Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.340
Filtrar
1.
Cells ; 13(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38994944

RESUMEN

Current medical therapies for fibroids have major limitations due to their hypoestrogenic side effects. Based on our previous work showing the activation of NF-kB in fibroids, we hypothesized that inhibiting NF-kB in vivo would result in the shrinkage of tumors and reduced inflammation. Fibroid xenografts were implanted in SCID mice and treated daily with Bay 11-7082 (Bay) or vehicle for two months. Bay treatment led to a 50% reduction in tumor weight. RNAseq revealed decreased expression of genes related to cell proliferation, inflammation, extracellular matrix (ECM) composition, and growth factor expression. Validation through qRT-PCR, Western blotting, ELISA, and immunohistochemistry (IHC) confirmed these findings. Bay treatment reduced mRNA expression of cell cycle regulators (CCND1, E2F1, and CKS2), inflammatory markers (SPARC, TDO2, MYD88, TLR3, TLR6, IL6, TNFα, TNFRSF11A, and IL1ß), ECM remodelers (COL3A1, FN1, LOX, and TGFß3), growth factors (PRL, PDGFA, and VEGFC), progesterone receptor, and miR-29c and miR-200c. Collagen levels were reduced in Bay-treated xenografts. Western blotting and IHC showed decreased protein abundance in certain ECM components and inflammatory markers, but not cleaved caspase three. Ki67, CCND1, and E2F1 expression decreased with Bay treatment. This preclinical study suggests NF-kB inhibition as an effective fibroid treatment, suppressing genes involved in proliferation, inflammation, and ECM remodeling.


Asunto(s)
Proliferación Celular , Leiomioma , Nitrilos , Sulfonas , Animales , Humanos , Sulfonas/farmacología , Sulfonas/uso terapéutico , Leiomioma/patología , Leiomioma/tratamiento farmacológico , Leiomioma/genética , Leiomioma/metabolismo , Femenino , Ratones , Nitrilos/farmacología , Proliferación Celular/efectos de los fármacos , Ratones SCID , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , FN-kappa B/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Neoplasias Uterinas/patología , Neoplasias Uterinas/genética , Neoplasias Uterinas/tratamiento farmacológico , Neoplasias Uterinas/metabolismo
2.
J Clin Invest ; 134(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38950330

RESUMEN

Activating mutations of FLT3 contribute to deregulated hematopoietic stem and progenitor cell (HSC/Ps) growth and survival in patients with acute myeloid leukemia (AML), leading to poor overall survival. AML patients treated with investigational drugs targeting mutant FLT3, including Quizartinib and Crenolanib, develop resistance to these drugs. Development of resistance is largely due to acquisition of cooccurring mutations and activation of additional survival pathways, as well as emergence of additional FLT3 mutations. Despite the high prevalence of FLT3 mutations and their clinical significance in AML, there are few targeted therapeutic options available. We have identified 2 novel nicotinamide-based FLT3 inhibitors (HSN608 and HSN748) that target FLT3 mutations at subnanomolar concentrations and are potently effective against drug-resistant secondary mutations of FLT3. These compounds show antileukemic activity against FLT3ITD in drug-resistant AML, relapsed/refractory AML, and in AML bearing a combination of epigenetic mutations of TET2 along with FLT3ITD. We demonstrate that HSN748 outperformed the FDA-approved FLT3 inhibitor Gilteritinib in terms of inhibitory activity against FLT3ITD in vivo.


Asunto(s)
Resistencia a Antineoplásicos , Leucemia Mieloide Aguda , Niacinamida , Tirosina Quinasa 3 Similar a fms , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Animales , Ratones , Niacinamida/análogos & derivados , Niacinamida/farmacología , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química , Mutación , Ratones SCID , Ratones Endogámicos NOD
3.
Front Immunol ; 15: 1362904, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855110

RESUMEN

Introduction: Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of hematological malignancies. However, its efficacy in solid tumors is limited by the immunosuppressive tumor microenvironment that compromises CAR T cell antitumor function in clinical settings. To overcome this challenge, researchers have investigated the potential of inhibiting specific immune checkpoint receptors, including A2aR (Adenosine A2 Receptor) and Tim3 (T cell immunoglobulin and mucin domain-containing protein 3), to enhance CAR T cell function. In this study, we evaluated the impact of genetic targeting of Tim3 and A2a receptors on the antitumor function of human mesothelin-specific CAR T cells (MSLN-CAR) in vitro and in vivo. Methods: Second-generation anti-mesothelin CAR T cells were produced using standard cellular and molecular techniques. A2aR-knockdown and/or Tim3- knockdown anti-mesothelin-CAR T cells were generated using shRNA-mediated gene silencing. The antitumor function of CAR T cells was evaluated by measuring cytokine production, proliferation, and cytotoxicity in vitro through coculture with cervical cancer cells (HeLa cell line). To evaluate in vivo antitumor efficacy of manufactured CAR T cells, tumor growth and mouse survival were monitored in a human cervical cancer xenograft model. Results: In vitro experiments demonstrated that knockdown of A2aR alone or in combination with Tim3 significantly improved CAR T cell proliferation, cytokine production, and cytotoxicity in presence of tumor cells in an antigen-specific manner. Furthermore, in the humanized xenograft model, both double knockdown CAR T cells and control CAR T cells could effectively control tumor growth. However, single knockdown CAR T cells were associated with reduced survival in mice. Conclusion: These findings highlight the potential of concomitant genetic targeting of Tim3 and A2a receptors to augment the efficacy of CAR T cell therapy in solid tumors. Nevertheless, caution should be exercised in light of our observation of decreased survival in mice treated with single knockdown MSLN-CAR T cells, emphasizing the need for careful efficacy considerations.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A , Inmunoterapia Adoptiva , Mesotelina , Receptores Quiméricos de Antígenos , Neoplasias del Cuello Uterino , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/genética , Femenino , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/terapia , Neoplasias del Cuello Uterino/genética , Ratones , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Línea Celular Tumoral , Microambiente Tumoral/inmunología , Ratones SCID
4.
Nat Commun ; 15(1): 4841, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844783

RESUMEN

Kaposi sarcoma associated herpesvirus (KSHV) is associated with around 1% of all human tumors, including the B cell malignancy primary effusion lymphoma (PEL), in which co-infection with the Epstein Barr virus (EBV) can almost always be found in malignant cells. Here, we demonstrate that KSHV/EBV co-infection of mice with reconstituted human immune systems (humanized mice) leads to IgM responses against both latent and lytic KSHV antigens, and expansion of central and effector memory CD4+ and CD8+ T cells. Among these, KSHV/EBV dual-infection allows for the priming of CD8+ T cells that are specific for the lytic KSHV antigen K6 and able to kill KSHV/EBV infected B cells. This suggests that K6 may represent a vaccine antigen for the control of KSHV and its associated pathologies in high seroprevalence regions, such as Sub-Saharan Africa.


Asunto(s)
Linfocitos B , Linfocitos T CD8-positivos , Herpesvirus Humano 8 , Animales , Herpesvirus Humano 8/inmunología , Humanos , Linfocitos B/inmunología , Ratones , Linfocitos T CD8-positivos/inmunología , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/virología , Coinfección/inmunología , Coinfección/virología , Linfocitos T CD4-Positivos/inmunología , Herpesvirus Humano 4/inmunología , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Inmunoglobulina M/inmunología , Antígenos Virales/inmunología , Ratones SCID , Linfoma de Efusión Primaria/inmunología , Linfoma de Efusión Primaria/virología , Anticuerpos Antivirales/inmunología
5.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928452

RESUMEN

Bone marrow mesenchymal stem cells (BMSCs) are key players in promoting ovarian cancer cell proliferation, orchestrated by the dynamic interplay between cytokines and their interactions with immune cells; however, the intricate crosstalk among BMSCs and cytokines has not yet been elucidated. Here, we aimed to investigate interactions between BMSCs and ovarian cancer cells. We established BMSCs with a characterized morphology, surface marker expression, and tri-lineage differentiation potential. Ovarian cancer cells (SKOV3) cultured with conditioned medium from BMSCs showed increased migration, invasion, and colony formation, indicating the role of the tumor microenvironment in influencing cancer cell behavior. BMSCs promoted SKOV3 tumorigenesis in nonobese diabetic/severe combined immunodeficiency mice, increasing tumor growth. The co-injection of BMSCs increased the phosphorylation of p38 MAPK and GSK-3ß in SKOV3 tumors. Co-culturing SKOV3 cells with BMSCs led to an increase in the expression of cytokines, especially MCP-1 and IL-6. These findings highlight the influence of BMSCs on ovarian cancer cell behavior and the potential involvement of specific cytokines in mediating these effects. Understanding these mechanisms will highlight potential therapeutic avenues that may halt ovarian cancer progression.


Asunto(s)
Proliferación Celular , Citocinas , Células Madre Mesenquimatosas , Neoplasias Ováricas , Células Madre Mesenquimatosas/metabolismo , Femenino , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Humanos , Animales , Citocinas/metabolismo , Ratones , Línea Celular Tumoral , Técnicas de Cocultivo , Microambiente Tumoral , Movimiento Celular , Medios de Cultivo Condicionados/farmacología , Células de la Médula Ósea/metabolismo , Ratones SCID , Ratones Endogámicos NOD , Diferenciación Celular
6.
Medicina (Kaunas) ; 60(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38929481

RESUMEN

Background and Objectives: Gemcitabine has been used to treat various solid cancers, including, since 1997, metastatic pancreatic cancer. Here, we developed an HPLC-UV method to determine serum gemcitabine levels and use it in pharmacokinetic studies. Materials and Methods: The analysis was performed after a single protein precipitation step on a reversed-phase column, isocratically eluted with sodium phosphate buffer and methanol. For the pharmacokinetic study, NOD/SCID mice received a single dose of gemcitabine at 100 mg/kg by either subcutaneous (SC) or intraperitoneal (IP) administration. Blood samples were collected at 5, 15, and 30 min and 1, 2, 4, and 6 h after the administration of gemcitabine for further analysis. Results: The duration of the analysis was ~12.5 min. The calibration curve was linear (r2 = 0.999) over the range of 1-400 µM. The mean recovery of GEM was 96.53% and the limit of detection was 0.166 µΜ. T1/2, Tmax, Cmax, AUC0-t, and clearance were 64.49 min, 5.00 min, 264.88 µmol/L, 9351.95 µmol/L*min, and 0.0103(mg)/(µmol/L)/min, respectively, for the SC administration. The corresponding values for the IP administration were 59.34 min, 5.00 min, 300.73 µmol/L, 8981.35 µmol/L*min and 0.0108(mg)/(µmol/L)/min (not statistically different from the SC administration). Conclusions: A simple, valid, sensitive, and inexpensive method for the measurement of gemcitabine in serum has been developed. This method may be useful for monitoring gemcitabine levels in cancer patients as part of therapeutic drug monitoring.


Asunto(s)
Desoxicitidina , Gemcitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacocinética , Desoxicitidina/sangre , Desoxicitidina/uso terapéutico , Cromatografía Líquida de Alta Presión/métodos , Animales , Ratones , Reproducibilidad de los Resultados , Ratones SCID , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/sangre , Ratones Endogámicos NOD
7.
Phytomedicine ; 130: 155537, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38823344

RESUMEN

BACKGROUND: Aberrant activation of autophagy in triple-negative breast cancer (TNBC) has led researchers to investigate potential therapeutic strategies targeting this process. The regulation of autophagy is significantly influenced by METTL3. Our previous research has shown that the Panax ginseng-derived compound, 20(R)-panaxatriol (PT), has potential as an anti-tumor agent. However, it remains unclear whether PT can modulate autophagy through METTL3 to exert its anti-tumor effects. OBJECTIVE: Our objective is to investigate whether PT can regulate autophagy in TNBC cells and elucidate the molecular mechanisms. STUDY DESIGN: For in vitro experiments, we employed SUM-159-PT and MDA-MB-231 cells. While in vivo experiments involved BALB/c nude mice and NOD/SCID mice. METHODS: In vitro, TNBC cells were treated with PT, and cell lines with varying expression levels of METTL3 were established. We assessed the impact on tumor cell activity and autophagy by analyzing autophagic flux, Western Blot (WB), and methylation levels. In vivo, subcutaneous transplantation models were established in BALB/c nude and NOD/SCID mice to observe the effect of PT on TNBC growth. HE staining and immunofluorescence were employed to analyze histopathological changes in tumor tissues. MeRIP-seq and dual-luciferase reporter gene assays were used to identify key downstream targets. Additionally, the silencing of STIP1 Homology And U-Box Containing Protein 1 (STUB1) explored PT's effects. The mechanism of PT's action on STUB1 via METTL3 was elucidated through mRNA stability assays, mRNA alternative splicing analysis, and nuclear-cytoplasmic mRNA separation. RESULTS: In both in vivo and in vitro experiments, it was discovered that PT significantly upregulates the expression of METTL3, leading to autophagy inhibition and therapeutic effects in TNBC. Simultaneously, through MeRIP-seq analysis and dual-luciferase reporter gene assays, we have demonstrated that PT modulates STUB1 via METTL3, influencing autophagy in TNBC cells. Furthermore, intriguingly, PT extends the half-life of STUB1 mRNA by enhancing its methylation modification, thereby enhancing its stability. CONCLUSION: In summary, our research reveals that PT increases STUB1 m6A modification through a METTL3-mediated mechanism in TNBC cells, inhibiting autophagy and further accentuating its anti-tumor properties. Our study provides novel mechanistic insights into TNBC pathogenesis and potential drug targets for TNBC.


Asunto(s)
Autofagia , Metiltransferasas , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Mama Triple Negativas , Ubiquitina-Proteína Ligasas , Animales , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Humanos , Autofagia/efectos de los fármacos , Femenino , Línea Celular Tumoral , Metiltransferasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ratones SCID , Ratones Endogámicos NOD , Ratones , Antineoplásicos Fitogénicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Panax/química , Adenosina/análogos & derivados , Adenosina/farmacología
8.
J Exp Clin Cancer Res ; 43(1): 180, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937832

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is characterized by its high metastatic potential, which results in poor patient survival. Cancer-associated fibroblasts (CAFs) are crucial in facilitating TNBC metastasis via induction of mitochondrial biogenesis. However, how to inhibit CAF-conferred mitochondrial biogenesis is still needed to explore. METHODS: We investigated metastasis using wound healing and cell invasion assays, 3D-culture, anoikis detection, and NOD/SCID mice. Mitochondrial biogenesis was detected by MitoTracker green FM staining, quantification of mitochondrial DNA levels, and blue-native polyacrylamide gel electrophoresis. The expression, transcription, and phosphorylation of peroxisome-proliferator activated receptor coactivator 1α (PGC-1α) were detected by western blotting, chromatin immunoprecipitation, dual-luciferase reporter assay, quantitative polymerase chain reaction, immunoprecipitation, and liquid chromatography-tandem mass spectrometry. The prognostic role of PGC-1α in TNBC was evaluated using the Kaplan-Meier plotter database and clinical breast cancer tissue samples. RESULTS: We demonstrated that PGC-1α indicated lymph node metastasis, tumor thrombus formation, and poor survival in TNBC patients, and it was induced by CAFs, which functioned as an inducer of mitochondrial biogenesis and metastasis in TNBC. Shikonin impeded the CAF-induced PGC-1α expression, nuclear localization, and interaction with estrogen-related receptor alpha (ERRα), thereby inhibiting PGC-1α/ERRα-targeted mitochondrial genes. Mechanistically, the downregulation of PGC-1α was mediated by synthase kinase 3ß-induced phosphorylation of PGC-1α at Thr295, which associated with neural precursor cell expressed developmentally downregulated 4e1 recognition and subsequent degradation by ubiquitin proteolysis. Mutation of PGC-1α at Thr295 negated the suppressive effects of shikonin on CAF-stimulated TNBC mitochondrial biogenesis and metastasis in vitro and in vivo. CONCLUSIONS: Our findings indicate that PGC-1α is a viable target for blocking TNBC metastasis by disrupting mitochondrial biogenesis, and that shikonin merits potential for treatment of TNBC metastasis as an inhibitor of mitochondrial biogenesis through targeting PGC-1α.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Naftoquinonas , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratones , Animales , Fosforilación , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Femenino , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Ratones SCID , Metástasis de la Neoplasia , Ratones Endogámicos NOD , Mitocondrias/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Science ; 384(6702): eadh5548, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38900896

RESUMEN

The molecular mechanisms that regulate breast cancer cell (BCC) metastasis and proliferation within the leptomeninges (LM) are poorly understood, which limits the development of effective therapies. In this work, we show that BCCs in mice can invade the LM by abluminal migration along blood vessels that connect vertebral or calvarial bone marrow and meninges, bypassing the blood-brain barrier. This process is dependent on BCC engagement with vascular basement membrane laminin through expression of the neuronal pathfinding molecule integrin α6. Once in the LM, BCCs colocalize with perivascular meningeal macrophages and induce their expression of the prosurvival neurotrophin glial-derived neurotrophic factor (GDNF). Intrathecal GDNF blockade, macrophage-specific GDNF ablation, or deletion of the GDNF receptor neural cell adhesion molecule (NCAM) from BCCs inhibits breast cancer growth within the LM. These data suggest integrin α6 and the GDNF signaling axis as new therapeutic targets against breast cancer LM metastasis.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Integrina alfa6 , Neoplasias Meníngeas , Meninges , Vías Nerviosas , Animales , Femenino , Humanos , Ratones , Membrana Basal/metabolismo , Neoplasias Óseas/secundario , Neoplasias Óseas/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Integrina alfa6/metabolismo , Laminina/metabolismo , Macrófagos/metabolismo , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/secundario , Meninges/patología , Invasividad Neoplásica , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Transducción de Señal , Vías Nerviosas/metabolismo , Ratones SCID , Ratones Noqueados
10.
J Exp Clin Cancer Res ; 43(1): 163, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863037

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer subtype often treated with radiotherapy (RT). Due to its intrinsic heterogeneity and lack of effective targets, it is crucial to identify novel molecular targets that would increase RT efficacy. Here we demonstrate the role of BUB1 (cell cycle Ser/Thr kinase) in TNBC radioresistance and offer a novel strategy to improve TNBC treatment. METHODS: Gene expression analysis was performed to look at genes upregulated in TNBC patient samples compared to other subtypes. Cell proliferation and clonogenic survivals assays determined the IC50 of BUB1 inhibitor (BAY1816032) and radiation enhancement ratio (rER) with pharmacologic and genomic BUB1 inhibition. Mammary fat pad xenografts experiments were performed in CB17/SCID. The mechanism through which BUB1 inhibitor sensitizes TNBC cells to radiotherapy was delineated by γ-H2AX foci assays, BLRR, Immunoblotting, qPCR, CHX chase, and cell fractionation assays. RESULTS: BUB1 is overexpressed in BC and its expression is considerably elevated in TNBC with poor survival outcomes. Pharmacological or genomic ablation of BUB1 sensitized multiple TNBC cell lines to cell killing by radiation, although breast epithelial cells showed no radiosensitization with BUB1 inhibition. Kinase function of BUB1 is mainly accountable for this radiosensitization phenotype. BUB1 ablation also led to radiosensitization in TNBC tumor xenografts with significantly increased tumor growth delay and overall survival. Mechanistically, BUB1 ablation inhibited the repair of radiation-induced DNA double strand breaks (DSBs). BUB1 ablation stabilized phospho-DNAPKcs (S2056) following RT such that half-lives could not be estimated. In contrast, RT alone caused BUB1 stabilization, but pre-treatment with BUB1 inhibitor prevented stabilization (t1/2, ~8 h). Nuclear and chromatin-enriched fractionations illustrated an increase in recruitment of phospho- and total-DNAPK, and KAP1 to chromatin indicating that BUB1 is indispensable in the activation and recruitment of non-homologous end joining (NHEJ) proteins to DSBs. Additionally, BUB1 staining of TNBC tissue microarrays demonstrated significant correlation of BUB1 protein expression with tumor grade. CONCLUSIONS: BUB1 ablation sensitizes TNBC cell lines and xenografts to RT and BUB1 mediated radiosensitization may occur through NHEJ. Together, these results highlight BUB1 as a novel molecular target for radiosensitization in women with TNBC.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteínas Serina-Treonina Quinasas , Tolerancia a Radiación , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/radioterapia , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Animales , Femenino , Ratones , Línea Celular Tumoral , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Ratones SCID
11.
Biomed Pharmacother ; 176: 116887, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852511

RESUMEN

BACKGROUND: The metastasis of tumors into bone tissue typically leads to intractable pain that is both very disabling and particularly difficult to manage. We investigated here whether riluzole could have beneficial effects for the treatment of prostate cancer-induced bone pain and how it could influence the development of bone metastasis. METHODS: We used a bone pain model induced by intratibial injection of human PC3 prostate cancer cells into male SCID mice treated or not with riluzole administered in drinking water. We also used riluzole in vitro to assess its possible effect on PC3 cell viability and functionality, using patch-clamp. RESULTS: Riluzole had a significant preventive effect on both evoked and spontaneous pain involving the TREK-1 potassium channel. Riluzole did not interfere with PC3-induced bone loss or bone remodeling in vivo. It also significantly decreased PC3 cell viability in vitro. The antiproliferative effect of riluzole is correlated with a TREK-1-dependent membrane hyperpolarization in these cells. CONCLUSION: The present data suggest that riluzole could be very useful to manage evoked and spontaneous hypersensitivity in cancer-induced bone pain and has no significant adverse effect on cancer progression.


Asunto(s)
Analgésicos , Neoplasias Óseas , Dolor en Cáncer , Proliferación Celular , Ratones SCID , Canales de Potasio de Dominio Poro en Tándem , Riluzol , Riluzol/farmacología , Animales , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Masculino , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Neoplasias Óseas/patología , Neoplasias Óseas/complicaciones , Humanos , Dolor en Cáncer/tratamiento farmacológico , Dolor en Cáncer/metabolismo , Analgésicos/farmacología , Proliferación Celular/efectos de los fármacos , Células PC-3 , Ratones , Supervivencia Celular/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral
12.
Life Sci ; 351: 122851, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38897345

RESUMEN

AIMS: Pannexin-1 (PANX1) is a hemichannel that releases ATP upon opening, initiating inflammation, cell proliferation, and migration. However, the role of PANX1 channels in colon cancer remains poorly understood, thus constituting the focus of this study. MAIN METHODS: PANX1 mRNA expression was analyzed using multiple cancer databases. PANX1 protein expression and distribution were evaluated by immunohistochemistry on primary tumor tissue and non-tumor colonic mucosa from colon cancer patients. PANX1 inhibitors (probenecid or 10Panx) were used to assess colon cancer cell lines viability. To study the role of PANX1 in vivo, a subcutaneous xenograft model using HCT116 cells was performed in BALB/c NOD/SCID immunodeficient mice to evaluate tumor growth under PANX1 inhibition using probenecid. KEY FINDINGS: PANX1 mRNA was upregulated in colon cancer tissue compared to non-tumor colonic mucosa. Elevated PANX1 mRNA expression in tumors correlated with worse disease-free survival. PANX1 protein abundance was increased on tumor cells compared to epithelial cells in paired samples, in a cancer stage-dependent manner. In vitro and in vivo experiments indicated that blocking PANX1 reduced cell viability and tumor growth. SIGNIFICANCE: PANX1 can be used as a biomarker of colon cancer progression and blocking PANX1 channel opening could be used as a potential therapeutic strategy against this disease.


Asunto(s)
Neoplasias del Colon , Conexinas , Progresión de la Enfermedad , Proteínas del Tejido Nervioso , Animales , Femenino , Humanos , Masculino , Ratones , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/genética , Conexinas/metabolismo , Conexinas/genética , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Probenecid/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Sci Rep ; 14(1): 13741, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877072

RESUMEN

Dirofilaria immitis is a mosquito-borne parasitic nematode that causes fatal heartworm disease in canids. The microfilariae are essential for research, including drug screening and mosquito-parasite interactions. However, no reliable methods for maintaining microfilaria long-term are currently available. Therefore, we used severe combined immunodeficiency (SCID) mice to develop a reliable method for maintaining D. immitis microfilaria. SCID mice were injected intravenously with microfilariae isolated from a D. immitis-infected dog. Microfilariae were detected in blood collected from the tail vein 218 days post-inoculation (dpi) and via cardiac puncture 296 dpi. Microfilariae maintained in and extracted from SCID mice showed infectivity and matured into third-stage larvae (L3s) in the vector mosquito Aedes aegypti. L3s can develop into the fourth stage larvae in vitro. Microfilariae from SCID mice respond normally to ivermectin in vitro. The microfilariae in SCID mice displayed periodicity in the peripheral circulation. The SCID mouse model aided in the separation of microfilariae from cryopreserved specimens. The use of SCID mice enabled the isolation and sustained cultivation of microfilariae from clinical samples. These findings highlight the usefulness of the SCID mouse model for studying D. immitis microfilaremia in canine heartworm research.


Asunto(s)
Dirofilaria immitis , Dirofilariasis , Modelos Animales de Enfermedad , Ratones SCID , Microfilarias , Animales , Perros , Dirofilariasis/parasitología , Ratones , Enfermedades de los Perros/parasitología , Aedes/parasitología , Larva , Ivermectina/uso terapéutico
14.
Stem Cell Res Ther ; 15(1): 164, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853275

RESUMEN

BACKGROUND: Transplantation of CD34+ hematopoietic stem and progenitor cells (HSPC) into immunodeficient mice is an established method to generate humanized mice harbouring a human immune system. Different sources and methods for CD34+ isolation have been employed by various research groups, resulting in customized models that are difficult to compare. A more detailed characterization of CD34+ isolates is needed for a better understanding of engraftable hematopoietic and potentially non-hematopoietic cells. Here we have performed a direct comparison of CD34+ isolated from cord blood (CB-CD34+) or fetal liver (FL-CD34+ and FL-CD34+CD14-) and their engraftment into immunocompromised NOD/Shi-scid Il2rgnull (NOG) mice. METHODS: NOG mice were transplanted with either CB-CD34+, FL-CD34+ or FL-CD34+CD14- to generate CB-NOG, FL-NOG and FL-CD14--NOG, respectively. After 15-20 weeks, the mice were sacrificed and human immune cell reconstitution was assessed in blood and several organs. Liver sections were pathologically assessed upon Haematoxylin and Eosin staining. To assess the capability of allogenic tumor rejection in CB- vs. FL-reconstituted mice, animals were subcutaneously engrafted with an HLA-mismatched melanoma cell line. Tumor growth was assessed by calliper measurements and a Luminex-based assay was used to compare the cytokine/chemokine profiles. RESULTS: We show that CB-CD34+ are a uniform population of HSPC that reconstitute NOG mice more rapidly than FL-CD34+ due to faster B cell development. However, upon long-term engraftment, FL-NOG display increased numbers of neutrophils, dendritic cells and macrophages in multiple tissues. In addition to HSPC, FL-CD34+ isolates contain non-hematopoietic CD14+ endothelial cells that enhance the engraftment of the human immune system in FL-NOG mice. We demonstrate that these CD14+CD34+ cells are capable of reconstituting Factor VIII-producing liver sinusoidal endothelial cells (LSEC) in FL-NOG. However, CD14+CD34+ also contribute to hepatic sinusoidal dilatation and immune cell infiltration, which may culminate in a graft-versus-host disease (GVHD) pathology upon long-term engraftment. Finally, using an HLA-A mismatched CDX melanoma model, we show that FL-NOG, but not CB-NOG, can mount a graft-versus-tumor (GVT) response resulting in tumor rejection. CONCLUSION: Our results highlight important phenotypical and functional differences between CB- and FL-NOG and reveal FL-NOG as a potential model to study hepatic sinusoidal dilatation and mechanisms of GVT.


Asunto(s)
Antígenos CD34 , Hígado , Animales , Humanos , Antígenos CD34/metabolismo , Ratones , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos NOD , Trasplante de Células Madre Hematopoyéticas , Ratones SCID , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/trasplante , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Sangre Fetal/citología , Melanoma/patología , Melanoma/inmunología
15.
J Exp Clin Cancer Res ; 43(1): 161, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858661

RESUMEN

BACKGROUND: Cancer-associated fibroblasts (CAFs) play a significant role in fueling prostate cancer (PCa) progression by interacting with tumor cells. A previous gene expression analysis revealed that CAFs up-regulate genes coding for voltage-gated cation channels, as compared to normal prostate fibroblasts (NPFs). In this study, we explored the impact of antiarrhythmic drugs, known cation channel inhibitors, on the activated state of CAFs and their interaction with PCa cells. METHODS: The effect of antiarrhythmic treatment on CAF activated phenotype was assessed in terms of cell morphology and fibroblast activation markers. CAF contractility and migration were evaluated by 3D gel collagen contraction and scratch assays, respectively. The ability of antiarrhythmics to impair CAF-PCa cell interplay was investigated in CAF-PCa cell co-cultures by assessing tumor cell growth and expression of epithelial-to-mesenchymal transition (EMT) markers. The effect on in vivo tumor growth was assessed by subcutaneously injecting PCa cells in SCID mice and intratumorally administering the medium of antiarrhythmic-treated CAFs or in co-injection experiments, where antiarrhythmic-treated CAFs were co-injected with PCa cells. RESULTS: Activated fibroblasts show increased membrane conductance for potassium, sodium and calcium, consistently with the mRNA and protein content analysis. Antiarrhythmics modulate the expression of fibroblast activation markers. Although to a variable extent, these drugs also reduce CAF motility and hinder their ability to remodel the extracellular matrix, for example by reducing MMP-2 release. Furthermore, conditioned medium and co-culture experiments showed that antiarrhythmics can, at least in part, reverse the protumor effects exerted by CAFs on PCa cell growth and plasticity, both in androgen-sensitive and castration-resistant cell lines. Consistently, the transcriptome of antiarrhythmic-treated CAFs resembles that of tumor-suppressive NPFs. In vivo experiments confirmed that the conditioned medium or the direct coinjection of antiarrhythmic-treated CAFs reduced the tumor growth rate of PCa xenografts. CONCLUSIONS: Collectively, such data suggest a new therapeutic strategy for PCa based on the repositioning of antiarrhythmic drugs with the aim of normalizing CAF phenotype and creating a less permissive tumor microenvironment.


Asunto(s)
Antiarrítmicos , Fibroblastos Asociados al Cáncer , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Ratones , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fenotipo , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Ratones SCID , Ensayos Antitumor por Modelo de Xenoinjerto , Transición Epitelial-Mesenquimal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos
16.
Transfusion ; 64(7): 1306-1314, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757806

RESUMEN

BACKGROUND: Platelet radiolabeling with radioisotopes is currently used for human platelet recovery and survival studies. Biotinylation enables ex vivo post-transfusion platelet function testing. Whether platelet biotinylation itself affects platelet function is controversial. STUDY DESIGN AND METHODS: Platelet concentrates from healthy humans were stored for 6 days. Samples were obtained at 1 or 2 and 6 days, and platelets were labeled following a radiolabeling protocol using saline instead of radioactive indium-111 (sham radiolabeling [sham-RL]). Alternatively, a newly developed biotinylation protocol, a washing protocol, or an unmanipulated control sample were used. Platelet function was assessed by flow cytometry after stimulation with platelet agonists and labeling of platelets with platelet activation markers. To test whether platelets can be activated after transfusion, labeled platelets were transfused into nonobese diabetic/severe combined immunodeficiency mice, and samples were obtained 1 h after transfusion. RESULTS: The activation profile of biotinylated platelets was comparable to sham-RL platelets before transfusion except for significantly less α-degranulation and more phosphatidyl serine exposure on storage day 1/2. There was no significant difference between sham-RL and biotinylated platelets on storage day 6. Sham-RL and biotinylated platelets were significantly less activatable than washed and unmanipulated control platelets. After transfusion, the activation profile of biotinylated platelets was largely indistinguishable from unmanipulated ones. DISCUSSION: The decrease in activation level in biotinylated platelets we and others observed appears mainly due to the physical manipulation during the labeling process. In conclusion, biotinylated platelets allow for post-transfusion function assessment, a major advantage over radiolabeling.


Asunto(s)
Biotinilación , Plaquetas , Conservación de la Sangre , Ratones SCID , Transfusión de Plaquetas , Humanos , Plaquetas/metabolismo , Animales , Ratones , Conservación de la Sangre/métodos , Ratones Endogámicos NOD , Activación Plaquetaria , Biotina/metabolismo , Biotina/química , Pruebas de Función Plaquetaria/métodos
17.
Clin Sci (Lond) ; 138(12): 699-709, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38817011

RESUMEN

Our previous studies indicated that there is overexpression of MIAT in fibroids and MIAT is a sponge for the miR-29 family in these tumors. The objective of the present study was to determine if the knockdown of MIAT in fibroid xenografts will increase miR-29 levels and reduce the expression of genes targeted by this miRNA such as collagen and cell cycle regulatory proteins in a mouse model for fibroids. Ovariectomized CB-17 SCID/Beige mice bearing estrogen/progesterone pellets were implanted subcutaneously in the flank with equal weight of fibroid explants which had been transduced by lentivirus for either control (empty vector) or MIAT knockdown for four weeks (n=7). Knockdown of MIAT in fibroid xenografts resulted in a 30% reduction of tumor weight and a marked increase in miR-29a, -b, and -c levels in the xenografts. There was reduced cell proliferation and expression of cell cycle regulatory genes CCND1, CDK2, and E2F1 and no significant changes in apoptosis. The xenografts with MIAT knockdown expressed lower mRNA and protein levels of FN1, COL3A1, and TGF-ß3, and total collagen protein. Targeting MIAT, which sponges the pro-fibrotic miR-29 family, is an effective therapy for fibroids by reducing cell proliferation and thereby, tumor growth and accumulation of ECM, which is a hallmark of these benign gynecologic tumors.


Asunto(s)
Proliferación Celular , Leiomioma , MicroARNs , ARN Largo no Codificante , Animales , Leiomioma/genética , Leiomioma/terapia , Leiomioma/metabolismo , Leiomioma/patología , Femenino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Neoplasias Uterinas/genética , Neoplasias Uterinas/terapia , Neoplasias Uterinas/patología , Neoplasias Uterinas/metabolismo , Ratones SCID , Regulación Neoplásica de la Expresión Génica , Modelos Animales de Enfermedad , Ratones , Técnicas de Silenciamiento del Gen , Ensayos Antitumor por Modelo de Xenoinjerto , Apoptosis
18.
Front Immunol ; 15: 1395018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799434

RESUMEN

Background: Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. HIV infection decreases CD4+ T cell levels markedly increasing Mtb co-infections. An appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans during co-infection would facilitate basic and translational research in HIV/Mtb infections. Herein, we describe a novel humanized mouse model. Methods: The irradiated NSG-SGM3 mice were transplanted with human CD34+ hematopoietic stem cells, and the humanization was monitored by staining various immune cell markers for flow cytometry. They were challenged with HIV and/or Mtb, and the CD4+ T cell depletion and HIV viral load were monitored over time. Before necropsy, the live mice were subjected to pulmonary function test and CT scan, and after sacrifice, the lung and spleen homogenates were used to determine Mtb load (CFU) and cytokine/chemokine levels by multiplex assay, and lung sections were analyzed for histopathology. The mouse sera were subjected to metabolomics analysis. Results: Our humanized NSG-SGM3 mice were able to engraft human CD34+ stem cells, which then differentiated into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced granulomatous lesions in the lungs. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Conclusion: The humanized NSG-SGM3 mice are able to recapitulate the pathogenic effects of HIV and Mtb infections and co-infection at the pathological, immunological and metabolism levels and are therefore a reproducible small animal model for studying HIV/Mtb co-infection.


Asunto(s)
Coinfección , Modelos Animales de Enfermedad , Infecciones por VIH , Mycobacterium tuberculosis , Tuberculosis , Animales , Coinfección/inmunología , Coinfección/microbiología , Infecciones por VIH/inmunología , Infecciones por VIH/complicaciones , Humanos , Ratones , Tuberculosis/inmunología , Mycobacterium tuberculosis/inmunología , Linfocitos T CD4-Positivos/inmunología , Trasplante de Células Madre Hematopoyéticas , Carga Viral , VIH-1/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Células Madre Hematopoyéticas/inmunología , Ratones SCID
19.
Nat Commun ; 15(1): 4653, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821942

RESUMEN

Patient-derived xenograft (PDX) models are widely used in cancer research. To investigate the genomic fidelity of non-small cell lung cancer PDX models, we established 48 PDX models from 22 patients enrolled in the TRACERx study. Multi-region tumor sampling increased successful PDX engraftment and most models were histologically similar to their parent tumor. Whole-exome sequencing enabled comparison of tumors and PDX models and we provide an adapted mouse reference genome for improved removal of NOD scid gamma (NSG) mouse-derived reads from sequencing data. PDX model establishment caused a genomic bottleneck, with models often representing a single tumor subclone. While distinct tumor subclones were represented in independent models from the same tumor, individual PDX models did not fully recapitulate intratumor heterogeneity. On-going genomic evolution in mice contributed modestly to the genomic distance between tumors and PDX models. Our study highlights the importance of considering primary tumor heterogeneity when using PDX models and emphasizes the benefit of comprehensive tumor sampling.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Heterogeneidad Genética , Neoplasias Pulmonares , Ratones Endogámicos NOD , Ratones SCID , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Animales , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Femenino , Secuenciación del Exoma , Genómica/métodos , Masculino , Ensayos Antitumor por Modelo de Xenoinjerto , Xenoinjertos , Modelos Animales de Enfermedad , Anciano , Persona de Mediana Edad
20.
Immunology ; 172(4): 627-640, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38736328

RESUMEN

Invariant natural killer T (iNKT) cells are a conserved population of innate T lymphocytes that are uniquely suitable as off-the-shelf cellular immunotherapies due to their lack of alloreactivity. Two major subpopulations of human iNKT cells have been delineated, a CD4- subset that has a TH1/cytolytic profile, and a CD4+ subset that appears polyfunctional and can produce both regulatory and immunostimulatory cytokines. Whether these two subsets differ in anti-tumour effects is not known. Using live cell imaging, we found that CD4- iNKT cells limited growth of CD1d+ Epstein-Barr virus (EBV)-infected B-lymphoblastoid spheroids in vitro, whereas CD4+ iNKT cells showed little or no direct anti-tumour activity. However, the effects of the two subsets were reversed when we tested them as adoptive immunotherapies in vivo using a xenograft model of EBV-driven human B cell lymphoma. We found that EBV-infected B cells down-regulated CD1d in vivo, and administering CD4- iNKT cells had no discernable impact on tumour mass. In contrast, xenotransplanted mice bearing lymphomas showed rapid reduction in tumour mass after administering CD4+ iNKT cells. Immunotherapeutic CD4+ iNKT cells trafficked to both spleen and tumour and were associated with subsequently enhanced responses of xenotransplanted human T cells against EBV. CD4+ iNKT cells also had adjuvant-like effects on monocyte-derived DCs and promoted antigen-dependent responses of human T cells in vitro. These results show that allogeneic CD4+ iNKT cellular immunotherapy leads to marked anti-tumour activity through indirect pathways that do not require tumour cell CD1d expression and that are associated with enhanced activity of antigen-specific T cells.


Asunto(s)
Antígenos CD1d , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Inmunoterapia Adoptiva , Linfoma de Células B , Células T Asesinas Naturales , Antígenos CD1d/metabolismo , Antígenos CD1d/inmunología , Humanos , Animales , Células T Asesinas Naturales/inmunología , Inmunoterapia Adoptiva/métodos , Herpesvirus Humano 4/inmunología , Linfoma de Células B/inmunología , Linfoma de Células B/terapia , Ratones , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Ratones SCID , Ratones Endogámicos NOD
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...