Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.199
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000352

RESUMEN

A novel MADS-box transcription factor from Pinus radiata D. Don was characterized. PrMADS11 encodes a protein of 165 amino acids for a MADS-box transcription factor belonging to group II, related to the MIKC protein structure. PrMADS11 was differentially expressed in the stems of pine trees in response to 45° inclination at early times (1 h). Arabidopsis thaliana was stably transformed with a 35S::PrMADS11 construct in an effort to identify the putative targets of PrMADS11. A massive transcriptome analysis revealed 947 differentially expressed genes: 498 genes were up-regulated, and 449 genes were down-regulated due to the over-expression of PrMADS11. The gene ontology analysis highlighted a cell wall remodeling function among the differentially expressed genes, suggesting the active participation of cell wall modification required during the response to vertical stem loss. In addition, the phenylpropanoid pathway was also indicated as a PrMADS11 target, displaying a marked increment in the expression of the genes driven to the biosynthesis of monolignols. The EMSA assays confirmed that PrMADS11 interacts with CArG-box sequences. This TF modulates the gene expression of several molecular pathways, including other TFs, as well as the genes involved in cell wall remodeling. The increment in the lignin content and the genes involved in cell wall dynamics could be an indication of the key role of PrMADS11 in the response to trunk inclination.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pinus , Proteínas de Plantas , Pinus/genética , Pinus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Tallos de la Planta/metabolismo , Tallos de la Planta/genética , Pared Celular/metabolismo , Pared Celular/genética , Perfilación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Lignina/metabolismo , Lignina/biosíntesis , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Plantas Modificadas Genéticamente/genética
2.
BMC Genomics ; 25(1): 662, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956488

RESUMEN

BACKGROUND: The MADS-box gene family is widely distributed in the plant kingdom, and its members typically encoding transcription factors to regulate various aspects of plant growth and development. In particular, the MIKC-type MADS-box genes play a crucial role in the determination of floral organ development and identity recognition. As a type of androdioecy plant, Chionanthus retusus have unique gender differentiation. Manifested as male individuals with only male flowers and female individuals with only bisexual flowers. However, due to the lack of reference genome information, the characteristics of MIKC-type MADS-box genes in C. retusus and its role in gender differentiation of C. retusus remain largely unknown. Therefore, it is necessary to identify and characterize the MADS-box gene family within the genome of the C. retusus. RESULTS: In this study, we performed a genome-wide identification and analysis of MIKC-type MADS-box genes in C. retusus (2n = 2x = 46), utilizing the latest reference genome, and studied its expression pattern in individuals of different genders. As a result, we identified a total of 61 MIKC-type MADS-box genes in C. retusus. 61 MIKC-type MADS-box genes can be divided into 12 subfamilies and distributed on 18 chromosomes. Genome collinearity analysis revealed their conservation in evolution, while gene structure, domains and motif analysis indicated their conservation in structure. Finally, based on their expression patterns in floral organs of different sexes, we have identified that CrMADS45 and CrMADS60 may potentially be involved in the gender differentiation of C. retusus. CONCLUSIONS: Our studies have provided a general understanding of the conservation and characteristics of the MIKC-type MADS-box genes family in C. retusus. And it has been demonstrated that members of the AG subfamily, CrMADS45 and CrMADS60, may play important roles in the gender differentiation of C. retusus. This provides a reference for future breeding efforts to improve flower types in C. retusus and further investigate the role of MIKC-type MADS-box genes in gender differentiation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS , Filogenia , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Genoma de Planta , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolución Molecular , Familia de Multigenes
3.
Development ; 151(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39082949

RESUMEN

In wheat, the transition of the inflorescence meristem to a terminal spikelet (IM→TS) determines the spikelet number per spike (SNS), an important yield component. In this study, we demonstrate that the plant-specific transcription factor LEAFY (LFY) physically and genetically interacts with WHEAT ORTHOLOG OF APO1 (WAPO1) to regulate SNS and floret development. Loss-of-function mutations in either or both genes result in significant and similar reductions in SNS, as a result of a reduction in the rate of spikelet meristem formation per day. SNS is also modulated by significant genetic interactions between LFY and the SQUAMOSA MADS-box genes VRN1 and FUL2, which promote the IM→TS transition. Single-molecule fluorescence in situ hybridization revealed a downregulation of LFY and upregulation of the SQUAMOSA MADS-box genes in the distal part of the developing spike during the IM→TS transition, supporting their opposite roles in the regulation of SNS in wheat. Concurrently, the overlap of LFY and WAPO1 transcription domains in the developing spikelets contributes to normal floret development. Understanding the genetic network regulating SNS is a necessary first step to engineer this important agronomic trait.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Meristema , Proteínas de Plantas , Factores de Transcripción , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Meristema/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Mutación/genética , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo
4.
PeerJ ; 12: e17586, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974413

RESUMEN

The development of floral organs, crucial for the establishment of floral symmetry and morphology in higher plants, is regulated by MADS-box genes. In sunflower, the capitulum is comprised of ray and disc florets with various floral organs. In the sunflower long petal mutant (lpm), the abnormal disc (ray-like) floret possesses prolongated petals and degenerated stamens, resulting in a transformation from zygomorphic to actinomorphic symmetry. In this study, we investigated the effect of MADS-box genes on floral organs, particularly on petals, using WT and lpm plants as materials. Based on our RNA-seq data, 29 MADS-box candidate genes were identified, and their roles on floral organ development, especially in petals, were explored, by analyzing the expression levels in various tissues in WT and lpm plants through RNA-sequencing and qPCR. The results suggested that HaMADS3, HaMADS7, and HaMADS8 could regulate petal development in sunflower. High levels of HaMADS3 that relieved the inhibition of cell proliferation, together with low levels of HaMADS7 and HaMADS8, promoted petal prolongation and maintained the morphology of ray florets. In contrast, low levels of HaMADS3 and high levels of HaMADS7 and HaMADS8 repressed petal extension and maintained the morphology of disc florets. Their coordination may contribute to the differentiation of disc and ray florets in sunflower and maintain the balance between attracting pollinators and producing offspring. Meanwhile, Pearson correlation analysis between petal length and expression levels of MADS-box genes further indicated their involvement in petal prolongation. Additionally, the analysis of cis-acting elements indicated that these three MADS-box genes may regulate petal development and floral symmetry establishment by regulating the expression activity of HaCYC2c. Our findings can provide some new understanding of the molecular regulatory network of petal development and floral morphology formation, as well as the differentiation of disc and ray florets in sunflower.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Helianthus , Proteínas de Dominio MADS , Proteínas de Plantas , Helianthus/genética , Helianthus/crecimiento & desarrollo , Helianthus/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Mol Cell ; 84(12): 2255-2271.e9, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38851186

RESUMEN

The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Histonas , Proteínas de Dominio MADS , Complejo Represivo Polycomb 2 , ARN Polimerasa II , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Histonas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Transcripción Genética , Poliadenilación , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Terminación de la Transcripción Genética , Cromatina/metabolismo , Cromatina/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
6.
Mol Plant ; 17(7): 1110-1128, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38825830

RESUMEN

Spatiotemporal regulation of gene expression by polycomb repressive complex 2 (PRC2) is critical for animal and plant development. The Arabidopsis fertilization independent seed (FIS)-PRC2 complex functions specifically during plant reproduction from gametogenesis to seed development. After a double fertilization event, triploid endosperm proliferates early, followed by the growth of a diploid embryo, which replaces the endosperm in Arabidopsis and many dicots. Key genes critical for endosperm proliferation such as IKU2 and MINI3 are activated after fertilization. Here we report that two MADS-box AGAMOUS-LIKE (AGL) proteins associate with the key endosperm proliferation loci and recruit the FIS-PRC2 repressive complex at 4-5 days after pollination (DAP). Interestingly, AGL9 and AGL15 only accumulate toward the end of endosperm proliferation at 4-5 DAP and promote the deposition of H3K27me3 marks at key endosperm proliferation loci. Disruption of AGL9 and AGL15 or overexpression of AGL9 or AGL15 significantly influence endosperm proliferation and cellularization. Genome-wide analysis with cleavage Under Targets and tagmentation (CUT&Tag) sequencing and RNA sequencing revealed the landscape of endosperm H3K27me3 marks and gene expression profiles in Col-0 and agl9 agl15. CUT&Tag qPCR also demonstrated the occupancy of the two MADS-box proteins and FIS-PRC2 on a few representative target loci. Our studies suggest that MADS-box proteins could potentially recruit PRC2 to regulate many other developmental processes in plants or even in fungi and animals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Endospermo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Endospermo/metabolismo , Endospermo/crecimiento & desarrollo , Endospermo/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Dominio MADS/genética , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Proliferación Celular
7.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891958

RESUMEN

The plant MADS-box transcription factor family is a major regulator of plant flower development and reproduction, and the AGAMOUS-LIKE11/SEEDSTICK (AGL11/STK) subfamily plays conserved functions in the seed development of flowering plants. Camellia japonica is a world-famous ornamental flower, and its seed kernels are rich in highly valuable fatty acids. Seed abortion has been found to be common in C. japonica, but little is known about how it is regulated during seed development. In this study, we performed a genome-wide analysis of the MADS-box gene the in C. japonica genome and identified 126 MADS-box genes. Through gene expression profiling in various tissue types, we revealed the C/D-class MADS-box genes were preferentially expressed in seed-related tissues. We identified the AGL11/STK-like gene, CjSTK, and showed that it contained a typical STK motif and exclusively expressed during seed development. We found a significant increase in the CjSTK expression level in aborted seeds compared with normally developing seeds. Furthermore, overexpression of CjSTK in Arabidopsis thaliana caused shorter pods and smaller seeds. Taken together, we concluded that the fine regulation of the CjSTK expression at different stages of seed development is critical for ovule formation and seed abortion in C. japonica. The present study provides evidence revealing the regulation of seed development in Camellia.


Asunto(s)
Camellia , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS , Proteínas de Plantas , Semillas , Camellia/genética , Camellia/metabolismo , Camellia/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Arabidopsis/genética , Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Familia de Multigenes , Genoma de Planta , Estudio de Asociación del Genoma Completo
8.
Mol Cell ; 84(12): 2272-2286.e7, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38851185

RESUMEN

The interconnections between co-transcriptional regulation, chromatin environment, and transcriptional output remain poorly understood. Here, we investigate the mechanism underlying RNA 3' processing-mediated Polycomb silencing of Arabidopsis FLOWERING LOCUS C (FLC). We show a requirement for ANTHESIS PROMOTING FACTOR 1 (APRF1), a homolog of yeast Swd2 and human WDR82, known to regulate RNA polymerase II (RNA Pol II) during transcription termination. APRF1 interacts with TYPE ONE SERINE/THREONINE PROTEIN PHOSPHATASE 4 (TOPP4) (yeast Glc7/human PP1) and LUMINIDEPENDENS (LD), the latter showing structural features found in Ref2/PNUTS, all components of the yeast and human phosphatase module of the CPF 3' end-processing machinery. LD has been shown to co-associate in vivo with the histone H3 K4 demethylase FLOWERING LOCUS D (FLD). This work shows how the APRF1/LD-mediated polyadenylation/termination process influences subsequent rounds of transcription by changing the local chromatin environment at FLC.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cromatina , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas de Dominio MADS , ARN Polimerasa II , Terminación de la Transcripción Genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimología , Cromatina/metabolismo , Cromatina/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Histonas/metabolismo , Histonas/genética , Histona Desacetilasas
9.
Plant Physiol Biochem ; 213: 108841, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38879987

RESUMEN

Epigenetic modifications, such as histone alterations, play crucial roles in regulating the flowering process in Arabidopsis, a typical long-day model plant. Histone modifications are notably involved in the intricate regulation of FLC, a key inhibitor of flowering. Although sirtuin-like protein and NAD+-dependent deacetylases play an important role in regulating energy metabolism, plant stress responses, and hormonal signal transduction, the mechanisms underlying their developmental transitions remain unclear. Thus, this study aimed to reveal how Arabidopsis NAD + -dependent deacetylase AtSRT1 affects flowering by regulating the expression of flowering integrators. Genetic and molecular evidence demonstrated that AtSRT1 mediates histone deacetylation by directly binding near the transcriptional start sites (TSS) of the flowering integrator genes FT and SOC1 and negatively regulating their expression by modulating the expression of the downstream gene LFY to inhibit flowering. Additionally, AtSRT1 directly down-regulates the expression of TOR, a glucose-driven central hub of energy signaling, which controls cell metabolism and growth in response to nutritional and environmental factors. This down-regulation occurs through binding near the TSS of TOR, facilitating the addition of H3K27me3 marks on FLC via the TOR-FIE-PRC2 pathway, further repressing flowering. These results uncover a multi-pathway regulatory network involving deacetylase AtSRT1 during the flowering process, highlighting its interaction with TOR as a hub for the coordinated regulation of energy metabolism and flowering initiation. These findings significantly enhance understanding of the complexity of histone modifications in the regulation of flowering.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metabolismo Energético/genética , Flores/genética , Flores/crecimiento & desarrollo , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Histonas/metabolismo , Proteínas de Dominio MADS/metabolismo , Proteínas de Dominio MADS/genética , Transducción de Señal
10.
Plant J ; 119(3): 1465-1480, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38887937

RESUMEN

Grain weight, grain number per panicle, and the number of panicles are the three factors that determine rice (Oryza sativa L.) yield. Of these, grain weight, which not only directly determines rice yield but also influences appearance and quality, is often considered the most important for rice production. Here, we describe OsNF-YC1, a member of the NF-Y transcription factor family that regulates rice grain size. OsNF-YC1 knockout plants (osnf-yc1), obtained using CRISPR-Cas9 technology, showed reduced grain weight due to reduced width and thickness, with no change in grain length, leading to a slenderer grain shape. Downregulation of OsNF-YC1 using RNA interference resulted in similar grain phenotypes as osnf-yc1. OsNF-YC1 affects grain formation by regulating both cell proliferation and cell expansion. OsNF-YC1 localizes in both the nucleus and cytoplasm, has transcriptional activation activity at both the N-terminus and C-terminus, and is highly expressed in young panicles. OsNF-YC1 interacts with OsMADS1 both in vivo and in vitro. Further analysis showed that the histone-like structural CBFD-NFYB-HMF domain of OsNF-YC1 conserved in the OsNF-YC transcription factor family can directly interact with the MADS-box domain of OsMADS1 to enhance its transcriptional activation activity. This interaction positively regulates the expression of OsMADS55, the direct downstream target of OsMADS1. Therefore, this paper reveals a potential grain size regulation pathway controlled by an OsNF-YC1-OsMADS1-OsMADS55 module in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Factores de Transcripción , Activación Transcripcional , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Grano Comestible/genética , Grano Comestible/metabolismo , Grano Comestible/crecimiento & desarrollo , Factor de Unión a CCAAT/metabolismo , Factor de Unión a CCAAT/genética , Plantas Modificadas Genéticamente , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo
11.
Plant Signal Behav ; 19(1): 2358684, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38805453

RESUMEN

Adjusting the timing of floral transition is essential for reproductive success in plants. A number of flowering regulators integrate internal and external signals to precisely determine the time to flower. We here report that the AGAMOUS-LIKE 6 (AGL6) - EARLY FLOWERING 3 (ELF3) module regulates flowering in the FLOWERING LOCUS T (FT)-dependent pathway in Arabidopsis. The AGL6 transcriptional repressor promotes floral transition by directly suppressing ELF3, which in turn directly represses FT expression that acts as a floral integrator. Indeed, ELF3 is epistatic to AGL6 in the control of floral transition. Overall, our findings propose that the AGL6-ELF3 module contributes to fine-tuning flowering time in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
12.
Cell ; 187(13): 3319-3337.e18, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38810645

RESUMEN

The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.


Asunto(s)
Brassicaceae , Flores , Regulación de la Expresión Génica de las Plantas , Brassicaceae/genética , Brassicaceae/fisiología , Productos Agrícolas/genética , Flores/genética , Flores/fisiología , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Fenómenos Fisiológicos de las Plantas , Mapeo Cromosómico , Mutación
13.
Planta ; 260(1): 6, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780795

RESUMEN

MAIN CONCLUSION: TaAGL66, a MADS-box transcription factor highly expressed in fertile anthers of KTM3315A, regulates anther and/or pollen development, as well as male fertility in wheat with Aegilops kotschyi cytoplasm. Male sterility, as a string of sophisticated biological processes in higher plants, is commonly regulated by transcription factors (TFs). Among them, MADS-box TFs are mainly participated in the processes of floral organ formation and pollen development, which are tightly related to male sterility, but they have been little studied in the reproductive development in wheat. In our study, TaAGL66, a gene that was specifically expressed in spikes and highly expressed in fertile anthers, was identified by RNA sequencing and the expression profiles data of these genes, and qRT-PCR analyses, which was localized to the nucleus. Silencing of TaAGL66 under fertility condition in KTM3315A, a thermo-sensitive male sterile line with Ae. kotschyi cytoplasm, displayed severe fertility reduction, abnormal anther dehiscence, defective pollen development, decreased viability, and low seed-setting. It can be concluded that TaAGL66 plays an important role in wheat pollen development in the presence of Ae. kotschyi cytoplasm, providing new insights into the utilization of male sterility.


Asunto(s)
Aegilops , Citoplasma , Fertilidad , Regulación de la Expresión Génica de las Plantas , Infertilidad Vegetal , Proteínas de Plantas , Polen , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/fisiología , Citoplasma/metabolismo , Citoplasma/genética , Polen/genética , Polen/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aegilops/genética , Infertilidad Vegetal/genética , Fertilidad/genética , Flores/genética , Flores/crecimiento & desarrollo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Genes de Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Plant Signal Behav ; 19(1): 2353536, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38771929

RESUMEN

Cellular behavior, cell differentiation and ontogenetic development in eukaryotes result from complex interactions between epigenetic and classic molecular genetic mechanisms, with many of these interactions still to be elucidated. Histone deacetylase enzymes (HDACs) promote the interaction of histones with DNA by compacting the nucleosome, thus causing transcriptional repression. MADS-domain transcription factors are highly conserved in eukaryotes and participate in controlling diverse developmental processes in animals and plants, as well as regulating stress responses in plants. In this work, we focused on finding out putative interactions of Arabidopsis thaliana HDACs and MADS-domain proteins using an evolutionary perspective combined with bioinformatics analyses and testing the more promising predicted interactions through classic molecular biology tools. Through bioinformatic analyses, we found similarities between HDACs proteins from different organisms, which allowed us to predict a putative protein-protein interaction between the Arabidopsis thaliana deacetylase HDA15 and the MADS-domain protein XAANTAL1 (XAL1). The results of two-hybrid and Bimolecular Fluorescence Complementation analysis demonstrated in vitro and in vivo HDA15-XAL1 interaction in the nucleus. Likely, this interaction might regulate developmental processes in plants as is the case for this type of interaction in animals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Histona Desacetilasas , Proteínas de Dominio MADS , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Dominio MADS/genética , Unión Proteica , Técnicas del Sistema de Dos Híbridos
15.
J Mol Biol ; 436(10): 168570, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604529

RESUMEN

Cellular mRNA levels, particularly under stress conditions, can be finely regulated by the coordinated action of transcription and degradation processes. Elements of the 5'-3' mRNA degradation pathway, functionally associated with the exonuclease Xrn1, can bind to nuclear chromatin and modulate gene transcription. Within this group are the so-called decapping activators, including Pat1, Dhh1, and Lsm1. In this work, we have investigated the role of Pat1 in the yeast adaptive transcriptional response to cell wall stress. Thus, we demonstrated that in the absence of Pat1, the transcriptional induction of genes regulated by the Cell Wall Integrity MAPK pathway was significantly affected, with no effect on the stability of these transcripts. Furthermore, under cell wall stress conditions, Pat1 is recruited to Cell Wall Integrity-responsive genes in parallel with the RNA Pol II complex, participating both in pre-initiation complex assembly and transcriptional elongation. Indeed, strains lacking Pat1 showed lower recruitment of the transcription factor Rlm1, less histone H3 displacement at Cell Wall Integrity gene promoters, and impaired recruitment and progression of RNA Pol II. Moreover, Pat1 and the MAPK Slt2 occupied the coding regions interdependently. Our results support the idea that Pat1 and presumably other decay factors behave as transcriptional regulators of Cell Wall Integrity-responsive genes under cell wall stress conditions.


Asunto(s)
Pared Celular , Endorribonucleasas , Regulación Fúngica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Estabilidad del ARN , Proteínas de Unión al ARN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Pared Celular/enzimología , Pared Celular/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Proteínas de Dominio MADS/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
16.
J Plant Physiol ; 297: 154256, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657393

RESUMEN

Basic helix-loop-helix (bHLH) transcription factors play various important roles in plant growth and development. In this study, a AabHLH48 was identified in the floral organ of Adonis amurensis, a perennial herb that can naturally complete flowering at extreme low temperatures. AabHLH48 was widely expressed in various tissues or organs of A. amurensis and was localized in the nucleus. Overexpression of AabHLH48 promotes early flowering in Arabidopsis under both photoperiod (12 h light/12 h dark and 16 h light/8 h dark) and temperature (22 and 18 °C) conditions. Transcriptome sequencing combined with quantitative real-time PCR analysis showed that overexpression of AabHLH48 caused a general upregulation of genes involved in floral development in Arabidopsis, especially for AtAGAMOUS-LIKE 8/FRUITFULL (AtAGL8/FUL). The yeast one-hybrid assay revealed that AabHLH48 has transcriptional activating activity and can directly bind to the promoter region of AtAGL8/FUL. These results suggest that the overexpression of AabHLH48 promoting early flowering in Arabidopsis is associated with the upregulated expression of AtAGL8/FUL activated by AabHLH48. This indicates that AabHLH48 can serve as an important genetic resource for improving flowering-time control in other ornamental plants or crops.


Asunto(s)
Adonis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Adonis/genética , Adonis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Fotoperiodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética
17.
Plant Physiol Biochem ; 210: 108637, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670031

RESUMEN

The MADS-box gene family is a transcription factor family that is widely expressed in plants. It controls secondary metabolic processes in plants and encourages the development of tissues like roots and flowers. However, the phylogenetic analysis and evolutionary model of MADS-box genes in Fagopyrum species has not been reported yet. This study identified the MADS-box genes of three buckwheat species at the whole genome level, and conducted systematic evolution and physicochemical analysis. The results showed that these genes can be divided into four subfamilies, with fragment duplication being the main way for the gene family expansion. During the domestication process from golden buckwheat to tartary buckwheat and the common buckwheat, the Ka/Ks ratio indicated that most members of the family experienced strong purification selection pressure, and with individual gene pairs experiencing positive selection. In addition, we combined the expression profile data of the MADS genes, mGWAS data, and WGCNA data to mine genes FdMADS28/48/50 that may be related to flavonoid metabolism. The results also showed that overexpression of FdMADS28 could increase rutin content by decreasing Kaempferol pathway content in hairy roots, and increase the resistance and growth of hairy roots to PEG and NaCl. This study systematically analyzed the evolutionary relationship of MADS-box genes in the buckwheat species, and elaborated on the expression patterns of MADS genes in different tissues under biotic and abiotic stresses, laying an important theoretical foundation for further elucidating their role in flavonoid metabolism.


Asunto(s)
Evolución Molecular , Fagopyrum , Flavonoides , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Dominio MADS , Fagopyrum/genética , Fagopyrum/metabolismo , Flavonoides/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Filogenia
18.
Proc Natl Acad Sci U S A ; 121(15): e2321975121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557190

RESUMEN

Monocarpic plants have a single reproductive phase in their life. Therefore, flower and fruit production are restricted to the length of this period. This reproductive strategy involves the regulation of flowering cessation by a coordinated arrest of the growth of the inflorescence meristems, optimizing resource allocation to ensure seed filling. Flowering cessation appears to be a regulated phenomenon in all monocarpic plants. Early studies in several species identified seed production as a major factor triggering inflorescence proliferative arrest. Recently, genetic factors controlling inflorescence arrest, in parallel to the putative signals elicited by seed production, have started to be uncovered in Arabidopsis, with the MADS-box gene FRUITFULL (FUL) playing a central role in the process. However, whether the genetic network regulating arrest is also at play in other species is completely unknown. Here, we show that this role of FUL is not restricted to Arabidopsis but is conserved in another monocarpic species with a different inflorescence structure, field pea, strongly suggesting that the network controlling the end of flowering is common to other plants. Moreover, field trials with lines carrying mutations in pea FUL genes show that they could be used to boost crop yield.


Asunto(s)
Flores , Proteínas de Dominio MADS , Pisum sativum , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Pisum sativum/genética , Pisum sativum/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Guisantes/genética
19.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1017-1028, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658145

RESUMEN

Brassica juncea (mustard) is a vegetable crop of Brassica, which is widely planted in China. The yield and quality of stem mustard are greatly influenced by the transition from vegetative growth to reproductive growth, i.e., flowering. The WRKY transcription factor family is ubiquitous in higher plants, and its members are involved in the regulation of many growth and development processes, including biological/abiotic stress responses and flowering regulation. WRKY71 is an important member of the WRKY family. However, its function and mechanism in mustard have not been reported. In this study, the BjuWRKY71-1 gene was cloned from B. juncea. Bioinformatics analysis and phylogenetic tree analysis showed that the protein encoded by BjuWRKY71-1 has a conserved WRKY domain, belonging to class Ⅱ WRKY protein, which is closely related to BraWRKY71-1 in Brassica rapa. The expression abundance of BjuWRKY71-1 in leaves and flowers was significantly higher than that in roots and stems, and the expression level increased gradually along with plant development. The result of subcellular localization showed that BjuWRKY71-1 protein was located in nucleus. The flowering time of overexpressing BjuWRKY71-1 Arabidopsis plants was significantly earlier than that of the wild type. Yeast two-hybrid assay and dual-luciferase reporter assay showed that BjuWRKY71-1 interacted with the promoter of the flowering integrator BjuSOC1 and promoted the expression of its downstream genes. In conclusion, BjuWRKY71-1 protein can directly target BjuSOC1 to promote plant flowering. This discovery may facilitate further clarifying the molecular mechanism of BjuWRKY71-1 in flowering time control, and creating new germplasm with bolting and flowering tolerance in mustard.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Planta de la Mostaza , Proteínas de Plantas , Factores de Transcripción , Planta de la Mostaza/genética , Planta de la Mostaza/metabolismo , Planta de la Mostaza/crecimiento & desarrollo , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética
20.
Plant Commun ; 5(7): 100922, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38616490

RESUMEN

Proper timing of flowering under different environmental conditions is critical for plant propagation. Light quality is a pivotal environmental cue that plays a critical role in flowering regulation. Plants tend to flower late under light with a high red (R)/far-red (FR) light ratio but early under light with a low R/FR light ratio. However, how plants fine-tune flowering in response to changes in light quality is not well understood. Here, we demonstrate that F-box of Flowering 2 (FOF2), an autonomous pathway-related regulator, physically interacts with VASCULAR PLANT ONE-ZINC FINGER 1 and 2 (VOZ1 and VOZ2), which are direct downstream factors of the R/FR light receptor phytochrome B (PHYB). We show that PHYB physically interacts with FOF2, mediates stabilization of the FOF2 protein under FR light and end-of-day FR light, and enhances FOF2 binding to VOZ2, which leads to degradation of VOZ2 by SCFFOF2 E3 ligase. By contrast, PHYB mediates degradation of FOF2 protein under R light and end-of-day R light. Genetic interaction studies demonstrated that FOF2 functions downstream of PHYB to promote FLC expression and inhibit flowering under both high R/FR light and simulated shade conditions, processes that are partially dependent on VOZ proteins. Taken together, our findings suggest a novel mechanism whereby plants fine-tune flowering time through a PHYB-FOF2-VOZ2 module that modulates FLC expression in response to changes in light quality.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Luz , Fitocromo B , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Flores/genética , Flores/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo B/metabolismo , Fitocromo B/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA