Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.508
Filtrar
1.
Pathol Oncol Res ; 30: 1611733, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953007

RESUMEN

Lung cancer is a leading cause of cancer-related death worldwide in both men and women, however mortality in the US and EU are recently declining in parallel with the gradual cut of smoking prevalence. Consequently, the relative frequency of adenocarcinoma increased while that of squamous and small cell carcinomas declined. During the last two decades a plethora of targeted drug therapies have appeared for the treatment of metastasizing non-small cell lung carcinomas (NSCLC). Personalized oncology aims to precisely match patients to treatments with the highest potential of success. Extensive research is done to introduce biomarkers which can predict the effectiveness of a specific targeted therapeutic approach. The EGFR signaling pathway includes several sufficient targets for the treatment of human cancers including NSCLC. Lung adenocarcinoma may harbor both activating and resistance mutations of the EGFR gene, and further, mutations of KRAS and BRAF oncogenes. Less frequent but targetable genetic alterations include ALK, ROS1, RET gene rearrangements, and various alterations of MET proto-oncogene. In addition, the importance of anti-tumor immunity and of tumor microenvironment has become evident recently. Accumulation of mutations generally trigger tumor specific immune defense, but immune protection may be upregulated as an aggressive feature. The blockade of immune checkpoints results in potential reactivation of tumor cell killing and induces significant tumor regression in various tumor types, such as lung carcinoma. Therapeutic responses to anti PD1-PD-L1 treatment may correlate with the expression of PD-L1 by tumor cells. Due to the wide range of diagnostic and predictive features in lung cancer a plenty of tests are required from a single small biopsy or cytology specimen, which is challenged by major issues of sample quantity and quality. Thus, the efficacy of biomarker testing should be warranted by standardized policy and optimal material usage. In this review we aim to discuss major targeted therapy-related biomarkers in NSCLC and testing possibilities comprehensively.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proto-Oncogenes Mas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
2.
Gen Physiol Biophys ; 43(4): 273-289, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953571

RESUMEN

Chronic obstructive pulmonary disease (COPD), characterized by clinical sub-phenotypes such as emphysema (E) and chronic bronchitis (CB), is associated with a greater risk of lung cancer (LC). This study aimed to assess the expression patterns of circRNA and their potential functional involvement in LC patients with COPD. A circRNA microarray was used to characterize differentially expressed circRNAs (DEcircRNAs) profiles. A total of 176, 240, 163, and 243 DEcircRNAs were identified in comparisons between CB vs. LC patients (Con), E vs. Con, E vs. CB, and CBE vs. Con, respectively. DEcircRNAs in all comparison groups were primarily associated with immune-related GO terms and were also enriched in immune and inflammatory pathways. In total, 49 DEcircRNAs were significantly correlated with the infiltration of multiple immune cells. Among them, hsa-MROH9_0001 and hsa-RP11-35J10_0013 were positively and negatively correlated with plasma cells and T-cell CD4 memory resting cells, respectively; these two DEcircRNA-sponged miRNAs have good diagnostic performance. WGCNA identified six key circRNAs associated with CB progression. The expression patterns of hsa-MROH9_0001 and circRNA_21729 in E and CB groups were confirmed by RT-qPCR. In conclusion, we reported circRNA profiles and the findings demonstrated that hsa-MROH9_0001 and circRNA_21729 may be potential therapeutic targets for LC with COPD.


Asunto(s)
Neoplasias Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , ARN Circular , Humanos , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proyectos Piloto , Masculino , Femenino , Anciano , Perfilación de la Expresión Génica , Persona de Mediana Edad , Transcriptoma/genética , Regulación Neoplásica de la Expresión Génica
3.
Gen Physiol Biophys ; 43(4): 301-312, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953570

RESUMEN

Vascular endothelial growth factor A (VEGFA) is an important regulator for non-small cell lung cancer (NSCLC). Our study aimed to reveal its upstream pathway to provide new ideas for developing the therapeutic targets of NSCLC. The mRNA and protein levels of VEGFA, ubiquitin-specific peptidase 35 (USP35), and FUS were determined by quantitative real-time PCR and Western blot. Cell proliferation, apoptosis, invasion and angiogenesis were detected using CCK8 assay, EdU assay, flow cytometry, transwell assay and tube formation assay. The interaction between USP35 and VEGFA was assessed by Co-IP assay and ubiquitination assay. Animal experiments were performed to assess USP35 and VEGFA roles in vivo. VEGFA had elevated expression in NSCLC tissues and cells. Interferences of VEGFA inhibited NSCLC cell proliferation, invasion, angiogenesis, and increased apoptosis. USP35 could stabilize VEGFA protein level by deubiquitination, and USP35 knockdown suppressed NSCLC cell growth, invasion and angiogenesis via reducing VEGFA expression. FUS interacted with USP35 to promote its mRNA stability, thereby positively regulating VEGFA expression. Also, USP35 silencing could reduce NSCLC tumorigenesis by downregulating VEGFA. FUS-stabilized USP35 facilitated NSCLC cell growth, invasion and angiogenesis through deubiquitinating VEGFA, providing a novel idea for NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Neoplasias Pulmonares , Invasividad Neoplásica , Neovascularización Patológica , Proteína FUS de Unión a ARN , Ubiquitinación , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proliferación Celular/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Invasividad Neoplásica/genética , Línea Celular Tumoral , Ratones , Animales , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Ratones Desnudos , Angiogénesis
4.
Neoplasma ; 71(3): 219-230, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38958710

RESUMEN

Epidermal growth factor receptor (EGFR) gene exon 19 in-frame deletion (19del) and exon 21 L858R point mutation (21L858R mutation) are prevalent mutations in lung adenocarcinoma. Lung adenocarcinoma patients with 19del presented with a better prognosis than the 21L858R mutation under the same epidermal growth factor receptor tyrosine kinase inhibitor treatment. Our study aimed to uncover the expression of long non-coding RNA LOC105376794 between 19del and 21L858R mutation, and explore the mechanism that regulates cells' biological behavior and gefitinib sensitivity in lung adenocarcinoma cells with 19del. Transcriptome sequencing was conducted to identify differentially expressed lncRNAs between EGFR 19del and 21L858R mutation in serum through the DNBSEQ Platform. Protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes pathway were conducted to analyze the relationship between lncRNAs and mRNAs through STRING and Dr. TOM. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to measure the expression of lncRNA LOC105376794 in serum and cells. Loss-of-function experiments were used to validate the biological function and gefitinib sensitivity of LOC105376794 in lung adenocarcinoma cells. Protein levels were detected by western blotting. Through transcriptome resequencing and RT-qPCR, we found the expression levels of LOC105376794 in serum were increased in the 19del group compared with the 21L858R mutation group. Inhibition of LOC105376794 promoted proliferation, migration and invasion, and reduced apoptosis of HCC827 and PC-9 cells. The low expression of LOC105376794 reduced gefitinib sensitivity in PC-9 cells. Mechanistically, we found that the knockdown of LOC105376794 suppressed activating transcription factor 4 (ATF4)/C/EBP homologous protein (CHOP) signaling pathway and facilitated the expression of extracellular signal-regulated kinase 1/2 (ERK) phosphorylation. LOC105376794 altered cell biological behavior and gefitinib sensitivity of lung adenocarcinoma cells with 19del through the ATF4/CHOP signaling pathway and the expression of ERK phosphorylation. The results further illustrated the fact that lung adenocarcinoma patients with 19del presented with a more favorable clinical outcome and provided a theoretical basis for treatment strategy for lung adenocarcinoma patients with 19del.


Asunto(s)
Adenocarcinoma del Pulmón , Movimiento Celular , Resistencia a Antineoplásicos , Receptores ErbB , Gefitinib , Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , Gefitinib/farmacología , ARN Largo no Codificante/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Fosforilación , Línea Celular Tumoral , Mutación , Proliferación Celular , Invasividad Neoplásica , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción Activador 4
5.
Artículo en Inglés | MEDLINE | ID: mdl-38961535

RESUMEN

Small cell lung cancer (SCLC) is a highly malignant and heterogeneous cancer with limited therapeutic options and prognosis prediction models. Here, we analyzed formalin-fixed, paraffin-embedded (FFPE) samples of surgical resections by proteomic profiling, and stratified SCLC into three proteomic subtypes (S-I, S-II, and S-III) with distinct clinical outcomes and chemotherapy responses. The proteomic subtyping was an independent prognostic factor and performed better than current tumor-node-metastasis or Veterans Administration Lung Study Group staging methods. The subtyping results could be further validated using FFPE biopsy samples from an independent cohort, extending the analysis to both surgical and biopsy samples. The signatures of the S-II subtype in particular suggested potential benefits from immunotherapy. Differentially overexpressed proteins in S-III, the worst prognostic subtype, allowed us to nominate potential therapeutic targets, indicating that patient selection may bring new hope for previously failed clinical trials. Finally, analysis of an independent cohort of SCLC patients who had received immunotherapy validated the prediction that the S-II patients had better progression-free survival and overall survival after first-line immunotherapy. Collectively, our study provides the rationale for future clinical investigations to validate the current findings for more accurate prognosis prediction and precise treatments.


Asunto(s)
Neoplasias Pulmonares , Proteómica , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/mortalidad , Carcinoma Pulmonar de Células Pequeñas/terapia , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Proteómica/métodos , Pronóstico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Inmunoterapia , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proteoma
6.
Sci Rep ; 14(1): 15176, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956114

RESUMEN

Assessing programmed death ligand 1 (PD-L1) expression through immunohistochemistry (IHC) is the golden standard in predicting immunotherapy response of non-small cell lung cancer (NSCLC). However, observation of heterogeneous PD-L1 distribution in tumor space is a challenge using IHC only. Meanwhile, immunofluorescence (IF) could support both planar and three-dimensional (3D) histological analyses by combining tissue optical clearing with confocal microscopy. We optimized clinical tissue preparation for the IF assay focusing on staining, imaging, and post-processing to achieve quality identical to traditional IHC assay. To overcome limited dynamic range of the fluorescence microscope's detection system, we incorporated a high dynamic range (HDR) algorithm to restore the post imaging IF expression pattern and further 3D IF images. Following HDR processing, a noticeable improvement in the accuracy of diagnosis (85.7%) was achieved using IF images by pathologists. Moreover, 3D IF images revealed a 25% change in tumor proportion score for PD-L1 expression at various depths within tumors. We have established an optimal and reproducible process for PD-L1 IF images in NSCLC, yielding high quality data comparable to traditional IHC assays. The ability to discern accurate spatial PD-L1 distribution through 3D pathology analysis could provide more precise evaluation and prediction for immunotherapy targeting advanced NSCLC.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas , Técnica del Anticuerpo Fluorescente , Imagenología Tridimensional , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/diagnóstico , Imagenología Tridimensional/métodos , Técnica del Anticuerpo Fluorescente/métodos , Inmunohistoquímica/métodos , Microscopía Confocal/métodos , Biomarcadores de Tumor/metabolismo
7.
Sci Rep ; 14(1): 15557, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969706

RESUMEN

Metastasis is driven by extensive cooperation between a tumor and its microenvironment, resulting in the adaptation of molecular mechanisms that evade the immune system and enable pre-metastatic niche (PMN) formation. Little is known of the tumor-intrinsic factors that regulate these mechanisms. Here we show that expression of the transcription factor interferon regulatory factor 5 (IRF5) in osteosarcoma (OS) and breast carcinoma (BC) clinically correlates with prolonged survival and decreased secretion of tumor-derived extracellular vesicles (t-dEVs). Conversely, loss of intra-tumoral IRF5 establishes a PMN that supports metastasis. Mechanistically, IRF5-positive tumor cells retain IRF5 transcripts within t-dEVs that contribute to altered composition, secretion, and trafficking of t-dEVs to sites of metastasis. Upon whole-body pre-conditioning with t-dEVs from IRF5-high or -low OS and BC cells, we found increased lung metastatic colonization that replicated findings from orthotopically implanted cancer cells. Collectively, our findings uncover a new role for IRF5 in cancer metastasis through its regulation of t-dEV programming of the PMN.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Factores Reguladores del Interferón , Metástasis de la Neoplasia , Microambiente Tumoral , Vesículas Extracelulares/metabolismo , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Humanos , Animales , Ratones , Línea Celular Tumoral , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Osteosarcoma/patología , Osteosarcoma/genética , Osteosarcoma/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Regulación Neoplásica de la Expresión Génica
8.
J Cancer Res Clin Oncol ; 150(7): 335, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38969831

RESUMEN

BACKGROUND: Ubiquilin-4 (UBQLN4), a member of the ubiquilin family, has received limited attention in cancer research to date. Here, we investigated for the first time the functional role and mechanism of UBQLN4 in non-small cell lung cancer (NSCLC). METHODS: The Cancer Genome Atlas (TCGA) database was employed to validate UBQLN4 as a differentially expressed gene. Expression differences of UBQLN4 in NSCLC cells and tissues were assessed using immunohistochemistry (IHC) experiment and western blotting (WB) experiment. Kaplan-Meier analysis was conducted to examine the association between UBQLN4 expression and NSCLC prognosis. Functional analyses of UBQLN4 were performed through cell counting kit-8 (CCK-8), colony formation, and transwell invasion assays. The impact of UBQLN4 on tumor-associated signaling pathways was assessed using the path scan intracellular signaling array. In vivo tumorigenesis experiments were conducted to further investigate the influence of UBQLN4 on tumor formation. RESULTS: UBQLN4 exhibited up-regulation in both NSCLC tissues and cells. Additionally, over-expression of UBQLN4 was associated with an unfavorable prognosis in NSCLC patients. Functional loss analyses demonstrated that inhibiting UBQLN4 could suppress the proliferation and invasion of NSCLC cells in both in vitro and in vivo settings. Conversely, functional gain experiments yielded opposite results. Path scan intracellular signaling array results suggested that the role of UBQLN4 is associated with the PI3K/AKT pathway, a correlation substantiated by in vitro and in vivo tumorigenesis experiments. CONCLUSION: We validated that UBQLN4 promotes proliferation and invasion of NSCLC cells by activating the PI3K/AKT pathway, thereby facilitating the progression of NSCLC. These findings underscore the potential of targeting UBQLN4 as a therapeutic strategy for NSCLC.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Neoplasias Pulmonares , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Animales , Ratones , Femenino , Masculino , Pronóstico , Línea Celular Tumoral , Ratones Desnudos , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Persona de Mediana Edad , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Portadoras , Proteínas Nucleares
9.
Sci Rep ; 14(1): 15369, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965343

RESUMEN

Accurate prediction of postoperative recurrence is important for optimizing the treatment strategies for non-small cell lung cancer (NSCLC). Previous studies identified the PD-L1 expression in NSCLC as a risk factor for postoperative recurrence. This study aimed to examine the contribution of PD-L1 expression to predicting postoperative recurrence using machine learning. The clinical data of 647 patients with NSCLC who underwent surgical resection were collected and stratified into training (80%), validation (10%), and testing (10%) datasets. Machine learning models were trained on the training data using clinical parameters including PD-L1 expression. The top-performing model was assessed on the test data using the SHAP analysis and partial dependence plots to quantify the contribution of the PD-L1 expression. Multivariate Cox proportional hazards model was used to validate the association between PD-L1 expression and postoperative recurrence. The random forest model demonstrated the highest predictive performance with the SHAP analysis, highlighting PD-L1 expression as an important feature, and the multivariate Cox analysis indicated a significant increase in the risk of postoperative recurrence with each increment in PD-L1 expression. These findings suggest that variations in PD-L1 expression may provide valuable information for clinical decision-making regarding lung cancer treatment strategies.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Recurrencia Local de Neoplasia , Humanos , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Factores de Riesgo , Aprendizaje Automático , Biomarcadores de Tumor/metabolismo , Modelos de Riesgos Proporcionales , Periodo Posoperatorio , Pronóstico
10.
BMC Pulm Med ; 24(1): 323, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965505

RESUMEN

BACKGROUND: In the tumor microenvironment (TME), a bidirectional relationship exists between hypoxia and lactate metabolism, with each component exerting a reciprocal influence on the other, forming an inextricable link. The aim of the present investigation was to develop a prognostic model by amalgamating genes associated with hypoxia and lactate metabolism. This model is intended to serve as a tool for predicting patient outcomes, including survival rates, the status of the immune microenvironment, and responsiveness to therapy in patients with lung adenocarcinoma (LUAD). METHODS: Transcriptomic sequencing data and patient clinical information specific to LUAD were obtained from comprehensive repositories of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). A compendium of genes implicated in hypoxia and lactate metabolism was assembled from an array of accessible datasets. Univariate and multivariate Cox regression analyses were employed. Additional investigative procedures, including tumor mutational load (TMB), microsatellite instability (MSI), functional enrichment assessments and the ESTIMATE, CIBERSORT, and TIDE algorithms, were used to evaluate drug sensitivity and predict the efficacy of immune-based therapies. RESULTS: A novel prognostic signature comprising five lactate and hypoxia-related genes (LHRGs), PKFP, SLC2A1, BCAN, CDKN3, and ANLN, was established. This model demonstrated that LUAD patients with elevated LHRG-related risk scores exhibited significantly reduced survival rates. Both univariate and multivariate Cox analyses confirmed that the risk score was a robust prognostic indicator of overall survival. Immunophenotyping revealed increased infiltration of memory CD4 + T cells, dendritic cells and NK cells in patients classified within the high-risk category compared to their low-risk counterparts. Higher probability of mutations in lung adenocarcinoma driver genes in high-risk groups, and the MSI was associated with the risk-score. Functional enrichment analyses indicated a predominance of cell cycle-related pathways in the high-risk group, whereas metabolic pathways were more prevalent in the low-risk group. Moreover, drug sensitivity analyses revealed increased sensitivity to a variety of drugs in the high-risk group, especially inhibitors of the PI3K-AKT, EGFR, and ELK pathways. CONCLUSIONS: This prognostic model integrates lactate metabolism and hypoxia parameters, offering predictive insights regarding survival, immune cell infiltration and functionality, as well as therapeutic responsiveness in LUAD patients. This model may facilitate personalized treatment strategies, tailoring interventions to the unique molecular profile of each patient's disease.


Asunto(s)
Adenocarcinoma del Pulmón , Ácido Láctico , Neoplasias Pulmonares , Microambiente Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Pronóstico , Microambiente Tumoral/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Ácido Láctico/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Anciano , Hipoxia/metabolismo
11.
Cancer Med ; 13(13): e7420, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967523

RESUMEN

INTRODUCTION: Lung adenocarcinoma (LUAD) is the most common malignant tumor in respiratory system. Methyltransferase-like 1 (METTL1) is a driver of m7G modification in mRNA. This study aimed to demonstrate the role of METTL1 in the proliferation, invasion and Gefitinib-resistance of LUAD. METHODS: Public datasets were downloaded from the Gene Expression Profiling Interactive Analysis (GEPIA) and GSE31210 datasets. Malignant tumor phenotypes were tested in vitro and in vivo through biological function assays and nude mouse with xenograft tumors. RNA immunoprecipitation assays were conducted to determine the interaction between METTL1 protein and FOXM1 mRNA. Public transcriptional database, Chromatin immunoprecipitation and luciferase report assays were conducted to detect the downstream target of a transcriptional factor FOXM1. Half maximal inhibitory concentration (IC50) was calculated to evaluate the sensitivity to Gefitinib in LUAD cells. RESULTS: The results showed that METTL1 was upregulated in LUAD, and the high expression of METTL1 was associated with unfavorable prognosis. Through the m7G-dependent manner, METTL1 improved the RNA stability of FOXM1, leading to the up-regulation of FOXM1. FOXM1 transcriptionally suppressed PTPN13 expression. The METTL1/FOXM1/PTPN13 axis reduced the sensitivity of LUAD cells to Gefitinib. Taken together, our data suggested that METTL1 plays oncogenic role in LUAD through inducing the m7G modification of FOXM1, therefore METTL1 probably is a new potential therapeutic target to counteract Gefitinib resistance in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Resistencia a Antineoplásicos , Proteína Forkhead Box M1 , Gefitinib , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Metiltransferasas , Ratones Desnudos , Humanos , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Resistencia a Antineoplásicos/genética , Gefitinib/farmacología , Gefitinib/uso terapéutico , Animales , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Línea Celular Tumoral , Proliferación Celular , Ensayos Antitumor por Modelo de Xenoinjerto , Progresión de la Enfermedad , Femenino , Ratones Endogámicos BALB C , Pronóstico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
12.
Allergol Immunopathol (Madr) ; 52(4): 46-52, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38970264

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) is a leading cause of tumor-associated mortality, and it is needed to find new target to combat this disease. Guanine nucleotide-binding -protein-like 3 (GNL3) mediates cell proliferation and apoptosis in several cancers, but its role in LUAD remains unclear. OBJECTIVE: To explore the expression and function of Guanine nucleotide-binding protein-like 3 (GNL3) in lung adenocarcinoma (LUAD) and its potential mechanism in inhibiting the growth of LUAD cells. METHODS: We evaluated the expression of GNL3 in LUAD tissues and its association with patient prognosis using databases and immunohistochemistry. Cell proliferation was assessed by CCK-8 assay as well as colony formation, while apoptosis was evaluated by FCM. The effect of GNL3 knockdown on the Wnt/ß-catenin axis was investigated by Immunoblot analysis. RESULTS: GNL3 is overexpressed in LUAD tissues and is correlated with poor prognosis. Knockdown of GNL3 significantly inhibited the growth as well as induced apoptosis in A549 as well as H1299 cells. Furthermore, we found that the inhibitory effect of GNL3 knockdown on LUAD cell growth is associated with the downregulation of the Wnt/ß-catenin axis. CONCLUSION: GNL3 is key in the progression of LUAD by metiating Wnt/ß-catenin axis. Targeting GNL3 may represent a novel therapeutic method for LUAD treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Apoptosis , Proliferación Celular , Técnicas de Silenciamiento del Gen , Neoplasias Pulmonares , Vía de Señalización Wnt , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Línea Celular Tumoral , Pronóstico , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , beta Catenina/metabolismo , Regulación Neoplásica de la Expresión Génica , Células A549 , Proteínas Nucleares
13.
Cancer Biol Ther ; 25(1): 2373447, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38975736

RESUMEN

Lung squamous cell carcinoma (LSCC) is a deadly cancer in the world. Histone demethylase Jmjd2c is a key epigenetic regulator in various tumors, while the molecular mechanism underlying Jmjd2c regulatory in LSCC is still unclear. We used the aldehyde dehydrogenasebright (ALDHbri+) subtype as a research model for cancer stem cells (CSCs) in LSCC and detected the sphere formation ability and the proportion of ALDHbri+ CSCs with Jmjd2c interference and caffeic acid (CA) treatment. Additionally, we carried out bioinformatic analysis on the expression file of Jmjd2c RNAi mice and performed western blotting, qRT-PCR, Co-IP and GST pull-down assays to confirm the bioinformatic findings. Moreover, we generated Jmjd2c-silenced and Jmjd2c-SOX2-silenced ALDHbri+ tumor-bearing BALB/c nude mice to detect the effects on tumor progression. The results showed that Jmjd2c downregulation inhibited the sphere formation and the proportion of ALDHbri+ CSCs. The SOX2 decreased expression significantly in Jmjd2c RNAi mice, and they were positively co-expressed according to the bioinformatic analysis. In addition, SOX2 expression decreased in Jmjd2c shRNA ALDHbri+ CSCs, Jmjd2c and SOX2 proteins interacted with each other. Furthermore, Jmjd2c interference revealed significant blocking effect, and Jmjd2c-SOX2 interference contributed even stronger inhibition on ALDHbri+ tumor progression. The Jmjd2c and SOX2 levels were closely related to the development and prognosis of LSCC patients. This study indicated that Jmjd2c played key roles on maintaining ALDHbri+ CSC activity in LSCC by interacting with transcription factor SOX2. Jmjd2c might be a novel molecule for therapeutic targets and biomarkers in the diagnosis and clinical treatment of lung cancer.


Asunto(s)
Carcinoma de Células Escamosas , Histona Demetilasas con Dominio de Jumonji , Neoplasias Pulmonares , Células Madre Neoplásicas , Factores de Transcripción SOXB1 , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Animales , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Humanos , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Ratones Desnudos , Ratones Endogámicos BALB C , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Femenino , Masculino
14.
Sci Rep ; 14(1): 15444, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965272

RESUMEN

Tobacco smoking is the main etiological factor of lung cancer (LC), which can also cause metabolome disruption. This study aimed to investigate whether the observed metabolic shift in LC patients was also associated with their smoking status. Untargeted metabolomics profiling was applied for the initial screening of changes in serum metabolic profile between LC and chronic obstructive pulmonary disease (COPD) patients, selected as a non-cancer group. Differences in metabolite profiles between current and former smokers were also tested. Then, targeted metabolomics methods were applied to verify and validate the proposed LC biomarkers. For untargeted metabolomics, a single extraction-dual separation workflow was applied. The samples were analyzed using a liquid chromatograph-high resolution quadrupole time-of-flight mass spectrometer. Next, the selected metabolites were quantified using liquid chromatography-triple-quadrupole mass spectrometry. The acquired data confirmed that patients' stratification based on smoking status impacted the discriminating ability of the identified LC marker candidates. Analyzing a validation set of samples enabled us to determine if the putative LC markers were truly robust. It demonstrated significant differences in the case of four metabolites: allantoin, glutamic acid, succinic acid, and sphingosine-1-phosphate. Our research showed that studying the influence of strong environmental factors, such as tobacco smoking, should be considered in cancer marker research since it reduces the risk of false positives and improves understanding of the metabolite shifts in cancer patients.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Pulmonares , Metabolómica , Fumar , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/metabolismo , Metabolómica/métodos , Biomarcadores de Tumor/sangre , Masculino , Femenino , Persona de Mediana Edad , Fumar/sangre , Fumar/efectos adversos , Anciano , Esfingosina/análogos & derivados , Esfingosina/sangre , Esfingosina/metabolismo , Lisofosfolípidos/sangre , Lisofosfolípidos/metabolismo , Metaboloma , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/sangre , Cromatografía Liquida/métodos , Ácido Succínico/sangre , Ácido Succínico/metabolismo , Ácido Glutámico/sangre , Ácido Glutámico/metabolismo
15.
Adv Exp Med Biol ; 1445: 157-168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38967758

RESUMEN

As the locus for air exchange, lung tissue is perpetually exposed to a significant quantity of foreign pathogens. Consequently, lung has developed a refined and intricate immune system. Beyond their physical and chemical barrier roles, lung epithelial cells can contribute to immune defence through the expression of Toll-like receptors (TLRs) and other pattern recognition receptors, along with the secretion of cytokines. Emerging evidence demonstrates that lung epithelial cells can generate and secrete immunoglobulins (Igs), including IgM, IgA, or IgG, thus performing antibody function. Moreover, malignantly transformed lung epithelial cells have been discovered to produce high levels of Ig, predominantly IgG, which do not fulfill the role of antibodies, but instead carries out tumour-promoting activity. Structural analysis has indicated that the biological activity of IgG produced by lung cancer cells differs from that of Igs produced by normal lung epithelial cells due to the unique glycosylation modification. Specifically, the sialylated IgG (SIA-IgG), characterised by a non-traditional N-glycosylation modification at the Asn162 site of Igγ CH1, is highly expressed in tumour stem cells. It has been demonstrated that SIA-IgG relies on this unique sialylation modification to promote tumorigenesis, metastasis, and immune evasion. Current results have proven that the Ig produced by lung epithelial cells has multifaceted biological activities, including immune defence functions under physiological conditions, while acquiring tumour-promoting activity during malignant transformation. These insights possess potential for the diagnosis and treatment of lung cancer as novel biomarkers and targets.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Animales , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/patología , Glicosilación , Pulmón/inmunología , Pulmón/patología , Pulmón/metabolismo , Inmunoglobulinas/metabolismo , Inmunoglobulinas/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo
16.
Funct Integr Genomics ; 24(4): 119, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951221

RESUMEN

The gene C5orf34 exhibits evolutionary conservation among mammals, and emerging evidence suggests its potential involvement in tumor development; however, comprehensive investigations of this gene are lacking. This study aims to elucidate the functional attributes and underlying mechanisms of C5orf34 in cancer. To evaluate its clinical predictive value, we conducted an analysis of the pan-cancerous expression, clinical data, mutation, and methylation data of C5orf34. Additionally, we investigated the correlation between C5orf34 and tumor mutant load (TMB), immune cell infiltration, and microsatellite instability (MSI) through relevant analyses. Furthermore, immunohistochemical (IHC) staining was employed to validate clinical samples, while knockdown and overexpression experiments and transcriptome RNA sequencing were utilized to examine the impact of C5orf34 on LUAD cells. According to our study, C5orf34 exhibits high expression levels in the majority of malignant tumors. The upregulation of C5orf34 is governed by DNA copy number alterations and methylation patterns, and it is closely associated with patients' survival prognosis and immune characteristics, thereby holding significant clinical implications. Furthermore, IHC staining analysis, cellular experiments, and transcriptome RNA sequencing have provided evidence supporting the role of C5orf34 in modulating the cell cycle to promote LUAD proliferation, migration, and invasion. This highlights its potential as a promising therapeutic target. The findings of this investigation suggest that C5orf34 may serve as a valuable biomarker for various tumor types and represent a potential target for immunotherapy, particularly in relation to the proliferation, migration, and apoptosis of LUAD cells.


Asunto(s)
Proliferación Celular , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Pronóstico , Variaciones en el Número de Copia de ADN , Movimiento Celular , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Inestabilidad de Microsatélites , Mutación
17.
J Biochem Mol Toxicol ; 38(7): e23761, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952040

RESUMEN

Non-small cell cancer (NSCLC) is the most common cancer in the world, but its effective therapeutic methods are limited. Tilianin and sufentanil alleviate various human tumors. This research aimed to clarify the functions and mechanisms of Tilianin and sufentanil in NSCLC. The functions of Tilianin and sufentanil on NSCLC cell viability, apoptosis, mitochondrial dysfunction, and immunity in vitro were examined using Cell Counting Kit-8 assay, flow cytometry, reactive oxygen species level analysis, CD8+ T cell percentage analysis, Western blot, and enzyme-linked immunosorbent assay, respectively. The molecular mechanism regulated by Tilianin and sufentanil in NSCLC was assessed using Western blot, and immunofluorescence assays. Meanwhile, the roles of Tilianin and sufentanil in NSCLC tumor growth, apoptosis, and immunity in vivo were determined by establishing a tumor xenograft mouse model, immunohistochemistry, and Western blot assays. When sufentanil concentration was proximity 2 nM, the inhibition rate of NSCLC cell viability was 50%. The IC50 for A549 cells was 2.36 nM, and the IC50 for H1299 cells was 2.18 nM. The IC50 of Tilianin for A549 cells was 38.7 µM, and the IC50 of Tilianin for H1299 cells was 44.6 µM. Functionally, 0.5 nM sufentanil and 10 µM Tilianin reduced NSCLC cell (A549 and H1299) viability in a dose-dependent manner. Also, 0.5 nM sufentanil and 10 µM Tilianin enhanced NSCLC cell apoptosis, yet this impact was strengthened after a combination of Tilianin and Sufentanil. Furthermore, 0.5 nM sufentanil and 10 µM Tilianin repressed NSCLC cell mitochondrial dysfunction and immunity, and these impacts were enhanced after a combination of Tilianin and Sufentanil. Mechanistically, 0.5 nM sufentanil and 10 µM Tilianin repressed the NF-κB pathway in NSCLC cells, while this repression was strengthened after a combination of Tilianin and Sufentanil. In vivo experimental data further clarified that 1 µg/kg sufentanil and 10 mg/kg Tilianin reduced NSCLC growth, immunity, and NF-κB pathway-related protein levels, yet these trends were enhanced after a combination of Tilianin and Sufentanil. Tilianin strengthened the antitumor effect of sufentanil in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Sufentanilo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Sufentanilo/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Animales , Ratones , Apoptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Células A549 , Ratones Desnudos , Sinergismo Farmacológico , Línea Celular Tumoral , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Sulfatos de Condroitina/farmacología , Venenos de Anfibios
18.
Oncol Res ; 32(7): 1185-1195, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948024

RESUMEN

Background: Long non-coding RNAs are important regulators in cancer biology and function either as tumor suppressors or as oncogenes. Their dysregulation has been closely associated with tumorigenesis. LINC00265 is upregulated in lung adenocarcinoma and is a prognostic biomarker of this cancer. However, the mechanism underlying its function in cancer progression remains poorly understood. Methods: Here, the regulatory role of LINC00265 in lung adenocarcinoma was examined using lung cancer cell lines, clinical samples, and xenografts. Results: We found that high levels of LINC00265 expression were associated with shorter overall survival rate of patients, whereas knockdown of LINC00265 inhibited proliferation of cancer cell lines and tumor growth in xenografts. Western blot and flow cytometry analyses indicated that silencing of LINC00265 induced autophagy and apoptosis. Moreover, we showed that LINC00265 interacted with and stabilized the transcriptional co-repressor Switch-independent 3a (SIN3A), which is a scaffold protein functioning either as a tumor repressor or as an oncogene in a context-dependent manner. Silencing of SIN3A also reduced proliferation of lung cancer cells, which was correlated with the induction of autophagy. These observations raise the possibility that LINC00265 functions to promote the oncogenic activity of SIN3A in lung adenocarcinoma. Conclusions: Our findings thus identify SIN3A as a LINC00265-associated protein and should help to understand the mechanism underlying LINC00265-mediated oncogenesis.


Asunto(s)
Apoptosis , Autofagia , Proliferación Celular , Neoplasias Pulmonares , ARN Largo no Codificante , Complejo Correpresor Histona Desacetilasa y Sin3 , Humanos , ARN Largo no Codificante/genética , Autofagia/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Apoptosis/genética , Animales , Ratones , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Proliferación Celular/genética , Línea Celular Tumoral , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Regulación Neoplásica de la Expresión Génica , Estabilidad Proteica , Silenciador del Gen , Oncogenes , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Respir Res ; 25(1): 267, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970088

RESUMEN

BACKGROUND: Lung cancer is the second most common cancer with the highest mortality in the world. Calumenin as a molecular chaperone that not only binds various proteins within the endoplasmic reticulum but also plays crucial roles in diverse processes associated with tumor development. However, the regulatory mechanism of calumenin in lung adenocarcinoma remains elusive. Here, we studied the impact of calumenin on lung adenocarcinoma and explored possible mechanisms. METHODS: 5-ethynyl-2'-deoxyuridine assay, colony formation, transwell and wound healing assays were performed to explore the effects of calumenin on the proliferation and migration of lung adenocarcinoma cells. To gain insights into the underlying mechanisms through which calumenin knockdown inhibits the migration and proliferation of lung adenocarcinoma, we performed Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Gene Set Enrichment Analysis and Ingenuity Pathway Analysis based on transcriptomics by comparing calumenin knockdown with normal A549 cells. RESULTS: The mRNA and protein levels of calumenin in lung adenocarcinoma are highly expressed and they are related to an unfavorable prognosis in this disease. Calumenin enhances the proliferation and migration of A549 and H1299 cells. Gene Set Enrichment Analysis revealed that knockdown of calumenin in A549 cells significantly inhibited MYC and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog signaling pathways while activating interferon signals, inflammatory signals, and p53 pathways. Ingenuity pathway analysis provided additional insights, indicating that the interferon and inflammatory pathways were prominently activated upon calumenin knockdown in A549 cells. CONCLUSIONS: The anti-cancer mechanism of calumenin knockdown might be related to the inhibition of MYC and KRAS signals but the activation of interferon signals, inflammatory signals and p53 pathways.


Asunto(s)
Adenocarcinoma del Pulmón , Movimiento Celular , Proliferación Celular , Neoplasias Pulmonares , Invasividad Neoplásica , Humanos , Proliferación Celular/fisiología , Movimiento Celular/fisiología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Progresión de la Enfermedad , Células A549 , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Regulación Neoplásica de la Expresión Génica
20.
Nat Commun ; 15(1): 5345, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937474

RESUMEN

Drug-tolerance has emerged as one of the major non-genetic adaptive processes driving resistance to targeted therapy (TT) in non-small cell lung cancer (NSCLC). However, the kinetics and sequence of molecular events governing this adaptive response remain poorly understood. Here, we combine real-time monitoring of the cell-cycle dynamics and single-cell RNA sequencing in a broad panel of oncogenic addiction such as EGFR-, ALK-, BRAF- and KRAS-mutant NSCLC, treated with their corresponding TT. We identify a common path of drug adaptation, which invariably involves alveolar type 1 (AT1) differentiation and Rho-associated protein kinase (ROCK)-mediated cytoskeletal remodeling. We also isolate and characterize a rare population of early escapers, which represent the earliest resistance-initiating cells that emerge in the first hours of treatment from the AT1-like population. A phenotypic drug screen identify farnesyltransferase inhibitors (FTI) such as tipifarnib as the most effective drugs in preventing relapse to TT in vitro and in vivo in several models of oncogenic addiction, which is confirmed by genetic depletion of the farnesyltransferase. These findings pave the way for the development of treatments combining TT and FTI to effectively prevent tumor relapse in oncogene-addicted NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Farnesiltransferasa , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/metabolismo , Farnesiltransferasa/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Animales , Ratones , Dependencia del Oncogén/genética , Terapia Molecular Dirigida , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Oncogenes/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Quinolonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...