and mTOR mRNA, and improved the disorder of intestinal microflora by increasing the number of beneficial bacteria and reducing the number of harmful bacteria. CONCLUSION: AS-IV reduces the expression of inflammatory factors by inhibiting the PI3K/AKT/mTOR pathway and optimizes the composition of the gut microflora in AIL rats.


Asunto(s)
Lesión Pulmonar Aguda , Microbioma Gastrointestinal , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Saponinas , Transducción de Señal , Serina-Treonina Quinasas TOR , Triterpenos , Animales , Saponinas/farmacología , Saponinas/uso terapéutico , Triterpenos/farmacología , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/microbiología , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Ratas , Masculino , Ratones , Ratas Sprague-Dawley , Inflamación/tratamiento farmacológico , Líquido del Lavado Bronquioalveolar/química , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/microbiología , Pulmón/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
18.
Pancreas ; 53(7): e588-e594, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38986079

RESUMEN

OBJECTIVE: It was targeted to assess the efficacy of certolizumab on pancreas and target organs via biochemical parameters and histopathologic scores in experimental acute pancreatitis (AP). MATERIALS AND METHODS: Forty male Sprague Dawley rats were divided into the following 5 equal groups: group 1 (sham group), group 2 (AP group), group 3 (AP + low-dose certolizumab group), group 4 (AP + high-dose certolizumab group), and group 5 (placebo group). Rats in all groups were sacrificed 24 hours after the last injection and amylase, tumor necrosis factor α, transforming growth factor ß, interleukin 1ß, malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were studied in blood samples. Histopathological investigation of both the pancreas and target organs (lungs, liver, heart, kidneys) was performed by a pathologist blind to the groups. In silico analysis were also accomplished. RESULTS: The biochemical results in the certolizumab treatment groups were identified to be significantly favorable compared to the AP group (P < 0.001). The difference between the high-dose group (group 4) and low-dose treatment group (group 3) was found to be significant in terms of biochemical parameters and histopathological scores (P < 0.001). In terms of the effect of certolizumab treatment on the target organs (especially on lung tissue), the differences between the low-dose treatment group (group 3) and high-dose treatment group (group 4) with the AP group (group 2) were significant. CONCLUSIONS: Certolizumab has favorable protective effects on pancreas and target organs in AP. It may be a beneficial agent for AP treatment and may prevent target organ damage.


Asunto(s)
Amilasas , Pulmón , Páncreas , Pancreatitis , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa , Animales , Masculino , Pancreatitis/prevención & control , Pancreatitis/inducido químicamente , Pancreatitis/patología , Pancreatitis/tratamiento farmacológico , Páncreas/efectos de los fármacos , Páncreas/patología , Páncreas/metabolismo , Amilasas/sangre , Enfermedad Aguda , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/sangre , Certolizumab Pegol/farmacología , Malondialdehído/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Interleucina-1beta/sangre , Interleucina-1beta/metabolismo , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa/metabolismo , Miocardio/patología , Miocardio/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ratas , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos
19.
Physiol Rep ; 12(13): e16148, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38991987

RESUMEN

Pulmonary fibrosis is characterized by pathological accumulation of scar tissue in the lung parenchyma. Many of the processes that are implicated in fibrosis, including increased extracellular matrix synthesis, also occur following pneumonectomy (PNX), but PNX instead results in regenerative compensatory growth of the lung. As fibroblasts are the major cell type responsible for extracellular matrix production, we hypothesized that comparing fibroblast responses to PNX and bleomycin (BLM) would unveil key differences in the role they play during regenerative versus fibrotic lung responses. RNA-sequencing was performed on flow-sorted fibroblasts freshly isolated from mouse lungs 14 days after BLM, PNX, or sham controls. RNA-sequencing analysis revealed highly similar biological processes to be involved in fibroblast responses to both BLM and PNX, including TGF-ß1 and TNF-α. Interestingly, we observed smaller changes in gene expression after PNX than BLM at Day 14, suggesting that the fibroblast response to PNX may be muted by expression of transcripts that moderate pro-fibrotic pathways. Itpkc, encoding inositol triphosphate kinase C, was a gene uniquely up-regulated by PNX and not BLM. ITPKC overexpression in lung fibroblasts antagonized the pro-fibrotic effect of TGF-ß1. RNA-sequencing analysis has identified considerable overlap in transcriptional changes between fibroblasts following PNX and those overexpressing ITPKC.


Asunto(s)
Bleomicina , Fibroblastos , Ratones Endogámicos C57BL , Neumonectomía , Fibrosis Pulmonar , Bleomicina/farmacología , Animales , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Ratones , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Pulmón/metabolismo , Pulmón/citología , Pulmón/patología , Masculino , Análisis de Secuencia de ARN/métodos , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Células Cultivadas
20.
Front Immunol ; 15: 1394690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994372

RESUMEN

Connective tissue represents the support matrix and the connection between tissues and organs. In its composition, collagen, the major structural protein, is the main component of the skin, bones, tendons and ligaments. Especially at the pediatric age, its damage in the context of pathologies such as systemic lupus erythematosus, scleroderma or dermatomyositis can have a significant negative impact on the development and optimal functioning of the body. The consequences can extend to various structures (e.g., joints, skin, eyes, lungs, heart, kidneys). Of these, we retain and reveal later in our manuscript, mainly the respiratory involvement. Manifested in various forms that can damage the chest wall, pleura, interstitium or vascularization, lung damage in pediatric systemic inflammatory diseases is underdeveloped in the literature compared to that described in adults. Under the threat of severe evolution, sometimes rapidly progressive and leading to death, it is necessary to increase the popularization of information aimed at physiopathological triggering and maintenance mechanisms, diagnostic means, and therapeutic directions among medical specialists. In addition, we emphasize the need for interdisciplinary collaboration, especially between pediatricians, rheumatologists, infectious disease specialists, pulmonologists, and immunologists. Through our narrative review we aimed to bring up to date, in a concise and easy to assimilate, general principles regarding the pulmonary impact of collagenoses using the most recent articles published in international libraries, duplicated by previous articles, of reference for the targeted pathologies.


Asunto(s)
Enfermedades del Colágeno , Humanos , Niño , Enfermedades del Colágeno/complicaciones , Pulmón/patología , Pulmón/inmunología , Enfermedades Pulmonares/etiología , Morbilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA