Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.526
Filtrar
1.
Int J Nanomedicine ; 19: 6427-6447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952675

RESUMEN

Background: Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals. Purpose: To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration. Methods: We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining. Results: Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects. Conclusion: NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.


Asunto(s)
Antibacterianos , Materiales Biocompatibles Revestidos , Escherichia coli , Osteogénesis , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Sprague-Dawley , Staphylococcus aureus , Animales , Antibacterianos/farmacología , Antibacterianos/química , Osteogénesis/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratones , Staphylococcus aureus/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Escherichia coli/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Prótesis e Implantes , Aleaciones/farmacología , Aleaciones/química , Ratas , Titanio/química , Titanio/farmacología , Plata/química , Plata/farmacología , Proliferación Celular/efectos de los fármacos , Cobre/química , Cobre/farmacología , Masculino , Microtomografía por Rayos X , Línea Celular , Nanopartículas del Metal/química
2.
Lasers Med Sci ; 39(1): 168, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954141

RESUMEN

PURPOSE: Several treatment options for acne vulgaris are limited by their associated adverse effects. An innovative approach involves introducing light-absorbing nanoparticles into sebaceous follicles before destroying the follicles using selective photothermolysis. We aimed to investigate efficient methods for introducing gold and platinum nanoparticles into sebaceous follicles and to identify suitable laser equipment and parameters for the effective destruction of these follicles. METHODS: We used porcine skin as the experimental model. We compared the efficacies of a thulium laser, ultrasound, and manual massage and evaluated the optimal method for delivering nanoparticles in close proximity to sebaceous follicles. Subsequently, a 1064-nm-wavelength neodymium-doped yttrium aluminum garnet (Nd: YAG) laser was employed to induce selective photothermolysis. We compared different parameters to identify the optimal pulse duration and fluence of the Nd: YAG laser. The extent of penetration and destruction of sebaceous follicles was assessed using hematoxylin and eosin (H&E) staining, and a numerical evaluation was conducted. RESULTS: H&E staining showed that irradiation with a long-pulsed Nd: YAG laser following a combination of thulium laser and sonophoresis effectively destroyed sebaceous follicles, with destruction rates exceeding 50%. These results were valid with a long pulse duration and a high fluence of the Nd: YAG laser. CONCLUSION: This study demonstrated that sebaceous follicles can be effectively destroyed through a mixture of gold and platinum nanoparticle delivery by a combination of microchanneling and sonophoresis, followed by selective thermal damage induced by a 1064-nm long-pulsed high-fluence Nd: YAG laser.


Asunto(s)
Acné Vulgar , Oro , Láseres de Estado Sólido , Nanopartículas del Metal , Platino (Metal) , Animales , Oro/administración & dosificación , Porcinos , Proyectos Piloto , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Acné Vulgar/terapia , Láseres de Estado Sólido/uso terapéutico , Piel/efectos de la radiación , Glándulas Sebáceas/efectos de la radiación , Glándulas Sebáceas/efectos de los fármacos , Glándulas Sebáceas/patología
3.
ScientificWorldJournal ; 2024: 4782328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957455

RESUMEN

The purpose of this review was to investigate the application of metal nanoparticles in fruit shelf life extension. Despite growing interest in nanoparticles and their potential applications, there are currently few effective methods for prolonging the shelf life of fruits. The study concentrated on the principles underlying the shelf life extension of metallic nanoparticles, including copper oxide, zinc oxide, silver, and titanium oxide. The biological properties of nanoparticles, especially those with antibacterial qualities, have drawn interest as possible fruit preservation solutions. Many conventional preservation methods have drawbacks, including expensive production costs, short shelf lives, undesirable residues, and the incapacity to properly keep perishable fruits in their natural environments. Techniques for extending shelf life based on nanotechnology have the potential to get around these problems. The review focused on the effective use of environmentally benign, green synthesis-produced nanoparticles to extend the fruit shelf life. The ability of these nanoparticles to successfully preserve fresh fruits was established. The results imply that fruit preservation by the use of nanoparticle synthesis techniques may be a viable strategy, offering a more effective and sustainable substitute for traditional procedures.


Asunto(s)
Conservación de Alimentos , Frutas , Mangifera , Nanopartículas del Metal , Nanopartículas del Metal/química , Mangifera/química , Frutas/química , Conservación de Alimentos/métodos , Almacenamiento de Alimentos/métodos
4.
Environ Geochem Health ; 46(8): 281, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963650

RESUMEN

The interaction between nanoscale copper oxides (nano-CuOs) and soil matrix significantly affects their fate and transport in soils. This study investigates the retention of nano-CuOs and Cu2+ ions in ten typical agricultural soils by employing the Freundlich adsorption model. Retention of nano-CuOs and Cu2+ in soils was well fitted by the Freundlich model. The retention parameters (KD, KF, and N) followed an order of CuO NTs > CuO NPs > Cu2+, highlighting significant impact of nano-CuOs morphology. The KF and N values of CuO NPs/Cu2+ were positively correlated with soil pH and electrical conductivity (EC), but exhibited a weaker correlation for CuO NTs. Soil pH and/or EC could be used to predict KF and N values of CuO NPs or CuO NTs, with additional clay content should be included for Cu2+.The different relationship between retention parameters and soil properties may suggest that CuO NTs retention mainly caused by agglomeration, whereas adsorption and agglomeration were of equal importance to CuO NPs. The amendment of Ca2+ at low and medium concentration promoted retention of nano-CuOs in alkaline soils, but reduced at high concentration. These findings provided critical insights into the fate of nano-CuOs in soil environments, with significant implications for environmental risk assessment and soil remediation strategies.


Asunto(s)
Agricultura , Cobre , Contaminantes del Suelo , Suelo , Cobre/química , Suelo/química , Contaminantes del Suelo/química , Concentración de Iones de Hidrógeno , Adsorción , Nanopartículas del Metal/química , Conductividad Eléctrica , Tamaño de la Partícula
5.
ACS Appl Mater Interfaces ; 16(26): 33038-33052, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961578

RESUMEN

Utilizing nanomaterials as an alternative to antibiotics, with a focus on maintaining high biosafety, has emerged as a promising strategy to combat antibiotic resistance. Nevertheless, the challenge lies in the indiscriminate attack of nanomaterials on both bacterial and mammalian cells, which limits their practicality. Herein, Cu3SbS3 nanoparticles (NPs) capable of generating reactive oxygen species (ROS) are discovered to selectively adsorb and eliminate bacteria without causing obvious harm to mammalian cells, thanks to the interaction between O of N-acetylmuramic acid in bacterial cell walls and Cu of the NPs. Coupled with the short diffusion distance of ROS in the surrounding medium, a selective antibacterial effect is achieved. Additionally, the antibacterial mechanism is then identified: Cu3SbS3 NPs catalyze the generation of O2•-, which has subsequently been conversed by superoxide dismutase to H2O2. The latter is secondary catalyzed by the NPs to form •OH and 1O2, initiating an in situ attack on bacteria. This process depletes bacterial glutathione in conjunction with the disruption of the antioxidant defense system of bacteria. Notably, Cu3SbS3 NPs are demonstrated to efficiently impede biofilm formation; thus, a healing of MRSA-infected wounds was promoted. The bacterial cell wall-binding nanoantibacterial agents can be widely expanded through diversified design.


Asunto(s)
Antibacterianos , Pared Celular , Cobre , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Cobre/química , Cobre/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/química , Pared Celular/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Biopelículas/efectos de los fármacos , Ratones , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Nanopartículas del Metal/química , Humanos , Nanopartículas/química , Pruebas de Sensibilidad Microbiana
6.
J Nanobiotechnology ; 22(1): 390, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961442

RESUMEN

BACKGROUND: Zinc oxide nanoparticle (ZnO NP) is one of the metal nanomaterials with extensive use in many fields such as feed additive and textile, which is an emerging threat to human health due to widely distributed in the environment. Thus, there is an urgent need to understand the toxic effects associated with ZnO NPs. Although previous studies have found accumulation of ZnO NPs in testis, the molecular mechanism of ZnO NPs dominated a decline in male fertility have not been elucidated. RESULTS: We reported that ZnO NPs exposure caused testicular dysfunction and identified spermatocytes as the primary damaged site induced by ZnO NPs. ZnO NPs led to the dysfunction of spermatocytes, including impaired cell proliferation and mitochondrial damage. In addition, we found that ZnO NPs induced ferroptosis of spermatocytes through the increase of intracellular chelatable iron content and lipid peroxidation level. Moreover, the transcriptome analysis of testis indicated that ZnO NPs weakened the expression of miR-342-5p, which can target Erc1 to block the NF-κB pathway. Eventually, ferroptosis of spermatocytes was ameliorated by suppressing the expression of Erc1. CONCLUSIONS: The present study reveals a novel mechanism in that miR-342-5p targeted Erc1 to activate NF-κB signaling pathway is required for ZnO NPs-induced ferroptosis, and provide potential targets for further research on the prevention and treatment of male reproductive disorders related to ZnO NPs.


Asunto(s)
Ferroptosis , MicroARNs , FN-kappa B , Transducción de Señal , Espermatocitos , Testículo , Óxido de Zinc , Animales , Masculino , Ratones , Proliferación Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Nanopartículas del Metal/química , MicroARNs/metabolismo , MicroARNs/genética , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Espermatocitos/metabolismo , Espermatocitos/efectos de los fármacos , Testículo/metabolismo , Testículo/efectos de los fármacos , Óxido de Zinc/farmacología , Óxido de Zinc/química
7.
J Biomed Mater Res B Appl Biomater ; 112(7): e35443, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38968028

RESUMEN

The aim of this work was to analyze the effects of long-term exposure to titanium dioxide (TiO2) micro- (MPs) and nanoparticles (NPs) (six and 12 months) on the biochemical and histopathological response of target organs using a murine model. Male Wistar rats were intraperitoneally injected with a suspension of TiO2 NPs (5 nm; TiO2-NP5 group) or MPs (45 µm; TiO2-NP5 group); the control group was injected with saline solution. Six and 12 months post-injection, titanium (Ti) concentration in plasma and target organs was determined spectrometrically (ICP-MS). Blood smears and organ tissue samples were evaluated by light microscopy. Liver and kidney function was evaluated using serum biochemical parameters. Oxidative metabolism was assessed 6 months post-injection (determination of superoxide anion by nitroblue tetrazolium (NBT) test, superoxide dismutase (SOD) and catalase (CAT), lipid peroxidation, and paraoxonase 1). Titanium (Ti) concentration in target organs and plasma was significantly higher in the TiO2-exposed groups than in the control group. Histological evaluation showed the presence of titanium-based particles in the target organs, which displayed no structural alterations, and in blood monocytes. Oxidative metabolism analysis showed that TiO2 NPs were more reactive over time than MPs (p < .05) and mobilization of antioxidant enzymes and membrane damage varied among the studied organs. Clearance of TiO2 micro and nanoparticles differed among the target organs, and lung clearance was more rapid than clearance from the lungs and kidneys (p < .05). Conversely, Ti concentration in plasma increased with time (p < .05). In conclusion, neither serum biochemical parameters nor oxidative metabolism markers appear to be useful as biomarkers of tissue damage in response to TiO2 micro- and nanoparticle deposits at chronic time points.


Asunto(s)
Ratas Wistar , Titanio , Titanio/química , Animales , Masculino , Ratas , Nanopartículas del Metal/química , Riñón/metabolismo , Riñón/patología , Riñón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Nanopartículas/química , Hígado/metabolismo , Hígado/patología
8.
Anal Chim Acta ; 1316: 342827, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969404

RESUMEN

BACKGROUND: In recent years, miRNAs have emerged as potentially valuable tumor markers, and their sensitive and accurate detection is crucial for early screening and diagnosis of tumors. However, the analysis of miRNAs faces significant challenges due to their short sequence, susceptibility to degradation, high similarity, low expression level in cells, and stringent requirements for in vitro research environments. Therefore, the development of sensitive and efficient new methods for the detection of tumor markers is crucial for the early intervention of related tumors. RESULTS: An ultrasensitive electrochemical/colorimetric dual-mode self-powered biosensor platform is established to detect microRNA-21 (miR-21) via a multi-signal amplification strategy. Gold nanoparticles (AuNPs) and VS4 nanosheets self-assembled 3D nanorods (VS4-Ns-Nrs) are prepared for constructing a superior performance enzyme biofuel cell (EBFC). The double-signal amplification strategy of Y-shaped DNA nanostructure and catalytic hairpin assembly (CHA) is adopted to further improve enhance the strength and specificity of the output signal. In addition, a capacitor is matched with EBFC to generate an instantaneous current that is amplified several times, and the output detection signal is improved once more. At the same time, electrochemical and colorimetric methods are used for dual-mode strategy to achieve the accuracy of detection. The linear range of detection is from 0.001 pg/mL to 1000 pg/mL, with a relatively low limit of detection (LOD) of 0.16 fg/mL (S/N = 3). SIGNIFICANCE: The established method enables accurate and sensitive detection of markers in patients with lung cancer, providing technical support and data reference for precise identification. It is anticipated to offer a sensitive and practical new technology and approach for early diagnosis, clinical treatment, and drug screening of cancer and other related major diseases.


Asunto(s)
Biomarcadores de Tumor , Técnicas Biosensibles , Colorimetría , Técnicas Electroquímicas , Oro , Neoplasias Pulmonares , Nanopartículas del Metal , MicroARNs , Humanos , Técnicas Biosensibles/métodos , Neoplasias Pulmonares/diagnóstico , Técnicas Electroquímicas/métodos , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/sangre , Oro/química , MicroARNs/análisis , Nanopartículas del Metal/química , Límite de Detección
9.
Anal Chim Acta ; 1316: 342842, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969406

RESUMEN

BACKGROUND: Fluoroquinolones (FQs) are widely used in livestock and poultry industry because of their satisfactory effects in preventing and treating bacterial infection. However, due to irrational use and poor biodegradability, FQs can easily remain in food animals and further enter the human body through the food chain. Therefore, accurate and sensitive detection of FQs residues in animal-origin food is significant. The traditional methods commonly used for FQs detection have some limitations. Ratiometric fluorescence detection technology has the advantages of fast, sensitive, self-correcting, and easy visualization. However, the reports on the use of ratiometric fluorescence probes for FQs detection are limited. RESULTS: In this work, a novel probe was proposed for ratiometric fluorescent analysis of FQs. In this probe, the fluorescence of dithioerythritol stabilized copper nanoclusters (DTE-Cu NCs) was significantly enhanced due to the Tb3+ triggered aggregation-induced emission effect. FQs bound Tb3+ in Tb3+/DTE-Cu NCs through carboxyl and carbonyl groups, so that Tb3+ was effectively sensitized to emit green fluorescence. However, the red fluorescence of DTE-Cu NCs was not interfered. The fluorescence of the probe transformed from red to green with the increase of FQs concentration. Using norfloxacin (NOR), difloxacin (DIF), and enrofloxacin (ENR) as FQs simulants, this probe showed a sensitive linear response ranged from 0.025 to 22.5 µM, with the limits of detection of 9.6 nM, 9.3 nM, and 7.7 nM. The application potential for FQs detection was verified via a standard addition assay of egg samples with the recovery rate of 90.4 %-114.7 %. SIGNIFICANT: The fluorescence probe based on Tb3+/DTE-Cu NCs is expected to realize the ratiometric fluorescence sensitive detection of FQs. The establishment of this simple, effective, and rapid detection platform opens up a new way for the detection of FQs residues in animal-origin foods, and also provides a new idea for the design of rapid detection platforms for other hazard factors.


Asunto(s)
Cobre , Colorantes Fluorescentes , Fluoroquinolonas , Terbio , Cobre/química , Cobre/análisis , Fluoroquinolonas/análisis , Fluoroquinolonas/química , Colorantes Fluorescentes/química , Terbio/química , Espectrometría de Fluorescencia , Nanopartículas del Metal/química , Animales , Límite de Detección
10.
Anal Chim Acta ; 1316: 342864, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969411

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma arising from the nasopharyngeal mucosal lining. Diagnosis of NPC at early stage can improve the outcome of patients and facilitate reduction in cancer mortality. The most significant change between cancer cells and normal cells is the variation of cell nucleus. Therefore, accurately detecting the biochemical changes in nucleus between cancer cells and normal cells has great potential to explore diagnostic molecular markers for NPC. Highly sensitive surface-enhanced Raman scattering (SERS) could reflect the biochemical changes in the process of cell cancerization at the molecular level. However, rapid nuclear targeting SERS detection remains a challenge. RESULTS: A novel and accurate nuclear-targeting SERS detection method based on electroporation was proposed. With the assistance of electric pulses, nuclear-targeting nanoprobes were rapidly introduced into different NPC cells (including CNE1, CNE2, C666 cell lines) and normal nasopharyngeal epithelial cells (NP69 cell line), respectively. Under the action of nuclear localization signaling peptides (NLS), the nanoprobes entering cells were located to the nucleus, providing high-quality nuclear SERS signals. Hematoxylin and eosin (H&E) staining and in situ cell SERS imaging confirmed the excellent nuclear targeting performance of the nanoprobes developed in this study. The comparison of SERS signals indicated that there were subtle differences in the biochemical components between NPC cells and normal nasopharyngeal cells. Furthermore, SERS spectra combined with principal component analysis (PCA) and linear discriminant analysis (LDA) were employed to diagnose and distinguish NPC cell samples, and high sensitivity, specificity, and accuracy were obtained in the screening of NPC cells from normal nasopharyngeal epithelial cells. SIGNIFICANCE: To the best of our knowledge, this is the first study that employing nuclear-targeting SERS testing to screen nasopharyngeal carcinoma cells. Based on the electroporation technology, nanoprobes can be rapidly introduced into living cells for intracellular biochemical detection. Nuclear-targeting SERS detection can analyze the biochemical changes in the nucleus of cancer cells at the molecular level, which has great potential for early cancer screening and cytotoxicity analysis of anticancer drugs.


Asunto(s)
Núcleo Celular , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Espectrometría Raman , Espectrometría Raman/métodos , Humanos , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/patología , Núcleo Celular/química , Núcleo Celular/metabolismo , Línea Celular Tumoral , Propiedades de Superficie , Nanopartículas del Metal/química
11.
Anal Chim Acta ; 1316: 342838, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969428

RESUMEN

The diagnosis of dengue virus (DENV) has been challenging particularly in areas far from clinical laboratories. Early diagnosis of pathogens is a prerequisite for the timely treatment and pathogen control. An ideal diagnostic for viral infections should possess high sensitivity, specificity, and flexibility. In this study, we implemented dual amplification involving Cas13a and Cas12a, enabling sensitive and visually aided diagnostics for the dengue virus. Cas13a recognized the target RNA by crRNA and formed the assembly of the Cas13a/crRNA/RNA ternary complex, engaged in collateral cleavage of nearby crRNA of Cas12a. The Cas12a/crRNA/dsDNA activator ternary complex could not be assembled due to the absence of crRNA of Cas12a. Moreover, the probe, with 5' and 3' termini labeled with FAM and biotin, could not be separated. The probes labeled with FAM and biotin, combined the Anti-FAM and the Anti-Biotin Ab-coated gold nanoparticle, and conformed sandwich structure on the T-line. The red line on the paper strip caused by clumping of AuNPs on the T-line indicated the detection of dengue virus. This technique, utilizing an activated Cas13a system cleaving the crRNA of Cas12a, triggered a cascade that amplifies the virus signal, achieving a low detection limit of 190 fM with fluorescence. Moreover, even at 1 pM, the red color on the T-line was easily visible by naked eyes. The developed strategy, incorporating cascade enzymatic amplification, exhibited good sensitivity and may serve as a field-deployable diagnostic tool for dengue virus.


Asunto(s)
Virus del Dengue , Virus del Dengue/aislamiento & purificación , Dengue/diagnóstico , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/análisis , Proteínas Asociadas a CRISPR/metabolismo , Nanopartículas del Metal/química , Límite de Detección , Oro/química , Proteínas Bacterianas , Endodesoxirribonucleasas
12.
Anal Chim Acta ; 1316: 342873, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969432

RESUMEN

BACKGROUND: DNA walker-based strategies have gained significant attention in nucleic acid analysis. However, they face challenges related to balancing design complexity, sequence dependence, and amplification efficiency. Furthermore, most existing DNA walkers rely on walking and lock probes, requiring optimization of various parameters like DNA probe sequence, walking-to-lock probe ratio, lock probe length, etc. to achieve optimal performance. This optimization process is time-consuming and adds complexity to experiments. To enhance the performance and reliability of DNA walker nanomachines, there is a need for a simpler, highly sensitive, and selective alternative strategy. RESULTS: A sensitive and rapid miRNA analysis strategy named hairpin-shaped DNA aligner and nicking endonuclease-fueled DNA walker (HDA-NE DNA walker) was developed. The HDA-NE DNA walker was constructed by modifying hairpin-shaped DNA aligner (HDA) probe and substrate report (SR) probe on the surface of AuNPs. Under normal conditions, HDA and SR remained stable. However, in the presence of miR-373, HDA underwent a conformational transition to an activated structure to continuously cleave the SR probe on the AuNPs with the assistance of Nt.AlwI nicking endonuclease, resulting in sensitive miRNA detection with a detection limit as low as 0.23 pM. Additionally, the proposed HDA-NE DNA walker exhibited high selectivity in distinguishing miRNAs with single base differences and can effectively analyze miR-373 levels in both normal and breast cancer patient serums. SIGNIFICANCE: The proposed HDA-NE DNA walker system was activated by a conformational change of HDA probe only in the presence of the target miRNA, eliminating the need for a lock probe and without sequence dependence for SR probe. This strategy demonstrated a rapid reaction rate of only 30 min, minimal background noise, and a high signal-to-noise ratio (S/B) compared to capture/lock-based DNA walker. The method is expected to become a powerful tool and play an important role in disease diagnosis and precision therapy.


Asunto(s)
ADN , MicroARNs , MicroARNs/sangre , MicroARNs/análisis , Humanos , ADN/química , Límite de Detección , Técnicas Biosensibles/métodos , Oro/química , Nanopartículas del Metal/química , Sondas de ADN/química , Sondas de ADN/genética , Endonucleasas/metabolismo , Endonucleasas/química , Secuencias Invertidas Repetidas
13.
Mikrochim Acta ; 191(7): 431, 2024 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951263

RESUMEN

A signal amplification electrochemical biosensor chip was developed to integrate loop-mediated isothermal amplification (LAMP) based on in situ nucleic acid amplification and methyl blue (MB) serving as the hybridization redox indicator for sensitive and selective foodborne pathogen detection without a washing step. The electrochemical biosensor chip was designed by a screen-printed carbon electrode modified with gold nanoparticles (Au NPs) and covered with polydimethylsiloxane membrane to form a microcell. The primers of the target were immobilized on the Au NPs by covalent attachment for in situ amplification. The electroactive MB was used as the electrochemical signal reporter and embedded into the double-stranded DNA (dsDNA) amplicons generated by LAMP. Differential pulse voltammetry was introduced to survey the dsDNA hybridization with MB, which differentiates the specifically electrode-unbound and -bound labels without a washing step. Pyrene as the back-filling agent can further improve response signaling by reducing non-specific adsorption. This method is operationally simple, specific, and effective. The biosensor showed a detection linear range of 102-107 CFU mL-1 with the limit of detection of 17.7 CFU mL-1 within 40 min. This method showed promise for on-site testing of foodborne pathogens and could be integrated into an all-in-one device.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Microbiología de Alimentos , Oro , Nanopartículas del Metal , Técnicas de Amplificación de Ácido Nucleico , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Oro/química , Nanopartículas del Metal/química , Límite de Detección , Electrodos , ADN Bacteriano/análisis , ADN Bacteriano/genética , Hibridación de Ácido Nucleico
14.
Mikrochim Acta ; 191(7): 438, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951285

RESUMEN

A dual-recognition strategy is reported to construct a one-step washing and highly efficient signal-transduction tag system for high-sensitivity colorimetric detection of Staphylococcus aureus (S. aureus). The porous (gold core)@(platinum shell) nanozymes (Au@PtNEs) as the signal labels show highly efficient peroxidase mimetic activity and are robust. For the sake of simplicity the detection involved the use of a vancomycin-immobilized magnetic bead (MB) and aptamer-functionalized Au@PtNEs for dual-recognition detection in the presence of S. aureus. In addition, we designed a magnetic plate to fit the 96-well microplate to ensure consistent magnetic properties of each well, which can quickly remove unreacted Au@PtNEs and sample matrix while avoiding tedious washing steps. Subsequently, Au@PtNEs catalyze hydrogen peroxide (H2O2) to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) generating a color signal. Finally, the developed Au@PtNEs-based dual-recognition washing-free colorimetric assay displayed a response in the range of S. aureus of 5 × 101-5 × 105 CFU/mL, and the detection limit was 40 CFU/mL within 1.5 h. In addition, S. aureus-fortified samples were analyzed to further evaluate the performance of the proposed method, which yielded average recoveries ranging from 93.66 to 112.44% and coefficients of variation (CVs) within the range 2.72-9.01%. These results furnish a novel horizon for the exploitation of a different mode of recognition and inexpensive enzyme-free assay platforms as an alternative to traditional enzyme-based immunoassays for the detection of other Gram-positive pathogenic bacteria.


Asunto(s)
Bencidinas , Colorimetría , Oro , Peróxido de Hidrógeno , Límite de Detección , Platino (Metal) , Staphylococcus aureus , Staphylococcus aureus/aislamiento & purificación , Colorimetría/métodos , Oro/química , Platino (Metal)/química , Porosidad , Bencidinas/química , Peróxido de Hidrógeno/química , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Vancomicina/química , Técnicas Biosensibles/métodos , Catálisis , Humanos
15.
Mikrochim Acta ; 191(7): 434, 2024 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951317

RESUMEN

An enhanced lateral flow assay (LFA) is presented for rapid and highly sensitive detection of acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigens with gold nanoflowers (Au NFs) as signaling markers and gold enhancement to amplify the signal intensities. First, the effect of the morphology of gold nanomaterials on the sensitivity of LFA detection was investigated. The results showed that Au NFs prepared by the seed growth method showed a 5-fold higher detection sensitivity than gold nanoparticles (Au NPs) of the same particle size, which may benefit from the higher extinction coefficient and larger specific surface area of Au NFs. Under the optimized experimental conditions, the Au NFs-based LFA exhibited a detection limit (LOD) of 25 pg mL-1 for N protein using 135 nm Au NFs as the signaling probes. The signal was further amplified by using a gold enhancement strategy, and the LOD for the detection of N protein achieved was 5 pg mL-1. The established LFA also exhibited good repeatability and stability and showed applicability in the diagnosis of SARS-CoV-2 infection.


Asunto(s)
Antígenos Virales , Proteínas de la Nucleocápside de Coronavirus , Oro , Límite de Detección , Nanopartículas del Metal , SARS-CoV-2 , Oro/química , SARS-CoV-2/inmunología , Nanopartículas del Metal/química , Humanos , Antígenos Virales/análisis , Antígenos Virales/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/análisis , Fosfoproteínas/inmunología , Fosfoproteínas/análisis , Fosfoproteínas/química , COVID-19/diagnóstico , COVID-19/virología , Inmunoensayo/métodos , Prueba Serológica para COVID-19/métodos
16.
Mikrochim Acta ; 191(8): 441, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954045

RESUMEN

A ratiometric SERS aptasensor based on catalytic hairpin self-assembly (CHA) mediated cyclic signal amplification strategy was developed for the rapid and reliable determination of Escherichia coli O157:H7. The recognition probe was synthesized by modifying magnetic beads with blocked aptamers, and the SERS probe was constructed by functionalizing gold nanoparticles (Au NPs) with hairpin structured DNA and 4-mercaptobenzonitrile (4-MBN). The recognition probe captured E. coli O157:H7 specifically and released the blocker DNA, which activated the CHA reaction on the SERS probe and turned on the SERS signal of 6-carboxyl-x-rhodamine (ROX). Meanwhile, 4-MBN was used as an internal reference to calibrate the matrix interference. Thus, sensitive and reliable determination and quantification of E. coli O157:H7 was established using the ratio of the SERS signal intensities of ROX to 4-MBN. This aptasensor enabled detection of 2.44 × 102 CFU/mL of E. coli O157:H7 in approximately 3 h without pre-culture and DNA extraction. In addition, good reliability and excellent reproducibility were observed for the determination of E. coli O157:H7 in spiked water and milk samples. This study offered a new solution for the design of rapid, sensitive, and reliable SERS aptasensors.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Escherichia coli O157 , Oro , Límite de Detección , Nanopartículas del Metal , Leche , Espectrometría Raman , Escherichia coli O157/aislamiento & purificación , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Oro/química , Leche/microbiología , Leche/química , Espectrometría Raman/métodos , Técnicas Biosensibles/métodos , Animales , Catálisis , Secuencias Invertidas Repetidas , Contaminación de Alimentos/análisis , Microbiología del Agua , Reproducibilidad de los Resultados
17.
Mikrochim Acta ; 191(8): 444, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38955823

RESUMEN

Transferrin (TRF), recognized as a glycoprotein clinical biomarker and therapeutic target, has its concentration applicable for disease diagnosis and treatment monitoring. Consequently, this study developed boronic acid affinity magnetic surface molecularly imprinted polymers (B-MMIPs) with pH-responsitivity as the "capture probe" for TRF, which have high affinity similar to antibodies, with a dissociation constant of (3.82 ± 0.24) × 10-8 M, showing 7 times of reusability. The self-copolymerized imprinted layer synthesized with dopamine (DA) and 3-Aminophenylboronic acid (APBA) as double monomers avoided nonspecific binding sites and produced excellent adsorption properties. Taking the gold nanostar (AuNS) with a branch tip "hot spot" structure as the core, the silver-coated AuNS functionalized with the biorecognition element 4-mercaptophenylboronic acid (MPBA) was employed as a surface-enhanced Raman scattering (SERS) nanotag (AuNS@Ag-MPBA) to label TRF, thereby constructing a double boronic acid affinity "sandwich" SERS biosensor (B-MMIPs-TRF-SERS nanotag) for the highly sensitive detection of TRF. The SERS biosensor exhibited a detection limit for TRF of 0.004 ng/mL, and its application to spiked serum samples confirmed its reliability and feasibility, demonstrating significant potential for clinical TRF detection. Moreover, the SERS biosensor designed in this study offers advantages in stability, detection speed (40 min), and cost efficiency. The portable Raman instrument for SERS detection fulfills the requirements for point-of-care testing.


Asunto(s)
Técnicas Biosensibles , Ácidos Borónicos , Oro , Espectrometría Raman , Ácidos Borónicos/química , Técnicas Biosensibles/métodos , Oro/química , Humanos , Espectrometría Raman/métodos , Plata/química , Nanopartículas del Metal/química , Límite de Detección , Transferrina/análisis , Transferrina/química , Impresión Molecular , Polímeros Impresos Molecularmente/química , Glicoproteínas/sangre , Glicoproteínas/química , Materiales Biomiméticos/química , Dopamina/sangre , Dopamina/análisis , Compuestos de Sulfhidrilo
18.
PLoS One ; 19(7): e0303808, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38959277

RESUMEN

Calcium Hydroxide-based endodontic sealer loaded with antimicrobial agents have been commonly employed in conventional root canal treatment. These sealers are not effective against E. faecalis due to the persistent nature of this bacterium and its ability to evade the antibacterial action of calcium hydroxide. Therefore, endodontic sealer containing Carbon nanodots stabilized silver nanoparticles (CD-AgNPs) was proposed to combat E. faecalis. The therapeutic effect of CD-AgNPs was investigated and a new cytocompatible Calcium Hydroxide-based endodontic sealer enriched with CD-AgNPs was synthesized that exhibited a steady release of Ag+ ions and lower water solubility at 24 hours, and enhanced antibacterial potential against E. faecalis. CD-AgNPs was synthesized and characterized morphologically and compositionally by Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy (FTIR), and UV-Vis Spectroscopy, followed by optimization via minimum inhibitory concentration (MIC) determination against E. faecalis by broth microdilution technique and Cytotoxicity analysis against NIH3T3 cell lines via Alamar Blue assay. Calcium hydroxide in distilled water was taken as control (C), Calcium hydroxide with to CD-AgNPs (5mg/ml and 10mg/ml) yielded novel endodontic sealers (E1 and E2). Morphological and chemical analysis of the novel sealers were done by SEM and FTIR; followed by in vitro assessment for antibacterial potential against E. faecalis via agar disc diffusion method, release of Ag+ ions for 21 days by Atomic Absorption Spectrophotometry and water solubility by weight change for 21 days. CD-AgNPs were 15-20 nm spherical-shaped particles in uniformly distributed clusters and revealed presence of constituent elements in nano-assembly. FTIR spectra revealed absorption peaks that correspond to various functional groups. UV-Vis absorption spectra showed prominent peaks that correspond to Carbon nanodots and Silver nanoparticles. CD-AgNPs exhibited MIC value of 5mg/ml and cytocompatibility of 84.47% with NIH3T3 cell lines. Novel endodontic sealer cut-discs revealed irregular, hexagonal particles (100-120 nm) with aggregation and rough structure with the presence of constituent elements. FTIR spectra of novel endodontic sealers revealed absorption peaks that correspond to various functional groups. Novel endodontic sealers exhibited enhanced antibacterial potential where E-2 showed greatest inhibition zone against E. faecalis (6.3±2 mm), a steady but highest release of Ag+ ions was exhibited by E-1 (0.043±0.0001 mg/mL) and showed water solubility of <3% at 24 hours where E-2 showed minimal weight loss at all time intervals. Novel endodontic sealers were cytocompatible and showed enhanced antibacterial potential against E. faecalis, however, E2 outperformed in this study in all aspects.


Asunto(s)
Antibacterianos , Hidróxido de Calcio , Carbono , Enterococcus faecalis , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Materiales de Obturación del Conducto Radicular , Plata , Plata/química , Plata/farmacología , Hidróxido de Calcio/química , Hidróxido de Calcio/farmacología , Animales , Ratones , Nanopartículas del Metal/química , Materiales de Obturación del Conducto Radicular/química , Materiales de Obturación del Conducto Radicular/farmacología , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/crecimiento & desarrollo , Células 3T3 NIH , Antibacterianos/farmacología , Antibacterianos/química , Carbono/química , Espectroscopía Infrarroja por Transformada de Fourier
19.
Sci Rep ; 14(1): 15211, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956076

RESUMEN

Biological agents are getting a noticeable concern as efficient eco-friendly method for nanoparticle fabrication, from which fungi considered promising agents in this field. In the current study, two fungal species (Embellisia spp. and Gymnoascus spp.) were isolated from the desert soil in Saudi Arabia and identified using 18S rRNA gene sequencing then used as bio-mediator for the fabrication of silver nanoparticles (AgNPs). Myco-synthesized AgNPs were characterized using UV-visible spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy and dynamic light scattering techniques. Their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae were investigated. In atrial to detect their possible antibacterial mechanism, Sodium dodecyl sulfate (SDS-PAGE) and TEM analysis were performed for Klebsiella pneumoniae treated by the myco-synthesized AgNPs. Detected properties of the fabricated materials indicated the ability of both tested fungal strains in successful fabrication of AgNPs having same range of mean size diameters and varied PDI. The efficiency of Embellisia spp. in providing AgNPs with higher antibacterial activity compared to Gymnoascus spp. was reported however, both indicated antibacterial efficacy. Variations in the protein profile of K. pneumoniae after treatments and ultrastructural changes were observed. Current outcomes suggested applying of fungi as direct, simple and sustainable approach in providing efficient AgNPs.


Asunto(s)
Nanopartículas del Metal , Plata , Microbiología del Suelo , Plata/química , Plata/farmacología , Arabia Saudita , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Clima Desértico , Hongos/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química
20.
Sci Rep ; 14(1): 15196, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956215

RESUMEN

Despite recent advancements in peripheral nerve regeneration, the creation of nerve conduits with chemical and physical cues to enhance glial cell function and support axonal growth remains challenging. This study aimed to assess the impact of electrical stimulation (ES) using a conductive nerve conduit on sciatic nerve regeneration in a rat model with transection injury. The study involved the fabrication of conductive nerve conduits using silk fibroin and Au nanoparticles (AuNPs). Collagen hydrogel loaded with green fluorescent protein (GFP)-positive adipose-derived mesenchymal stem cells (ADSCs) served as the filling for the conduit. Both conductive and non-conductive conduits were applied with and without ES in rat models. Locomotor recovery was assessed using walking track analysis. Histological evaluations were performed using H&E, luxol fast blue staining and immunohistochemistry. Moreover, TEM analysis was conducted to distinguish various ultrastructural aspects of sciatic tissue. In the ES + conductive conduit group, higher S100 (p < 0.0001) and neurofilament (p < 0.001) expression was seen after 6 weeks. Ultrastructural evaluations showed that conductive scaffolds with ES minimized Wallerian degeneration. Furthermore, the conductive conduit with ES group demonstrated significantly increased myelin sheet thickness and decreased G. ratio compared to the autograft. Immunofluorescent images confirmed the presence of GFP-positive ADSCs by the 6th week. Locomotor recovery assessments revealed improved function in the conductive conduit with ES group compared to the control group and groups without ES. These results show that a Silk/AuNPs conduit filled with ADSC-seeded collagen hydrogel can function as a nerve conduit, aiding in the restoration of substantial gaps in the sciatic nerve with ES. Histological and locomotor evaluations indicated that ES had a greater impact on functional recovery compared to using a conductive conduit alone, although the use of conductive conduits did enhance the effects of ES.


Asunto(s)
Regeneración Nerviosa , Nervio Ciático , Andamios del Tejido , Animales , Nervio Ciático/fisiología , Ratas , Andamios del Tejido/química , Oro/química , Ratas Sprague-Dawley , Seda/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Estimulación Eléctrica/métodos , Fibroínas/química , Nanopartículas del Metal/química , Masculino , Recuperación de la Función , Regeneración Tisular Dirigida/métodos , Hidrogeles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...