Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.954
1.
PLoS Pathog ; 20(6): e1012013, 2024 Jun.
Article En | MEDLINE | ID: mdl-38870266

Plasmodium parasites, the causal agents of malaria, are eukaryotic organisms that obligately undergo sexual recombination within mosquitoes. In low transmission settings, parasites recombine with themselves, and the clonal lineage is propagated rather than broken up by outcrossing. We investigated whether stochastic/neutral factors drive the persistence and abundance of Plasmodium falciparum clonal lineages in Guyana, a country with relatively low malaria transmission, but the only setting in the Americas in which an important artemisinin resistance mutation (pfk13 C580Y) has been observed. We performed whole genome sequencing on 1,727 Plasmodium falciparum samples collected from infected patients across a five-year period (2016-2021). We characterized the relatedness between each pair of monoclonal infections (n = 1,409) through estimation of identity-by-descent (IBD) and also typed each sample for known or candidate drug resistance mutations. A total of 160 multi-isolate clones (mean IBD ≥ 0.90) were circulating in Guyana during the study period, comprising 13 highly related clusters (mean IBD ≥ 0.40). In the five-year study period, we observed a decrease in frequency of a mutation associated with artemisinin partner drug (piperaquine) resistance (pfcrt C350R) and limited co-occurence of pfcrt C350R with duplications of plasmepsin 2/3, an epistatic interaction associated with piperaquine resistance. We additionally observed 61 nonsynonymous substitutions that increased markedly in frequency over the study period as well as a novel pfk13 mutation (G718S). However, P. falciparum clonal dynamics in Guyana appear to be largely driven by stochastic factors, in contrast to other geographic regions, given that clones carrying drug resistance polymorphisms do not demonstrate enhanced persistence or higher abundance than clones carrying polymorphisms of comparable frequency that are unrelated to resistance. The use of multiple artemisinin combination therapies in Guyana may have contributed to the disappearance of the pfk13 C580Y mutation.


Antimalarials , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Guyana , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/drug therapy , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Artemisinins/pharmacology , Artemisinins/therapeutic use , Mutation , Protozoan Proteins/genetics
2.
Sci Rep ; 14(1): 14488, 2024 06 24.
Article En | MEDLINE | ID: mdl-38914669

Pyrethroid bednets treated with the synergist piperonyl butoxide (PBO) offer the possibility of improved vector control in mosquito populations with metabolic resistance. In 2017-2019, we conducted a large-scale, cluster-randomised trial (LLINEUP) to evaluate long-lasting insecticidal nets (LLINs) treated with a pyrethroid insecticide plus PBO (PBO LLINs), as compared to conventional, pyrethroid-only LLINs across 104 health sub-districts (HSDs) in Uganda. In LLINEUP, and similar trials in Tanzania, PBO LLINs were found to provide greater protection against malaria than conventional LLINs, reducing parasitaemia and vector density. In the LLINEUP trial, we conducted cross-sectional household entomological surveys at baseline and then every 6 months for two years, which we use here to investigate longitudinal changes in mosquito infection rate and genetic markers of resistance. Overall, 5395 female Anopheles mosquitoes were collected from 5046 households. The proportion of mosquitoes infected (PCR-positive) with Plasmodium falciparum did not change significantly over time, while infection with non-falciparum malaria decreased in An. gambiae s.s., but not An. funestus. The frequency of genetic markers associated with pyrethroid resistance increased significantly over time, but the rate of change was not different between the two LLIN types. The knock-down resistance (kdr) mutation Vgsc-995S declined over time as Vgsc-995F, the alternative resistance mutation at this codon, increased. Vgsc-995F appears to be spreading into Uganda. Distribution of LLINs in Uganda was previously found to be associated with reductions in parasite prevalence and vector density, but here we show that the proportion of infective mosquitoes remained stable across both PBO and non-PBO LLINs, suggesting that the potential for transmission persisted. The increased frequency of markers of pyrethroid resistance indicates that LLIN distribution favoured the evolution of resistance within local vectors and highlights the potential benefits of resistance management strategies.Trial registration: This study is registered with ISRCTN, ISRCTN17516395. Registered 14 February 2017, http://www.isrctn.com/ISRCTN17516395 .


Anopheles , Insecticide Resistance , Insecticide-Treated Bednets , Mosquito Control , Mosquito Vectors , Pyrethrins , Animals , Anopheles/parasitology , Anopheles/genetics , Anopheles/drug effects , Insecticide Resistance/genetics , Uganda/epidemiology , Mosquito Vectors/genetics , Mosquito Vectors/parasitology , Mosquito Vectors/drug effects , Mosquito Control/methods , Humans , Pyrethrins/pharmacology , Insecticides/pharmacology , Malaria/epidemiology , Malaria/prevention & control , Malaria/transmission , Malaria/parasitology , Female , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Prevalence , Genetic Markers , Cross-Sectional Studies , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Piperonyl Butoxide/pharmacology , Genotype
3.
Malar J ; 23(1): 197, 2024 Jun 26.
Article En | MEDLINE | ID: mdl-38926854

BACKGROUND: Although Tanzania adopted and has been implementing effective interventions to control and eventually eliminate malaria, the disease is still a leading public health problem, and the country experiences heterogeneous transmission. Recent studies reported the emergence of parasites with artemisinin partial resistance (ART-R) in Kagera region with high prevalence (> 10.0%) in two districts of Karagwe and Kyerwa. This study assessed the prevalence and predictors/risk of malaria infections among asymptomatic individuals living in a hyperendemic area where ART-R has emerged in Kyerwa District of Kagera region, north-western Tanzania. METHODS: This was a community-based cross-sectional survey which was conducted in July and August 2023 and involved individuals aged ≥ 6 months from five villages in Kyerwa district. Demographic, anthropometric, clinical, parasitological, type of house inhabited and socio-economic status (SES) data were collected using electronic capture tools run on Open Data Kit (ODK) software. Predictors/risks of malaria infections were determined by univariate and multivariate logistic regression, and the results were presented as crude (cORs) and adjusted odds ratios (aORs), with 95% confidence intervals (CIs). RESULTS: Overall, 4454 individuals were tested using rapid diagnostic tests (RDTs), and 1979 (44.4%) had positive results. The prevalence of malaria infections ranged from 14.4% to 68.5% and varied significantly among the villages (p < 0.001). The prevalence and odds of infections were significantly higher in males (aOR = 1.28, 95% CI 1.08 -1.51, p = 0.003), school children (aged 5-≤10 years (aOR = 3.88, 95% CI 3.07-4.91, p < 0.001) and 10-≤15 years (aOR = 4.06, 95% CI 3.22-5.13, p < 0.001)) and among individuals who were not using bed nets (aOR = 1.22, 95% CI 1.03-1.46, p = 0.024). The odds of malaria infections were also higher in individuals with lower SES (aOR = 1.42, 95% CI 1.17-1.72, p < 0.001), and living in houses without windows (aOR = 2.08, 95% CI 1.46-2.96, p < 0.001), partially open (aOR = 1.33, 95% CI 1.11-1.58, p = 0.002) or fully open windows (aOR = 1.30, 95%CI 1.05-1.61, p = 0.015). CONCLUSION: The five villages had a high prevalence of malaria infections and heterogeneity at micro-geographic levels. Groups with higher odds of malaria infections included school children, males, and individuals with low SES, living in poorly constructed houses or non-bed net users. These are important baseline data from an area with high prevalence of parasites with ART-R and will be useful in planning interventions for these groups, and in future studies to monitor the trends and potential spread of such parasites, and in designing a response to ART-R.


Antimalarials , Artemisinins , Tanzania/epidemiology , Male , Prevalence , Female , Humans , Artemisinins/pharmacology , Artemisinins/therapeutic use , Cross-Sectional Studies , Child , Child, Preschool , Adolescent , Adult , Young Adult , Antimalarials/therapeutic use , Antimalarials/pharmacology , Middle Aged , Infant , Drug Resistance , Malaria/epidemiology , Aged , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Risk Factors , Plasmodium falciparum/drug effects
4.
Article En | MEDLINE | ID: mdl-38928926

Multidrug- and artemisinin-resistant (ART-R) Plasmodium falciparum (Pf) parasites represent a challenge for malaria elimination worldwide. Molecular monitoring in the Kelch domain region (pfk13) gene allows tracking mutations in parasite resistance to artemisinin. The increase in illegal miners in the Roraima Yanomami indigenous land (YIL) could favor ART-R parasites. Thus, this study aimed to investigate ART-R in patients from illegal gold mining areas in the YIL of Roraima, Brazil. A questionnaire was conducted, and blood was collected from 48 patients diagnosed with P. falciparum or mixed malaria (Pf + P. vivax). The DNA was extracted and the pfk13 gene was amplified by PCR. The amplicons were subjected to DNA-Sanger-sequencing and the entire amplified fragment was analyzed. Among the patients, 96% (46) were from illegal mining areas of the YIL. All parasite samples carried the wild-type genotypes/ART-sensitive phenotypes. These data reinforce the continued use of artemisinin-based combination therapies (ACTs) in Roraima, as well as the maintenance of systematic monitoring for early detection of parasite populations resistant to ART, mainly in regions with an intense flow of individuals from mining areas, such as the YIL. This is especially true when the achievement of falciparum malaria elimination in Brazil is planned and expected by 2030.


Antimalarials , Artemisinins , Drug Resistance , Malaria, Falciparum , Mining , Plasmodium falciparum , Artemisinins/therapeutic use , Artemisinins/pharmacology , Brazil/epidemiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Humans , Antimalarials/therapeutic use , Antimalarials/pharmacology , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Adult , Female , Middle Aged , Young Adult , Adolescent , Genotype
5.
Sci Rep ; 14(1): 13669, 2024 06 13.
Article En | MEDLINE | ID: mdl-38871839

Among the factors affecting the effectiveness of malaria control is poor knowledge of the entomologic drivers of the disease. We investigated anopheline populations as part of a baseline study to implement house screening of windows and doors as a supplementary malaria control tool towards elimination in Jabi Tehnan district, Amhara Regional State of Ethiopia. The samples were surveyed monthly using CDC light traps between June 2020 and May 2021. Mosquito trap density (< 3 mosquitoes/trap) was low, however, with a high overall Plasmodium sporozoite rate (9%; indoor = 4.3%, outdoor = 13.1%) comprising P. falciparum (88.9%) and P. vivax (11.1%). Anopheles gambiae s.l., mostly An. arabiensis, comprised > 80% of total anopheline captures and contributed ~ 42% of Plasmodium-infected mosquitoes. On the other hand, morphologically scored Anopheles funestus s.l., constituting about 6% of anopheline collections, accounted for 50% of sporozoite-infected mosquitoes. Most of the infected An. funestus s.l. specimens (86.7%) were grouped with previously unknown or undescribed Anopheles species previously implicated as a cryptic malaria vector in the western Kenyan highlands, confirming its wider geographic distribution in eastern Africa. Other species with Plasmodium infection included An. longipalpis C, An. theileri, An. demillioni, and An. nili. Cumulatively, 77.8% of the infected mosquitoes occurred outdoors. These results suggest efficient malaria parasite transmission despite the low vector densities, which has implications for effective endpoint indicators to monitor malaria control progress. Additionally, the largely outdoor infection and discovery of previously unknown and cryptic vectors suggest an increased risk of residual malaria transmission and, thus, a constraint on effective malaria prevention and control.


Anopheles , Mosquito Vectors , Ethiopia/epidemiology , Animals , Anopheles/parasitology , Mosquito Vectors/parasitology , Humans , Malaria/transmission , Malaria/epidemiology , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/pathogenicity , Plasmodium vivax/physiology , Sporozoites , Mosquito Control/methods , Malaria, Vivax/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Falciparum/transmission , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Female
6.
Malar J ; 23(1): 194, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38902674

BACKGROUND: Malaria remains a severe parasitic disease, posing a significant threat to public health and hindering economic development in sub-Saharan Africa. Ethiopia, a malaria endemic country, is facing a resurgence of the disease with a steadily rising incidence. Conventional diagnostic methods, such as microscopy, have become less effective due to low parasite density, particularly among Duffy-negative human populations in Africa. To develop comprehensive control strategies, it is crucial to generate data on the distribution and clinical occurrence of Plasmodium vivax and Plasmodium falciparum infections in regions where the disease is prevalent. This study assessed Plasmodium infections and Duffy antigen genotypes in febrile patients in Ethiopia. METHODS: Three hundred febrile patients visiting four health facilities in Jimma town of southwestern Ethiopia were randomly selected during the malaria transmission season (Apr-Oct). Sociodemographic information was collected, and microscopic examination was performed for all study participants. Plasmodium species and parasitaemia as well as the Duffy genotype were assessed by quantitative polymerase chain reaction (qPCR) for all samples. Data were analysed using Fisher's exact test and kappa statistics. RESULTS: The Plasmodium infection rate by qPCR was 16% (48/300) among febrile patients, of which 19 (39.6%) were P. vivax, 25 (52.1%) were P. falciparum, and 4 (8.3%) were mixed (P. vivax and P. falciparum) infections. Among the 48 qPCR-positive samples, 39 (13%) were negative by microscopy. The results of bivariate logistic regression analysis showed that agriculture-related occupation, relapse and recurrence were significantly associated with Plasmodium infection (P < 0.001). Of the 300 febrile patients, 85 (28.3%) were Duffy negative, of whom two had P. vivax, six had P. falciparum, and one had mixed infections. Except for one patient with P. falciparum infection, Plasmodium infections in Duffy-negative individuals were all submicroscopic with low parasitaemia. CONCLUSIONS: The present study revealed a high prevalence of submicroscopic malaria infections. Plasmodium vivax infections in Duffy-negative individuals were not detected due to low parasitaemia. In this study, an improved molecular diagnostic tool was used to detect and characterize Plasmodium infections, with the goal of quantifying P. vivax infection in Duffy-negative individuals. Advanced molecular diagnostic techniques, such as multiplex real-time PCR, loop-mediated isothermal amplification (LAMP), and CRISPR-based diagnostic methods. These techniques offer increased sensitivity, specificity, and the ability to detect low-parasite-density infections compared to the employed methodologies.


Duffy Blood-Group System , Genotype , Malaria, Falciparum , Malaria, Vivax , Plasmodium falciparum , Plasmodium vivax , Duffy Blood-Group System/genetics , Humans , Male , Female , Adult , Adolescent , Young Adult , Malaria, Vivax/diagnosis , Malaria, Vivax/parasitology , Ethiopia/epidemiology , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Middle Aged , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Child , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Child, Preschool , Molecular Diagnostic Techniques/methods , Aged , Infant , Cross-Sectional Studies , Prevalence , Fever/parasitology
7.
MSMR ; 31(5): 31-36, 2024 May 20.
Article En | MEDLINE | ID: mdl-38857496

MSMR publishes annual updates on the incidence of malaria among U.S. service members. Malaria infection remains a potential health threat to U.S. service members located in or near endemic areas due to duty assignment, participation in contingency operations, or personal travel. In 2023, a total of 39 active and reserve component service members were diagnosed with or reported to have malaria, an 8.3% increase from the 36 cases identified in 2022. Over half of the malaria cases in 2023 were caused by Plasmodium falciparum (53.8%; n=21) followed by unspecified types of malaria (35.9%; n=14) and P vivax and other Plasmodia (5.1%; n=2 each ). Malaria cases were diagnosed or reported from 22 different medical facilities: 18 in the U.S., 2 in Germany, 1 in Africa, 1 in South Korea. Of the 33 cases with known locations of diagnoses, 6 (18.2%) were reported from or diagnosed outside the U.S.


Malaria , Military Personnel , Humans , United States/epidemiology , Military Personnel/statistics & numerical data , Incidence , Malaria/epidemiology , Male , Female , Adult , Population Surveillance , Young Adult , Malaria, Falciparum/epidemiology
8.
Malar J ; 23(1): 195, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38909255

BACKGROUND: Imported malaria continues to be reported in Sri Lanka after it was eliminated in 2012, and a few progress to life-threatening severe malaria. METHODS: Data on imported malaria cases reported in Sri Lanka from 2013 to 2023 were extracted from the national malaria database maintained by the Anti Malaria Campaign (AMC) of Sri Lanka. Case data of severe malaria as defined by the World Health Organization were analysed with regard to patients' general characteristics and their health-seeking behaviour, and the latter compared with that of uncomplicated malaria patients. Details of the last three cases of severe malaria in 2023 are presented. RESULTS: 532 imported malaria cases were diagnosed over 11 years (2013-2023); 46 (8.6%) were severe malaria, of which 45 were Plasmodium falciparum and one Plasmodium vivax. Most severe malaria infections were acquired in Africa. All but one were males, and a majority (87%) were 26-60 years of age. They were mainly Sri Lankan nationals (82.6%). Just over half (56.5%) were treated at government hospitals. The average time between arrival of the person in Sri Lanka and onset of illness was 4 days. 29 cases of severe malaria were compared with 165 uncomplicated malaria cases reported from 2015 to 2023. On average both severe and uncomplicated malaria patients consulted a physician equally early (mean = 1 day) with 93.3% of severe malaria doing so within 3 days. However, the time from the point of consulting a physician to diagnosis of malaria was significantly longer (median 4 days) in severe malaria patients compared to uncomplicated patients (median 1 day) (p = 0.012) as was the time from onset of illness to diagnosis (p = 0.042). All severe patients recovered without sequelae except for one who died. CONCLUSIONS: The risk of severe malaria among imported cases increases significantly beyond 5 days from the onset of symptoms. Although patients consult a physician early, malaria diagnosis tends to be delayed by physicians because it is now a rare disease. Good access to expert clinical care has maintained case fatality rates of severe malaria at par with those reported elsewhere.


Communicable Diseases, Imported , Sri Lanka/epidemiology , Humans , Male , Adult , Middle Aged , Female , Young Adult , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/parasitology , Communicable Diseases, Imported/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Aged , Adolescent , Malaria/epidemiology , Malaria/prevention & control , Disease Eradication/statistics & numerical data
9.
PLoS One ; 19(6): e0305064, 2024.
Article En | MEDLINE | ID: mdl-38837973

Artemisinin resistance threatens malaria control and elimination efforts globally. Recent studies have reported the emergence of Plasmodium falciparum parasites tolerant to artemisinin agents in sub-Saharan Africa, including Uganda. The current study assessed the day 3 parasite clearance and its correlation with P. falciparum K13 propeller gene (pfkelch13) mutations in P. falciparum parasites isolated from patients with uncomplicated malaria under artemether-lumefantrine (AL) treatment. This study enrolled 100 P. falciparum-positive patients to whom AL was prescribed between 09/September/2022 and 06/November/2022. Blood samples were collected in EDTA tubes before treatment initiation (day 0) and on day 3. Parasitemia was assessed by microscopy from blood smears and quantitative polymerase chain reaction (qPCR) from the DNA extracted. The day 0 parasite K13 gene was sequenced using Sanger sequencing. Sequence data were analysed using MEGA version 11 software. The data were analysed using STATA version 15, and the Mann‒Whitney U test was used to compare PCR parasite clearance on day 3 using the comparative CT value method and pfkelch13 mutations. The prevalence of day 3 parasitaemia was 24% (24/100) by microscopy and 63% (63/100) by qPCR from the AL-treated patients. P. falciparum K13-propeller gene polymorphism was detected in 18.8% (15/80) of the day 0 DNA samples. The K13 mutations found were C469Y, 12.5% (10/80); A675V, 2.5% (2/80); A569S, 1.25%, (1/80), A578S, 1.25%, (1/80) and; F491S, 1.25%, (1/80) a new allele not reported anywhere. The C469Y mutation, compared to the wild-type, was associated with delayed parasite clearance p = 0.0278, Hodges-Lehmann estimation 3.2108 on the log scale, (95%CI 1.7076, 4.4730). There was a high prevalence of day 3 P. falciparum among malaria patients treated using artemether-lumefantrine. We conclude the presence of the K13 mutation associated with artemisinin resistance by P. falciparum in Adjumani district, Uganda, necessitates regular surveillance of the effectiveness and efficacy of artemether-lumefantrine in the country.


Antimalarials , Artemether, Lumefantrine Drug Combination , Malaria, Falciparum , Mutation , Parasitemia , Plasmodium falciparum , Humans , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Artemether, Lumefantrine Drug Combination/therapeutic use , Uganda/epidemiology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Antimalarials/therapeutic use , Male , Female , Parasitemia/drug therapy , Parasitemia/parasitology , Parasitemia/epidemiology , Protozoan Proteins/genetics , Adult , Child , Adolescent , Child, Preschool , Young Adult , Drug Resistance/genetics , Artemisinins/therapeutic use , Middle Aged
10.
Malar J ; 23(1): 189, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38880891

BACKGROUND: Malaria, a prominent vector borne disease causing over a million annual cases worldwide, predominantly affects vulnerable populations in the least developed regions. Despite their preventable and treatable nature, malaria remains a global public health concern. In the last decade, India has faced a significant decline in malaria morbidity and mortality. As India pledged to eliminate malaria by 2030, this study examined a decade of surveillance data to uncover space-time clustering and seasonal trends of Plasmodium vivax and Plasmodium falciparum malaria cases in West Bengal. METHODS: Seasonal and trend decomposition using Loess (STL) was applied to detect seasonal trend and anomaly of the time series. Univariate and multivariate space-time cluster analysis of both malaria cases were performed at block level using Kulldorff's space-time scan statistics from April 2011 to March 2021 to detect statistically significant space-time clusters. RESULTS: From the time series decomposition, a clear seasonal pattern is visible for both malaria cases. Statistical analysis indicated considerable high-risk P. vivax clusters, particularly in the northern, central, and lower Gangetic areas. Whereas, P. falciparum was concentrated in the western region with a significant recent transmission towards the lower Gangetic plain. From the multivariate space-time scan statistics, the co-occurrence of both cases were detected with four significant clusters, which signifies the regions experiencing a greater burden of malaria cases. CONCLUSIONS: Seasonal trends from the time series decomposition analysis show a gradual decline for both P. vivax and P. falciparum cases in West Bengal. The space-time scan statistics identified high-risk blocks for P. vivax and P. falciparum malaria and its co-occurrence. Both malaria types exhibit significant spatiotemporal variations over the study area. Identifying emerging high-risk areas of P. falciparum malaria over the Gangetic belt indicates the need for more research for its spatial shifting. Addressing the drivers of malaria transmission in these diverse clusters demands regional cooperation and strategic strategies, crucial steps towards overcoming the final obstacles in malaria eradication.


Malaria, Falciparum , Malaria, Vivax , Plasmodium vivax , Seasons , India/epidemiology , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Humans , Plasmodium vivax/physiology , Space-Time Clustering , Plasmodium falciparum/physiology
11.
Elife ; 122024 Jun 27.
Article En | MEDLINE | ID: mdl-38935423

Background: The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania and continued local transmission. Methods: To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo district on the coastal mainland from 2016 to 2018. Results: Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to the rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low-level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes. Conclusions: Our data support importation as a main source of genetic diversity and contribution to the parasite population in Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive to malaria reemergence due to susceptible hosts and competent vectors. Funding: This research was funded by the National Institutes of Health, grants R01AI121558, R01AI137395, R01AI155730, F30AI143172, and K24AI134990. Funding was also contributed from the Swedish Research Council, Erling-Persson Family Foundation, and the Yang Fund. RV acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 program supported by the European Union. RV also acknowledges funding by Community Jameel.


Malaria, Falciparum , Plasmodium falciparum , Tanzania/epidemiology , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Malaria, Falciparum/transmission , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Humans , Genotype
12.
Indian J Med Microbiol ; 49: 100616, 2024.
Article En | MEDLINE | ID: mdl-38761865

PURPOSE: Genetically diverse parasites enhances resistance against antimalarials, vaccines and host immune responses. The present study was designed to evaluate the role played by Plasmodium falciparum genetic diversity in predicting the real world malarial population. METHODS: Initially, the incidence pattern of all four northern Indian malarial species was examined using 18S rRNA gene and performed principal component analysis (PCA) based on frequencies of Plasmodium species. Consequently, genetic variance of Plasmodium falciparum histidine-rich protein-2 (Pfhrp2) gene among different malarial populations were compared using phylogenetic analysis. Multi-dimensional scaling was performed to assess genetic similarities and distances among studied populations. RESULTS: Of total 2168 patients screened, 561 patients with fever of unknown origin were included. 18S rRNA and Pfhrp2 genes were amplified in 78 and 45 samples, respectively. Among them 13.9%(78/561) patients had Plasmodium infection. Infections by P. falciparum, P. vivax and mixed infections were diagnosed among 47(60.2%) and 28(35.9%) and 3(3.8%) patients, respectively. We found eight types of Pfhrp2 amino acid sequence repeats among northern Indian population. The PCA findings were in line with genetic diversity and phylogenetic data. Temporal analysis showed the proportion of total diversity present in total subpopulation (ΔS/ΔT) was maximum for P. falciparum. CONCLUSIONS: Higher incidence of Pfhrp2 sequence variation through genetic recombination among multiple strains during sexual reproduction is potentially correlated with high transmission activity. This sequence variation might alter RDT detection sensitivities for different parasites by modulating the structure and frequency of antigenic epitopes.


Antigens, Protozoan , Genetic Variation , Malaria, Falciparum , Phylogeny , Plasmodium falciparum , Protozoan Proteins , RNA, Ribosomal, 18S , Humans , Protozoan Proteins/genetics , Plasmodium falciparum/genetics , Antigens, Protozoan/genetics , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , India/epidemiology , RNA, Ribosomal, 18S/genetics , Male , Female , Adult , Adolescent , Child , Young Adult , Child, Preschool , Middle Aged
13.
Sci Rep ; 14(1): 12100, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802488

Field-derived metrics are critical for effective control of malaria, particularly in sub-Saharan Africa where the disease kills over half a million people yearly. One key metric is entomological inoculation rate, a direct measure of transmission intensities, computed as a product of human biting rates and prevalence of Plasmodium sporozoites in mosquitoes. Unfortunately, current methods for identifying infectious mosquitoes are laborious, time-consuming, and may require expensive reagents that are not always readily available. Here, we demonstrate the first field-application of mid-infrared spectroscopy and machine learning (MIRS-ML) to swiftly and accurately detect Plasmodium falciparum sporozoites in wild-caught Anopheles funestus, a major Afro-tropical malaria vector, without requiring any laboratory reagents. We collected 7178 female An. funestus from rural Tanzanian households using CDC-light traps, then desiccated and scanned their heads and thoraces using an FT-IR spectrometer. The sporozoite infections were confirmed using enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), to establish references for training supervised algorithms. The XGBoost model was used to detect sporozoite-infectious specimen, accurately predicting ELISA and PCR outcomes with 92% and 93% accuracies respectively. These findings suggest that MIRS-ML can rapidly detect P. falciparum in field-collected mosquitoes, with potential for enhancing surveillance in malaria-endemic regions. The technique is both fast, scanning 60-100 mosquitoes per hour, and cost-efficient, requiring no biochemical reactions and therefore no reagents. Given its previously proven capability in monitoring key entomological indicators like mosquito age, human blood index, and identities of vector species, we conclude that MIRS-ML could constitute a low-cost multi-functional toolkit for monitoring malaria risk and evaluating interventions.


Anopheles , Machine Learning , Malaria, Falciparum , Mosquito Vectors , Plasmodium falciparum , Animals , Anopheles/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Plasmodium falciparum/isolation & purification , Mosquito Vectors/parasitology , Female , Humans , Tanzania/epidemiology , Sporozoites , Spectrophotometry, Infrared/methods , Spectroscopy, Fourier Transform Infrared/methods
14.
Infect Dis Poverty ; 13(1): 35, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783374

BACKGROUND: Lao PDR has made significant progress in malaria control. The National Strategic Plans outline ambitious targets, aiming for the elimination of Plasmodium falciparum and P. vivax malaria from all northern provinces by 2025 and national elimination by 2030. This article presents an overview of malaria epidemiology, surveillance, and response systems in Lao PDR, emphasizing experiences and achievements in transmission reduction. METHODS: Data on surveillance, monitoring and evaluation systems, human resources, infrastructure, and community malaria knowledge during 2010-2020 were systematically gathered from the national program and relevant documents. The collected information was synthesized, and discussions on challenges and future prospects were provided. RESULTS: Malaria control and elimination activities in Lao PDR were implemented at various levels, with a focus on health facility catchment areas. There has been significant progress in reducing malaria transmission throughout the country. Targeted interventions, such as case management, vector control, and community engagement, using stratification of control interventions by catchment areas have contributed to the decline in malaria cases. In elimination areas, active surveillance strategies, including case and foci investigation, are implemented to identify and stop transmission. The surveillance system has facilitated timely detection and response to malaria cases, enabling these targeted interventions in higher-risk areas. CONCLUSIONS: The malaria surveillance and response system in Lao PDR has played a crucial role in reducing transmission and advancing the country towards elimination. Challenges such as importation, drug resistance, and sustaining support require ongoing efforts. Further strengthening surveillance, improving access to services, and addressing transmission determinants are key areas of focus to achieve malaria elimination and enhance population health in Lao PDR.


Disease Eradication , Laos/epidemiology , Humans , Disease Eradication/methods , Malaria/epidemiology , Malaria/prevention & control , Malaria/transmission , Epidemiological Monitoring , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Population Surveillance , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control
15.
Am J Hum Genet ; 111(5): 927-938, 2024 May 02.
Article En | MEDLINE | ID: mdl-38701745

Leukocyte telomere length (LTL) varies significantly across human populations, with individuals of African ancestry having longer LTL than non-Africans. However, the genetic and environmental drivers of LTL variation in Africans remain largely unknown. We report here on the relationship between LTL, genetics, and a variety of environmental and climatic factors in ethnically diverse African adults (n = 1,818) originating from Botswana, Tanzania, Ethiopia, and Cameroon. We observe significant variation in LTL among populations, finding that the San hunter-gatherers from Botswana have the longest leukocyte telomeres and that the Fulani pastoralists from Cameroon have the shortest telomeres. Genetic factors explain ∼50% of LTL variation among individuals. Moreover, we observe a significant negative association between Plasmodium falciparum malaria endemicity and LTL while adjusting for age, sex, and genetics. Within Africa, adults from populations indigenous to areas with high malaria exposure have shorter LTL than those in populations indigenous to areas with low malaria exposure. Finally, we explore to what degree the genetic architecture underlying LTL in Africa covaries with malaria exposure.


Malaria, Falciparum , Telomere , Humans , Malaria, Falciparum/genetics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Female , Adult , Africa South of the Sahara/epidemiology , Telomere/genetics , Endemic Diseases , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Black People/genetics , Middle Aged , Leukocytes/metabolism , Telomere Homeostasis/genetics , Young Adult , Sub-Saharan African People
16.
Malar J ; 23(1): 138, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720269

BACKGROUND: Artemisinin resistance in Plasmodium falciparum threatens global malaria elimination efforts. To contain and then eliminate artemisinin resistance in Eastern Myanmar a network of community-based malaria posts was instituted and targeted mass drug administration (MDA) with dihydroartemisinin-piperaquine (three rounds at monthly intervals) was conducted. The prevalence of artemisinin resistance during the elimination campaign (2013-2019) was characterized. METHODS: Throughout the six-year campaign Plasmodium falciparum positive blood samples from symptomatic patients and from cross-sectional surveys were genotyped for mutations in kelch-13-a molecular marker of artemisinin resistance. RESULT: The program resulted in near elimination of falciparum malaria. Of 5162 P. falciparum positive blood samples genotyped, 3281 (63.6%) had K13 mutations. The prevalence of K13 mutations was 73.9% in 2013 and 64.4% in 2019. Overall, there was a small but significant decline in the proportion of K13 mutants (p < 0.001). In the MDA villages there was no significant change in the K13 proportions before and after MDA. The distribution of different K13 mutations changed substantially; F446I and P441L mutations increased in both MDA and non-MDA villages, while most other K13 mutations decreased. The proportion of C580Y mutations fell from 9.2% (43/467) before MDA to 2.3% (19/813) after MDA (p < 0.001). Similar changes occurred in the 487 villages where MDA was not conducted. CONCLUSION: The malaria elimination program in Kayin state, eastern Myanmar, led to a substantial reduction in falciparum malaria. Despite the intense use of artemisinin-based combination therapies, both in treatment and MDA, this did not select for artemisinin resistance.


Antimalarials , Artemisinins , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Artemisinins/pharmacology , Artemisinins/therapeutic use , Myanmar , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Humans , Cross-Sectional Studies , Female , Male , Adolescent , Adult , Mass Drug Administration , Young Adult , Mutation , Child , Child, Preschool , Middle Aged , Quinolines/pharmacology , Quinolines/therapeutic use , Disease Eradication/statistics & numerical data , Piperazines
17.
BMC Res Notes ; 17(1): 129, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725016

OBJECTIVES: The study evaluated sub-microscopic malaria infections in pregnancy using two malaria Rapid Diagnostic Tests (mRDTs), microscopy and RT-PCR and characterized Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and Plasmodium falciparum dihydropteroate synthase (Pfdhps) drug resistant markers in positive samples. METHODS: This was a cross sectional survey of 121 pregnant women. Participants were finger pricked, blood drops were collected for rapid diagnosis with P. falciparum histidine-rich protein 11 rapid diagnostic test kit and the ultra-sensitive Alere Pf malaria RDT, Blood smears for microscopy and dried blood spots on Whatman filter paper for molecular analysis were made. Real time PCR targeting the var acidic terminal sequence (varATS) gene of P. falciparum was carried out on a CFX 96 real time system thermocycler (BioRad) in discriminating malaria infections. For each run, laboratory strain of P. falciparum 3D7 and nuclease free water were used as positive and negative controls respectively. Additionally, High resolution melt analyses was employed for genotyping of the different drug resistance markers. RESULTS: Out of one hundred and twenty-one pregnant women sampled, the SD Bioline™ Malaria Ag P.f HRP2-based malaria rapid diagnostic test (mRDT) detected eight (0.06%) cases, the ultra-sensitive Alere™ malaria Ag P.f rapid diagnostic test mRDT had similar outcome in the same samples as detected by the HRP2-based mRDT. Microscopy and RT-PCR confirmed four out of the eight infections detected by both rapid diagnostic tests as true positive and RT-PCR further detected three false negative samples by the two mRDTs providing a sub-microscopic malaria prevalence of 3.3%. Single nucleotide polymorphism in Pfdhps gene associated with sulphadoxine resistance revealed the presence of S613 mutant genotypes in three of the seven positive isolates and isolates with mixed wild/mutant genotype at codon A613S. Furthermore, four mixed genotypes at the A581G codon were also recorded while the other Pfdhps codons (A436G, A437G and K540E) showed the presence of wild type alleles. In the Pfdhfr gene, there were mutations in 28.6%, 28.6%, and 85.7% at the I51, R59 and N108 codons respectively. Mixed wild and mutant type genotypes were also observed in 28.6% each of the N51I, and C59R codons. For the Pfcrt, two haplotypes CVMNK and CVIET were observed. The SVMNT was altogether absent. Triple mutant CVIET 1(14.3%) and triple mutant + wild genotype CVIET + CVMNK 1(14.3%) were observed. The Pfmdr1 haplotypes were single mutants YYND 1(14.3%); NFND 1(14.3%) and double mutants YFND 4(57.1%); YYDD 1(14.3%).


Malaria, Falciparum , Plasmodium falciparum , Polymorphism, Single Nucleotide , Female , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Pregnancy , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Adult , Cross-Sectional Studies , Polymorphism, Single Nucleotide/genetics , Nigeria/epidemiology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Alleles , Young Adult , Pregnancy Complications, Parasitic/parasitology , Pregnancy Complications, Parasitic/genetics , Pregnancy Complications, Parasitic/diagnosis , Drug Resistance, Multiple/genetics , Dihydropteroate Synthase/genetics , Tetrahydrofolate Dehydrogenase/genetics , Protozoan Proteins/genetics , Adolescent
18.
Malar J ; 23(1): 150, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755607

BACKGROUND: Emerging artemisinin partial resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (k13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. k13-561H was initially described at a frequency of 7.4% from Masaka in 2014-2015, but not present in nearby Rukara. By 2018, 19.6% of isolates in Masaka and 22% of isolates in Rukara contained the mutation. Longitudinal monitoring is essential to inform control efforts. In Rukara, an assessment was conducted to evaluate recent k13-561H prevalence changes, as well as other key mutations. Prevalence of hrp2/3 deletions was also assessed. METHODS: Samples collected in Rukara in 2021 were genotyped for key artemisinin and partner drug resistance mutations using molecular inversion probe assays and for hrp2/3 deletions using qPCR. RESULTS: Clinically validated k13 artemisinin partial resistance mutations continue to increase in prevalence with the overall level of mutant infections reaching 32% in Rwanda. The increase appears to be due to the rapid emergence of k13-675V (6.4%, 6/94 infections), previously not observed, rather than continued expansion of 561H (23.5% 20/85). Mutations to partner drugs and other anti-malarials were variable, with high levels of multidrug resistance 1 (mdr1) N86 (95.5%) associated with lumefantrine decreased susceptibility and dihydrofolate reductase (dhfr) 164L (24.7%) associated with a high level of antifolate resistance, but low levels of amodiaquine resistance polymorphisms with chloroquine resistance transporter (crt) 76T: at 6.1% prevalence. No hrp2 or hrp3 gene deletions associated with diagnostic resistance were found. CONCLUSIONS: Increasing prevalence of artemisinin partial resistance due to k13-561H and the rapid expansion of k13-675V is concerning for the longevity of artemisinin effectiveness in the region. False negative RDT results do not appear to be an issue with no hrp2 or hpr3 deletions detected. Continued molecular surveillance in this region and surrounding areas is needed to follow artemisinin partial resistance and provide early detection of partner drug resistance, which would likely compromise control and increase malaria morbidity and mortality in East Africa.


Antimalarials , Artemisinins , Drug Resistance , Malaria, Falciparum , Mutation , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Artemisinins/pharmacology , Antimalarials/pharmacology , Protozoan Proteins/genetics , Drug Resistance/genetics , Rwanda , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Humans , Antigens, Protozoan/genetics , Prevalence , Child , Young Adult , Adolescent , Adult , Child, Preschool
19.
Parasitol Res ; 123(5): 209, 2024 May 14.
Article En | MEDLINE | ID: mdl-38740597

Artemisinin (ART) combination therapy is the main treatment for malaria. Pfk13 mutations (or K13 mutations, Kelch 13) are associated with ART resistance. This study aims to conduct a systematic review and meta-analysis of the prevalence of K13 mutations with ART resistance in malaria-endemic countries. An electronic search of studies in 2018 and a manual search in 2020 were performed to identify relevant studies. The risk of bias was assessed using the National Institutes of Health (NIH) quality assessment tool for observational cohort and cross-sectional studies. Data analysis was performed using R 4.1.0. Heterogeneity was estimated using the statistic I2 and Cochran Q test. A total of 170 studies were included in our review. Of these, 55 studies investigated the prevalence of K13 mutations in Southeast Asia. The meta-analysis showed that Southeast Asia had the highest prevalence of K13 mutations, whereas Africa, South America, Oceania, and other Asian countries outside Southeast Asia had a low prevalence of K13 mutations. The C580Y mutation was the most common in Southeast Asia with 35.5% (95%CI: 25.4-46.4%), whereas the dominant mutation in Africa was K189T (22.8%, 95%CI: 7.6-43.2%). This study revealed the emergence of ART resistance associated with K13 mutations in Southeast Asia. The diversity of each type of K13 mutation in other regions was also reported.


Antimalarials , Artemisinins , Polymorphism, Genetic , Artemisinins/therapeutic use , Humans , Antimalarials/therapeutic use , Prevalence , Drug Resistance/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Malaria/drug therapy , Malaria/epidemiology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Mutation , Protozoan Proteins/genetics , Asia, Southeastern/epidemiology
20.
Malar J ; 23(1): 143, 2024 May 12.
Article En | MEDLINE | ID: mdl-38735957

BACKGROUND: Despite continuous prevention and control strategies in place, malaria remains a major public health problem in sub-Saharan Africa including Ethiopia. Moreover, prevalence of malaria differs in different geographical settings and epidemiological data were inadequate to assure disease status in the study area. This study was aimed to determine the prevalence of malaria and associated risk factors in selected rural kebeles in South Ethiopia. METHODS: A community-based cross-sectional study was conducted between February to June 2019 in eight malaria-endemic kebeles situated in four zones in South Ethiopia. Mult-stage sampling techniques were employed to select the study zones, districts, kebeles and households. Blood sample were collected from 1674 participants in 345 households by finger prick and smears were examined by microscopy. Sociodemographic data as well as risk factors for Plasmodium infection were collected using questionnaires. Bivariate and multivariate logistic regressions were used to analyse the data. RESULTS: The overall prevalence of malaria in the study localities was 4.5% (76/1674). The prevalence was varied among the study localities with high prevalence in Bashilo (14.6%; 33/226) followed by Mehal Korga (12.1%; 26/214). Plasmodium falciparum was the dominant parasite accounted for 65.8% (50/76), while Plasmodium vivax accounted 18.4% (14/76). Co-infection of P. falciparum and P. vivax was 15.8% (12/76). Among the three age groups prevalence was 7.8% (27/346) in age less than 5 years and 7.5% (40/531) in 5-14 years. The age groups > 14years were less likely infected with Plasmodium parasite (AOR = 0.14, 95% CI 0.02-0.82) than under five children. Non-febrile individuals 1638 (97.8%) were more likely to had Plasmodium infection (AOR = 28.4, 95% CI 011.4-70.6) than febrile 36 (2.2%). Individuals living proximity to mosquito breeding sites have higher Plasmodium infection (AOR = 6.17, 95% CI 2.66-14.3) than those at distant of breeding sites. CONCLUSIONS: Malaria remains a public health problem in the study localities. Thus, malaria prevention and control strategies targeting children, non-febrile cases and individuals living proximity to breeding sites are crucial to reduce malaria related morbidity and mortality.


Family Characteristics , Malaria, Falciparum , Malaria, Vivax , Ethiopia/epidemiology , Cross-Sectional Studies , Prevalence , Humans , Risk Factors , Female , Male , Adolescent , Adult , Child, Preschool , Young Adult , Child , Middle Aged , Infant , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium vivax/physiology , Plasmodium falciparum/isolation & purification , Aged , Rural Population/statistics & numerical data , Malaria/epidemiology , Malaria/parasitology
...