Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.045
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124987, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39163774

RESUMEN

While numerous methods exist for diagnosing tumors through the detection of miRNA within tumor cells, few can simultaneously achieve both tumor diagnosis and treatment. In this study, a novel graphene oxide (GO)-based DNA nanodevice (DND), initiated by miRNA, was developed for fluorescence signal amplification imaging and photodynamic therapy in tumor cells. After entering the cells, tumor-associated miRNA drives DND to Catalyzed hairpin self-assembly (CHA). The CHA reaction generated a multitude of DNA Y-type structures, resulting in a substantial amplification of Ce6 fluorescence release and the generation of numerous singlet oxygen (1O2) species induced by laser irradiation, consequently inducing cell apoptosis. In solution, DND exhibited high selectivity and sensitivity to miRNA-21, with a detection limit of 11.47 pM. Furthermore, DND discriminated between normal and tumor cells via fluorescence imaging and specifically generated O21 species in tumor cells upon laser irradiation, resulting in tumor cells apoptosis. The DND offer a new approach for the early diagnosis and timely treatment of malignant tumors.


Asunto(s)
ADN , Grafito , MicroARNs , Fotoquimioterapia , Nanomedicina Teranóstica , Fotoquimioterapia/métodos , Humanos , MicroARNs/análisis , Grafito/química , Nanomedicina Teranóstica/métodos , ADN/química , Apoptosis/efectos de los fármacos , Imagen Óptica , Línea Celular Tumoral , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico por imagen
2.
Clin Chim Acta ; 564: 119946, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39214394

RESUMEN

Ovarian cancer, a prevalent and deadly cancer among women, presents a significant challenge for early detection due to its heterogeneous nature. MicroRNAs, short non-coding regulatory RNA fragments, play a role in various cellular processes. Aberrant expression of these microRNAs has been observed in the carcinogenesis-related processes of many cancer types. Numerous studies highlight the critical role of microRNAs in the initiation and progression of ovarian cancer. Given their clinical importance and predictive value, there has been considerable interest in developing simple, prompt, and sensitive miRNA biosensor strategies. Among these, electrochemical sensors have demonstrated advantageous characteristics such as simplicity, sensitivity, low cost, and scalability. These microRNA-based electrochemical biosensors are valuable tools for early detection and point-of-care applications. This article discusses the potential role of microRNAs in ovarian cancer and recent advances in the development of electrochemical biosensors for miRNA detection in ovarian cancer samples.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , MicroARNs , Neoplasias Ováricas , Humanos , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Femenino , Técnicas Biosensibles/métodos , MicroARNs/análisis , MicroARNs/genética
3.
Braz J Med Biol Res ; 57: e13599, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39383380

RESUMEN

In this study, we identified miRNAs and their potential mRNA targets that are intricately linked to primary chemotherapy response in patients with invasive ductal carcinomas. A cohort of individuals diagnosed with advanced invasive breast ductal carcinoma who underwent primary chemotherapy served as the cornerstone of our study. We conducted a comparative analysis of microRNA expression among patients who either responded or did not respond to primary systemic therapy. To analyze the correlation between the expression of the whole transcriptome and the 24 differentially expressed (DE) miRNAs, we harnessed the extensive repository of The Cancer Genome Atlas (TCGA) database. We mapped molecular mechanisms associated with these miRNAs and their targets from TCGA breast carcinomas. The resultant expression profile of the 24 DE miRNAs emerged as a potent and promising predictive model, offering insights into the intricate dynamics of chemotherapy responsiveness of advanced breast tumors. The discriminative analysis based on the principal component analysis identified the most representative miRNAs across breast cancer samples (miR-210, miR-197, miR-328, miR-519a, and miR-628). Moreover, the consensus clustering generated four possible clusters of TCGA patients. Further studies should be conducted to advance these findings.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Carcinoma Ductal de Mama , MicroARNs , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Femenino , MicroARNs/análisis , Biomarcadores de Tumor/análisis , Carcinoma Ductal de Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patología , Persona de Mediana Edad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Adulto , Anciano , Transcriptoma
4.
BMC Oral Health ; 24(1): 1177, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367474

RESUMEN

BACKGROUND: Oral lichen planus (OLP) is a chronic inflammatory condition that can impact patients' quality of life. While its exact etiology remains unclear, it is associated with an increased risk of malignant transformation. Currently, the diagnosis of OLP relies on clinical examination and histopathological analysis, which can be invasive. Therefore, there is an urgent need for non-invasive and accurate diagnostic biomarkers. This systematic review and meta-analysis aims to investigate the potential of salivary microRNAs as promising candidates for OLP diagnosis. This meta-analysis seeks to identify specific microRNAs that are differentially expressed and could serve as reliable biomarkers for OLP diagnosis. METHODS: Our strategy involved searching for pertinent keywords in multiple academic databases including Cochrane Library, Embase, LIVIVO, MEDLINE, Ovid, ProQuest, Scopus, Web of Science, Espacenet, and Google Scholar search engine. Upon identification, articles were screened and data extracted from the eligible studies. Split component synthesis method was utilized to assess specificity, sensitivity, likelihood and diagnostic odds ratios. The random-effects meta-analysis approach was used to combine study findings and develop pooled diagnostic performance metrics. Hierarchical summary receiver operating characteristic (ROC) plots were generated to determine area under the curve. Subgroup analyses concerning the type of saliva and control groups were also performed. RESULTS: Among the fourteen studies included in our systematic review, five were eligible for meta-analysis. Salivary microRNAs showed the pooled sensitivity of 0.80 (95% Confidence Interval (95% CI): 0.68-0.88), specificity of 0.89 (95% CI: 0.82-0.94), diagnostic odds ratio of 28.45 (95% CI: 10.40-77.80), and area under the curve (AUC) of 0.93 for OLP diagnosis. Unstimulated saliva had higher sensitivity and specificity than oral swirl samples as the biomarker medium for OLP diagnosis. Meta-analysis uncovered that miR-27a, miR-137, miR-1290, miR-27b, miR-4484, miR-142, and miR-1246 had the highest diagnostic odds ratio for OLP. CONCLUSIONS: Our systematic review and meta-analysis demonstrate that salivary microRNAs can serve as valuable biomarkers for the diagnosis of OLP. The findings highlight the exceptional accuracy of salivary microRNAs in differentiating OLP patients from healthy controls and assessing the risk of malignant transformation.


Asunto(s)
Liquen Plano Oral , MicroARNs , Neoplasias de la Boca , Saliva , Liquen Plano Oral/patología , Liquen Plano Oral/diagnóstico , Liquen Plano Oral/genética , Humanos , MicroARNs/análisis , Saliva/química , Neoplasias de la Boca/patología , Neoplasias de la Boca/genética , Neoplasias de la Boca/diagnóstico , Biomarcadores de Tumor/análisis , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/diagnóstico
5.
Anal Chim Acta ; 1324: 343103, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218582

RESUMEN

BACKGROUND: Recently, various techniques have been developed to accurately and sensitively detect tumor biomarkers for the early diagnosis and effective therapy of cancer. The electrochemiluminescence (ECL) method holding outstanding features including high sensitivity, ease of operation, and spatiotemporal controllability exhibited great potential for DNA/RNA detection, immunoassay, cancer cell detection, and environmental analysis. However, a glaring problem of ECL approaches is that the layer-by-layer modification on the electrode leads to poor stability and sensitivity of the sensors. Therefore, new simple and efficient methods for electrode modification which can effectively improve the ECL signal have attracted more and more research interests. RESULTS: Based on the dual amplification strategy of target-induced CHA and nanocomposite probes leading to self-generated co-reactant (H2O2), we proposed a highly sensitive miRNA-ECL detection system. The introduction of the target miRNA-21 triggers the CHA cycle amplification of DNA1 and biotin-modified DNA2, releasing the target miRNA-21 sequence for the target cycle reaction. After the reaction, the newly introduced DNA2 was combined with Au NPs modified with SA and Glucose oxidase (GOD). In the presence of oxygen, glucose was decomposed by GOD to produce H2O2, and then H2O2 was immediately catalyzed by the Hemin/G-quadruplex at the double-stranded end of the CHA product to produce a large amount of O2-•. As a co-reactant of luminol, the ECL signal was significantly enhanced, thereby achieving highly sensitive detection of miRNA-21 content and obtaining a low detection limit of 0.65 fM. The high specificity of the ECL biosensor was also proved by base mismatch. SIGNIFICANCE: Compared with other current detection methods, this sensor can achieve quantitative analysis of other target analytes by flexibly changing the probe DNA sequence, and provide a new feasible solution for the detection of tumor-associated markers. Benefiting from the improved sensitivity and selectivity, the proposed biosensing platform is expected to provide a new strategy for biomarkers analysis and outstanding prospect for further clinical application.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Glucosa Oxidasa , Peróxido de Hidrógeno , MicroARNs , MicroARNs/análisis , Humanos , Peróxido de Hidrógeno/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Mediciones Luminiscentes , Límite de Detección , Oro/química , Nanopartículas del Metal/química , Catálisis , ADN/química
6.
Anal Chem ; 96(37): 15066-15073, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39225442

RESUMEN

In this work, by ingeniously integrating catalytic hairpin assembly (CHA), double-end Mg2+-dependent DNAzyme, and hybridization chain reaction (HCR) as a triple cascade signal amplifier, an efficient concatenated CHA-DNAzyme-HCR (CDH) system was constructed to develop an ultrasensitive electrochemical biosensor with a low-background signal for the detection of microRNA-221 (miRNA-221). In the presence of the target miRNA-221, the CHA cycle was initiated by reacting with hairpins H1 and H2 to form DNAzyme structure H1-H2, which catalyzed the cleavage of the substrate hairpin H0 to release two output DNAs (output 1 and output 2). Subsequently, the double-loop hairpin H fixed on the electrode plate was opened by the output DNAs, to trigger the HCR with the assistance of hairpins Ha and Hb. Finally, methylene blue was intercalated into the long dsDNA polymer of the HCR product, resulting in a significant electrochemical signal. Surprisingly, the double-loop structure of the hairpin H could prominently reduce the background signal for enhancing the signal-to-noise ratio (S/N). As a proof of concept, an ultrasensitive electrochemical biosensor was developed using the CDH system with a detection limit as low as 9.25 aM, achieving favorable application for the detection of miRNA-221 in various cancer cell lysates. Benefiting from its enzyme-free, label-free, low-background, and highly sensitive characteristics, the CDH system showed widespread application potential for analyzing trace amounts of biomarkers in various clinical research studies.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Técnicas Electroquímicas , MicroARNs , MicroARNs/análisis , Técnicas Biosensibles/métodos , Humanos , ADN Catalítico/química , ADN Catalítico/metabolismo , Hibridación de Ácido Nucleico , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico
7.
Anal Chem ; 96(37): 14759-14765, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39234645

RESUMEN

Regulating photocurrent polarity is highly attractive for fabricating photoelectrochemical (PEC) biosensors with improved sensitivity and accuracy in practical samples. Here, a new approach that adopts the in situ generated AgI precipitate and AgNCs to reversal Bi2WO6 polarity with formation of Z-type heterojunction was proposed for the first time, which coupled with a high-efficient target conversion strategy of exonuclease III (Exo III)-assisted triple recycling amplification for sensing miRNA-21. The target-related DNA nanospheres in situ generated on electrode with loading of plentiful AgI and AgNCs not only endowed the photocurrent of Bi2WO6 switching from the anodic to cathodic one due to the changes in the electron transfer pathway but also formed AgI/AgNCs/Au/Bi2WO6 Z-type heterojunction to improve the photoelectric conversion efficiency for acquiring extremely enhanced PEC signal, thereby significantly avoiding the problem of high background signal derived from traditional unidirectional increasing/decreasing response and false-positive/false-negative. Experimental data showed that the PEC biosensor had a low detection limit down to 0.085 fM, providing a new polarity-reversal mechanism and expected application in diverse fields, including biomedical research and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , MicroARNs , Compuestos de Plata , MicroARNs/análisis , Compuestos de Plata/química , Procesos Fotoquímicos , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Límite de Detección , Humanos , Electrodos , Yoduros
8.
Mikrochim Acta ; 191(10): 606, 2024 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287790

RESUMEN

A bilayer MOF reporter (ZIF-67@FAM-mRNA@ZIF-8) was synthesized, and the ZIF-67 was used as a carrier and fluorescent quencher to connect the FAM reporter through electrostatic adsorption and coordination effect. The ZIF-8 covering the outer layer can improve the stability of the probe and cell permeability, which helps the FAM reporter effectively release. After entering the cancer cells, the acidic environment in the cells induced the decomposition of ZIF-8. The excess ATP in the tumor cells competitively binds ZIF-67, causing the FAM reporter to shed and restore fluorescence. The shed FAM reporter was specifically bound to the overexpressed miRNA-21 in breast cancer cells to achieve fluorescence imaging and therapy of breast cancer. The results of specific imaging and apoptosis experiments of breast cancer cells indicate that bilayer MOF nanomachine provides an effective nanotherapy platform for accurate fluorescence imaging.


Asunto(s)
Neoplasias de la Mama , Colorantes Fluorescentes , Estructuras Metalorgánicas , MicroARNs , Imagen Óptica , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Estructuras Metalorgánicas/química , Femenino , Colorantes Fluorescentes/química , MicroARNs/análisis , Apoptosis/efectos de los fármacos , Células MCF-7 , Línea Celular Tumoral , Imidazoles
9.
Mikrochim Acta ; 191(10): 596, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269609

RESUMEN

A smartphone-assisted electrochemiluminescence (ECL) strategy based on Ru(bpy)2(L)4+ as chromophores confined with metal - organic frameworks (Ru(bpy)2(L)4+@MOF-5) for the signal-amplified detection of miRNA-21 was developed. We synthesized a derivative of tris(2,2'-bipyridyl)ruthenium(II) complex (Ru(bpy)2(L)4+) with high charges, which can be loaded into the MOF-5 by strong electrostatic interaction to prevent from leakage. In addition, nucleic acid cycle amplification was used to quench the signal of Ru(bpy)2(L)4+@MOF-5 by ferrocene. This method was applied to detect the concentration of miRNA-21 ranging from 1.0 × 10-14-1.0 × 10-9 M with a low LOD of 7.2 fM. This work demonstrated the construction of a signal quenching strategy ECL biosensor for miRNA using Ru(bpy)2(L)4+@MOF-5 systems and its application in smartphone-assisted ECL detection.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Límite de Detección , Mediciones Luminiscentes , Estructuras Metalorgánicas , MicroARNs , Teléfono Inteligente , MicroARNs/análisis , MicroARNs/sangre , Técnicas Biosensibles/métodos , Mediciones Luminiscentes/métodos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Estructuras Metalorgánicas/química , Humanos , Complejos de Coordinación/química , Compuestos Organometálicos/química
10.
Biosens Bioelectron ; 266: 116736, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39226751

RESUMEN

In photoelectrochemical (PEC) sensors, traditional detection modes such as "signal-on", "signal-off", and "polarity-switchable" limit target signals to a single polarity range, necessitating novel design strategies to enhance the operational scope. To overcome this limitation, we propose, for the first time, a "polarity-transcendent" design concept that enables a continuous response across the polarity spectrum, significantly broadening the sensor's concentration detection range. This concept is exemplified in our new "background-enhanced signal-off polarity-switchable" (BESOPS) mode, where the model analyte let-7a activates a cascade shearing reaction of a DNAzyme walker in conjunction with CRISPR/Cas12a, quantitatively peeling off Cu2O-H2 strands at the Cu2O/TiO2 electrode interface to expose the TiO2 surface. This exposure generates an anodic photocurrent at the expense of the cathodic photocurrent from Cu2O/TiO2, facilitating a seamless transition of the target signal from cathodic to anodic. Through systematic experiments and comparative analyses, the BESOPS sensor demonstrates highly sensitive and precise quantification of let-7a, with a detection limit of 2.5 aM and a broad operating range of 10 aM to 10 nM. Its performance exceeds most reported sensor platforms, highlighting the significant potential of our polarity-transcendent design in expanding the operational range of PEC sensors. This innovative approach paves the way for developing next-generation PEC sensors with enhanced applicability and heightened sensitivity in various critical fields.


Asunto(s)
Técnicas Biosensibles , Cobre , Técnicas Electroquímicas , Límite de Detección , Titanio , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/métodos , Cobre/química , Titanio/química , MicroARNs/análisis , Humanos , Diseño de Equipo , Sistemas CRISPR-Cas , Electrodos
11.
Biosens Bioelectron ; 266: 116695, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39241340

RESUMEN

Scalable electronic devices that can detect target biomarkers from clinical samples hold great promise for point-of-care nucleic acid testing, but still cannot achieve the detection of target molecules at an attomolar range within a short timeframe (<1 h). To tackle this daunting challenge, we integrate graphene field-effect transistors (GFETs) with exponential target recycling and hybridization chain reaction (TRHCR) to detect oligonucleotides (using miRNA as a model disease biomarker), achieving a detection limit of 100 aM and reducing the sensing time by 30-fold, from 15 h to 30 min. In contrast to traditional linear TRHCR, our exponential TRHCR enables the target miRNA to initiate an autocatalytic system with exponential kinetics, significantly accelerating the reaction speed. The resulting reaction products, long-necked double-stranded polymers with a negative charge, are effectively detected by the GFET through chemical gating, leading to a shift in the Dirac voltage. Therefore, by monitoring the magnitude of this voltage shift, the target miRNA is quantified with high sensitivity. Consequently, our approach successfully detects 22-mer miRNA at concentrations as low as 100 aM in human serum samples, achieving the desired short timeframe of 30 min, which is congruent with point-of-care testing, and demonstrates superior specificity against single-base mismatched interfering oligonucleotides.


Asunto(s)
Técnicas Biosensibles , Grafito , Límite de Detección , MicroARNs , Hibridación de Ácido Nucleico , Transistores Electrónicos , MicroARNs/sangre , MicroARNs/análisis , Grafito/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Humanos , Diseño de Equipo
12.
ACS Sens ; 9(9): 4803-4810, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39283984

RESUMEN

CRISPR/Cas12a has been widely used in molecular diagnostics due to its excellent trans-cleavage activity. However, conventional reporters, such as F/Q-labeled single-stranded DNA (ssDNA) reporters, enzyme-labeled reporters, and spherical nucleic acid reporters, require complex modification or labeling processes. In this study, we have developed a rapid, universal, and label-free CRISPR/Cas12a-based biomarker detection platform via designing a G-quadruplex (G4) containing a hairpin structure as the reporter. The hairpin loop design of hairpin G4 improves the cleavage efficiency of Cas12a and the signal strength of the G4 binding ligand. Meanwhile, the incorporation of a G4 binding dye (protoporphyrin IX) eliminates the need for complex modifications. The CRISPR-hairpin G4 detection platform is capable of detecting ssDNA, double-stranded DNA, genetic RNAs, and miRNAs. Moreover, this platform achieves label-free detection in clinical samples, demonstrating its practical applicability and efficiency.


Asunto(s)
Sistemas CRISPR-Cas , G-Cuádruplex , Sistemas CRISPR-Cas/genética , Humanos , ADN de Cadena Simple/química , Biomarcadores/análisis , MicroARNs/análisis , Proteínas Asociadas a CRISPR/química , Técnicas Biosensibles/métodos , Endodesoxirribonucleasas/química , ADN/química , ADN/genética , Protoporfirinas/química , Proteínas Bacterianas
13.
Analyst ; 149(20): 5110-5117, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39235287

RESUMEN

Detecting multiple targets in complex cellular and biological environments yields more reliable results than single-label assays. Here, we introduced an electrochemical biosensor equipped with computing functions, acting as a smart automaton to enable computing-based detection. By defining the logic combinations of miR-21 and miR-122 as detection patterns, we proposed the corresponding AND and OR detection automata. In both logic gate modes, miR-21 and miR-122 could be replaced with single-stranded FO or FA, modified with Fc, binding to the S chain on the electrode surface. This process led to a significant decrease in the square wave voltammetry (SWV) of Fc on the same sensing platform, as numerous ferrocene (Fc)-tagged DNA fragments escaped from the electrode surface. Experimental results indicated that both automata efficiently and sensitively detected the presence of the two targets. This strategy highlighted how a small amount of target could generate a large current signal decrease in the logic automata, significantly reducing the detection limit for monitoring low-abundance targets. Moreover, the short-stranded DNA components of the detection automata exhibited a simple composition and easy programmability of probe sequences, offering an innovative detection mode. This simplified the complex process of detection, data collection, computation, and evaluation. The direct detection result ("0" or "1") was exported according to the embedded computation code. This approach could be expanded into a detection system for identifying other sets of biomarkers, enhancing its potential for clinical applications.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Electrodos , Compuestos Ferrosos , Límite de Detección , Metalocenos , MicroARNs , MicroARNs/análisis , MicroARNs/genética , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Humanos , Metalocenos/química , Compuestos Ferrosos/química , Hibridación de Ácido Nucleico , Lógica
14.
ACS Nano ; 18(40): 27547-27556, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39326008

RESUMEN

Defect engineering offers a promising approach to enhance the sensitivity of biosensing materials by creating abundant chemically active sites. Despite its potential, achieving precise control and modification of these defects remains a significant challenge. Herein, we propose atomic-level defect engineering in GeP two-dimensional (2D) layered materials, following precise in situ growing Au nanoparticles on the single defect active sites for the design of ultrasensitive biosensors. The GeP-based biosensor exhibits notable capabilities for miRNA detection with excellent chemical stability, sensitivity, selectivity, and an extremely low detection limit of 28.6 aM. When applied to clinical tissue samples from gastric cancer patients, the biosensor effectively quantified the miR378c biomarker, enabling accurate stage-specific monitoring. This research not only represents a crucial advancement in the field of biosensing materials through defect engineering but also provides a promising avenue for early cancer diagnosis, staging, and monitoring.


Asunto(s)
Técnicas Biosensibles , Oro , Neoplasias Gástricas , Neoplasias Gástricas/diagnóstico , Técnicas Biosensibles/métodos , Humanos , Oro/química , MicroARNs/análisis , Nanopartículas del Metal/química
15.
Anal Chem ; 96(39): 15728-15734, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39291642

RESUMEN

MicroRNAs (miRNAs) have emerged as promising biomarkers for acute myocardial infarction (AMI). There is an urgent imperative to develop analytical methodologies capable of intelligently discerning multiple circulating miRNAs. Here, we present a dual miRNA detection platform for AMI using DNA logic gates coupled with an electrochemiluminescence (ECL) response. The platform integrates DNA truncated square pyramids as capture probes on gold-deposited electrodes, enabling precise quantification of miRNA associated with AMI. The cyclic enzymatic signal amplification principle of strand displacement amplification enhances the miRNA detection sensitivity. AND and OR logic gates have been successfully constructed, enabling intelligent identification of miRNAs in AMI. Calibration curves show strong linear correlations between ECL intensity and target miRNA concentration (10 fM to 10 nM), with excellent stability in consecutive measurements. When applied to clinical serum samples, the biosensor exhibits consistent performance, underscoring its reliability for clinical diagnostics. This innovative approach not only demonstrates DNA nanotechnology's potential in biosensing but also offers a promising solution for improving AMI diagnosis and prognosis through precise miRNA biomarker detection.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Mediciones Luminiscentes , MicroARNs , MicroARNs/análisis , MicroARNs/sangre , Humanos , Técnicas Biosensibles/métodos , ADN/química , Infarto del Miocardio/diagnóstico , Oro/química , Técnicas de Amplificación de Ácido Nucleico , Miocardio/metabolismo , Miocardio/química
16.
Anal Chem ; 96(39): 15624-15630, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39295453

RESUMEN

The timely and accurate diagnosis of acute myocardial infarction (AMI) is of great significance to reduce mortality and morbidity associated with the condition. Herein, we developed an electrochemiluminescence (ECL) biosensor for the detection of the potential AMI biomarker microRNA-499 (miRNA-499), which was based on duplex-specific nuclease-assisted target recycling and dual-output toehold-mediated strand displacement (TMSD). First, miRNA-499 was converted into a large amount of single-stranded DNA through the DSN-assisted target recycling, which was further incubated with the DNA triple-stranded complex (S) to implement TMSD cycles. Thus, the Ru(bpy)32+-labeled signal strands were released and captured by the capture probe on the electrode surface, resulting in an intense ECL signal. Owing to the prominent cascade signal amplification, the constructed biosensor exhibited a good linear response to miRNA-499 within the range of 100 aM-100 pM with a detection limit of 69.99 aM. Furthermore, it demonstrated superior selectivity, stability, and reproducibility. In addition, the biosensor was successfully applied to detect miRNA-499 in real human serum samples, demonstrating its potential for nucleic acid detection in the early diagnosis of diseases.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Mediciones Luminiscentes , MicroARNs , Técnicas de Amplificación de Ácido Nucleico , MicroARNs/análisis , MicroARNs/sangre , Técnicas Biosensibles/métodos , Humanos , Límite de Detección
17.
Anal Chem ; 96(39): 15665-15673, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39298294

RESUMEN

Tumor-derived small extracellular vesicle (sEV) microRNAs (miRNAs) are emerging biomarkers for cancer diagnostics. Conventional sEV miRNA detection methods necessitate the lysis of sEVs, rendering them laborious and time-consuming and potentially leading to damage or loss of miRNAs. Membrane fusion-based in situ detection of sEV miRNAs involves the preparation of probe-loaded vesicles (e.g., liposomes or cellular vesicles), which are typically sophisticated and require specialist equipment. Membrane perforation methods employ chemical treatments that can induce severe miRNA degradation or leaks. Inspired by previous studies that loaded nucleic acids into EVs or cells using hydrophobic tethers for therapeutic applications, herein, we repurposed this strategy by conjugating a hydrophobic tether onto molecular beacons to aid their transportation into sEVs, allowing for in situ detection of miRNAs in a fusion-free and multiplexing manner. This method enables simultaneous detection of multiple miRNA species within serum-derived sEVs for the diagnosis of prostate cancer, breast cancer, and gastric cancer with an accuracy of 83.3%, 81.8%, and 100%, respectively, in a cohort of 66 individuals, indicating that it holds a high application potential in clinical diagnostics.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Humanos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , MicroARNs/análisis , Femenino , Masculino , Biomarcadores de Tumor/análisis , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Próstata/diagnóstico
18.
Anal Chem ; 96(39): 15780-15788, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39303167

RESUMEN

A smartphone-mediated self-powered biosensor is fabricated for miRNA-141 detection based on the CRISPR/Cas12a cross-cutting technique and a highly efficient nanozyme. As a novel nanozyme and a signal-amplified coreaction accelerator, the AuPtPd@GDY nanozyme exhibits an excellent ability to catalyze cascade color reactions and high conductivity to enhance the electrochemical signal for miRNA-141 assays. After CRISPR/Cas12a cross-cutting of S2-glucose oxidase (S2-GOD), the electrochemical signal is weakened, and miRNA-141 is detected by monitoring the decrease in the signal. On the other hand, a cascade reaction among glucose, H2O2, and TMB is catalyzed by GOD and AuPtPd@GDY, respectively, resulting in a color change of the solution, which senses miRNA-141. The self-powered biosensor enables value-assisted and visual detection of miRNA-141 with limits of detection of 3.1 and 15 aM, respectively. Based on the dual-modal self-powered sensing system, a smartphone-mediated "all-in-one" biosensing chip is designed to achieve the real-time and intelligent monitoring of miRNA-141. This work provides a new approach to design multifunctional biosensors to realize the visualization and portable detection of tumor biomarkers.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Teléfono Inteligente , MicroARNs/análisis , Humanos , Glucosa Oxidasa/metabolismo , Glucosa Oxidasa/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Oro/química , Límite de Detección , Paladio/química , Sistemas CRISPR-Cas
19.
Nano Lett ; 24(39): 12233-12238, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39287191

RESUMEN

MicroRNAs (MiRNAs) are valuable biomarkers for the diagnosis and prognosis of diseases. The development of reliable assays is an urgent pursuit. We herein fabricate a novel electrochemical sensing strategy based on the conformation transitions of DNA nanostructures and click chemistry. Duplex-specific nuclease (DSN)-catalyzed reaction is first used for the disintegration of the DNA triangular pyramid frustum (DNA TPF). A DNA triangle is formed, which in turn assists strain-promoted alkyne-azide cycloaddition (SPAAC) to localize single-stranded DNA probes (P1). After SPAAC ligation, multiple DNA hairpins are spontaneously folded, and the labeled electrochemical species are dragged near the electrode interface. By recording and analyzing the responses, a highly sensitive electrochemical biosensor is established, which exhibits high sensitivity and reproducibility. Clinical applications have been verified with good stability. This sensing strategy relies on the integration of DNA nanostructures and click chemistry, which may inspire further designs for the development of DNA nanotechnology and applications in clinical chemistry.


Asunto(s)
Técnicas Biosensibles , Química Clic , ADN , Técnicas Electroquímicas , Nanoestructuras , Técnicas Biosensibles/métodos , Nanoestructuras/química , Técnicas Electroquímicas/métodos , ADN/química , Humanos , Reacción de Cicloadición , MicroARNs/análisis , Alquinos/química , Azidas/química , Nanotecnología/métodos , Conformación de Ácido Nucleico , Sondas de ADN/química
20.
Int J Biol Macromol ; 279(Pt 4): 135370, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39265909

RESUMEN

MicroRNAs (miRNAs) play an important role in the process of heart failure (HF) and are emerging biomarkers that can be used for the auxiliary diagnosis of HF. However, it is very challenging to accurately analyze the expression levels of trace miRNAs in complex clinical samples. Here, we developed an enzyme-free colorimetric sensor for the ultrasensitive detection of miRNA-423-5p (HF-associated miRNA) based on three-dimensional DNA walkers constructed from functional nucleic acids and gold nanoparticles (AuNPs). DNAzyme with cleavage activity was specifically activated by miRNA-423-5p to sustainably cleave the substrate, thereby releasing the trigger sequence to initiate the subsequent mismatched catalytic hairpin assembly (MCHA) cycle. Then, as the MCHA cycle proceeded to continuously expose the G-quadruplex (GQ) sequence, the sequence bound with hemin to form a large amount of GQ/hemin DNAzyme on the surface of the AuNPs, which rapidly catalyzed the chromogenic oxidation of 3,3',5,5'-tetramethylbenzidine to yield an amplified colorimetric signal readout. The colorimetric sensor exhibited an ultralow detection limit (32 fM), showed excellent specificity and performed well in serum samples. The sensor was applied to detect miRNA-423-5p in clinical plasma samples from healthy individuals and HF patients, and the results revealed its good clinical application in HF diagnosis. Thus, the developed colorimetric sensor provides a convenient detection tool for early screening and diagnosis of HF, as well as for pathophysiological studies.


Asunto(s)
Técnicas Biosensibles , Colorimetría , ADN Catalítico , Oro , Nanopartículas del Metal , MicroARNs , MicroARNs/sangre , MicroARNs/genética , MicroARNs/análisis , Colorimetría/métodos , Humanos , ADN Catalítico/química , Nanopartículas del Metal/química , Oro/química , Técnicas Biosensibles/métodos , Límite de Detección , G-Cuádruplex , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/genética , Hemina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA