Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.335
1.
Water Environ Res ; 96(6): e11054, 2024 Jun.
Article En | MEDLINE | ID: mdl-38828755

The land application of sewage sludge from wastewater treatment plants has been recognized as a major source of microplastic contamination in soil. Nevertheless, the fate and behavior of microplastics in soil remain uncertain, particularly their distribution and transport, which are poorly understood. This study does a bibliometric analysis and visualization of relevant research publications using the CiteSpace software. It explores the limited research available on the topic, highlighting the potential for it to emerge as a research hotspot in the future. Chinese researchers and institutions are paying great attention to this field and are promoting close academic cooperation among international organizations. Current research hot topics mainly involve microplastic pollution caused by the land application of sewage sludge, as well as the detection, environmental fate, and removal of microplastics in soil. The presence of microplastics in sludge, typically ranging from tens of thousands to hundreds of thousands of particles (p)/kg, inevitably leads to their introduction into soil upon land application. In China, the estimated annual accumulation of microplastics in the soil due to sludge use is approximately 1.7 × 1013 p. In European countries, the accumulation ranges from 8.6 to 71 × 1013 p. Sludge application has significantly elevated soil microplastic concentrations, with higher application rates and frequencies resulting in up to several-fold increases. The primary forms of microplastics found in soils treated with sludge are fragments and fibers, primarily in white color. These microplastics consist primarily of components such as polyamide, polyethylene, and polypropylene. The vertical transport behavior of microplastics is influenced by factors such as tillage, wind, rainfall, bioturbation, microplastic characteristics (e.g., fraction, particle size, and shape), and soil physicochemical properties (e.g., organic matter, porosity, electrical conductivity, and pH). Research indicates that microplastics can penetrate up to 90 cm into the soil profile and persist for decades. Microplastics in sewage sludge-amended soils pose potential long-term threats to soil ecosystems and even human health. Future research should focus on expanding the theoretical understanding of microplastic behavior in these soils, enabling the development of comprehensive risk assessments and informed decision-making for sludge management practices. PRACTITIONER POINTS: Microplastics in sewage sludge range from tens to hundreds of thousands per kilogram. Sludge land application contributes significantly to soil microplastic pollution. The main forms of microplastics in sludge-amended soils are fragments and fibers. Microplastics are mainly composed of polyamide, polyethylene, and polypropylene. Microplastics can penetrate up to 90 cm into the soil profile and persist for decades.


Microplastics , Sewage , Soil Pollutants , Soil , Sewage/chemistry , Microplastics/analysis , Soil Pollutants/analysis , Soil/chemistry , Bibliometrics , Environmental Monitoring
2.
Bull Environ Contam Toxicol ; 112(6): 83, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822863

To investigate the toxicological effects of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined contamination on the growth and physiological responses of V. faba seedlings, this experiment employed a hydroponic method. The Hoagland nutrient solution served as the control, changes in root growth, physiological and biochemical indicators of V. faba seedlings under different concentrations of PS-MPs (10, 100 mg/L) alone and combined with 0.5 mg/L Cd. The results demonstrated that the root biomass, root vitality, generation rate of superoxide radicals (O2·-), malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity increased with increasing concentration under the influence of PS-MPs alone, while the soluble sugar content and peroxidase (POD) activity decreased. In the combined treatment with Cd, the trends of these indicators are generally similar to the PS-MPs alone treatment group. However, root vitality and SOD activity showed an inverse relationship with the concentration of PS-MPs. Furthermore, laser confocal and electron microscopy scanning revealed that the green fluorescent polystyrene microspheres entered the root tips of the V. faba and underwent agglomeration in the treatment group with a low concentration of PS-MPs alone and a high concentration of composite PS-MPs with Cd.


Cadmium , Microplastics , Seedlings , Superoxide Dismutase , Vicia faba , Vicia faba/drug effects , Vicia faba/growth & development , Seedlings/drug effects , Seedlings/growth & development , Cadmium/toxicity , Microplastics/toxicity , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Water Pollutants, Chemical/toxicity , Plant Roots/drug effects , Plant Roots/growth & development
3.
Environ Health Perspect ; 132(6): 64001, 2024 Jun.
Article En | MEDLINE | ID: mdl-38833378

Human cells and zebrafish coexposed to nanoplastics and the sunscreen ingredient homosalate showed more plastics in tissues, estrogenic activity, and relevant gene expression changes than they showed after either exposure alone.


Sunscreening Agents , Zebrafish , Sunscreening Agents/toxicity , Animals , Humans , Estrogens , Ultraviolet Rays , Microplastics/toxicity
4.
Environ Geochem Health ; 46(7): 214, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842590

Water bodies play a crucial role in supporting life, maintaining the environment, and preserving the ecology for the people of India. However, in recent decades, human activities have led to various alterations in aquatic environments, resulting in environmental degradation through pollution. The safety of utilizing surface water sources for drinking and other purposes has come under intense scrutiny due to rapid population growth and industrial expansion. Surface water pollution due to micro-plastics (MPs) (plastics < 5 mm in size) is one of the emerging pollutants in metropolitan cities of developing countries because of its utmost resilience and synthetic nature. Recent studies on the surface water bodies (river, pond, Lake etc.) portrait the correlation between the MPs level with different parameters of pollution such as specific conductivity, total phosphate, and biological oxygen demand. Fibers represent the predominant form of MPs discovered in surface water bodies, exhibiting fluctuations across seasons. Consequently, present study prioritizes understanding the adaptation, prevalence, attributes, fluctuations, and spatial dispersion of MPs in both sediment and surface water environments. Furthermore, the study aims to identify existing gaps in the current understanding and underscore opportunities for future investigation. From the present study, it has been reported that, the concentration of MPs in the range of 0.2-45.2 items/L at the Xisha Islands in the south China sea, whereas in India it was found in the range of 96 items/L in water samples and 259 items/kg in sediment samples. This would certainly assist the urban planners in achieving sustainable development goals to mitigate the increasing amount of emergent pollutant load.


Environmental Monitoring , Water Pollutants, Chemical , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , India , Microplastics/analysis , Fresh Water/chemistry
5.
PLoS One ; 19(6): e0304686, 2024.
Article En | MEDLINE | ID: mdl-38837998

Microplastics, which are tiny plastic particles less than 5 mm in diameter, are widely present in the environment, have become a serious threat to aquatic life and human health, potentially causing ecosystem disorders and health problems. The present study aimed to investigate the effects of microplastics, specifically microplastics-polystyrene (MPs-PS), on the structural integrity, gene expression related to tight junctions, and gut microbiota in mice. A total of 24 Kunming mice aged 30 days were randomly assigned into four groups: control male (CM), control female (CF), PS-exposed male (PSM), and PS-exposed female (PSF)(n = 6). There were significant differences in villus height, width, intestinal surface area, and villus height to crypt depth ratio (V/C) between the PS group and the control group(C) (p <0.05). Gene expression analysis demonstrated the downregulation of Claudin-1, Claudin-2, Claudin-15, and Occludin, in both duodenum and jejunum of the PS group (p < 0.05). Analysis of microbial species using 16S rRNA sequencing indicated decreased diversity in the PSF group, as well as reduced diversity in the PSM group at various taxonomic levels. Beta diversity analysis showed a significant difference in gut microbiota distribution between the PS-exposed and C groups (R2 = 0.113, p<0.01), with this difference being more pronounced among females exposed to MPs-PS. KEGG analysis revealed enrichment of differential microbiota mainly involved in seven signaling pathways, such as nucleotide metabolism(p<0.05). The relative abundance ratio of transcriptional pathways was significantly increased for the PSF group (p<0.01), while excretory system pathways were for PSM group(p<0.05). Overall findings suggest that MPs-PS exhibit a notable sex-dependent impact on mouse gut microbiota, with a stronger effect observed among females; reduced expression of tight junction genes may be associated with dysbiosis, particularly elevated levels of Prevotellaceae.


Gastrointestinal Microbiome , Microplastics , Polystyrenes , Tight Junctions , Animals , Gastrointestinal Microbiome/drug effects , Microplastics/toxicity , Polystyrenes/toxicity , Mice , Male , Female , Tight Junctions/drug effects , Tight Junctions/metabolism , RNA, Ribosomal, 16S/genetics , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Occludin/metabolism , Occludin/genetics , Claudins/genetics , Claudins/metabolism , Claudin-1/genetics , Claudin-1/metabolism , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics
7.
PeerJ ; 12: e17407, 2024.
Article En | MEDLINE | ID: mdl-38827310

Background: The anthropause during the recent COVID-19 pandemic provided a unique opportunity to examine the impact of human activity on seabirds. Lockdowns in Peru prevented people from visiting coastal areas, thereby reducing garbage disposal on beaches and the movement of microplastics into the ocean. This cessation of activities likely led to a temporary decrease in plastic pollution in coastal regions. We aimed to investigate this phenomenon in inshore-feeding neotropic cormorants (Nannopterum brasilianus) along the Circuito de Playas Costa Verde (CPCV), situated on the coastal strip of Lima, Peru (∼ 11 million people). Methods: We collected and analyzed fresh pellets along the CPCV before (over 11 months) and during the pandemic lockdowns (over 8 months). Results: Our findings revealed a significant reduction in the occurrence of plastic in pellets during the pandemic period (% Oc = 2.47, n = 647 pellets) compared to pre-pandemic conditions (% Oc = 7.13, n = 800 pellets). The most common plastic debris item found in the pellets was threadlike microplastic. Additionally, our study highlights the direct correlation between human presence on beaches and the quantity of microplastics (mainly threadlike) found in cormorant pellets. We suggest that the reintroduction of these materials into the sea, previously accumulated on the coast, is likely facilitated by the movement and activity of beachgoers toward the ocean.


Birds , COVID-19 , Plastics , SARS-CoV-2 , Peru/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Animals , Humans , Pandemics , Microplastics , Eating
8.
Sci Rep ; 14(1): 12714, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830923

Infrastructure is often a limiting factor in microplastics research impacting the production of scientific outputs and monitoring data. International projects are therefore required to promote collaboration and development of national and regional scientific hubs. The Commonwealth Litter Programme and the Ocean Country Partnership Programme were developed to support Global South countries to take actions on plastics entering the oceans. An international laboratory network was developed to provide the infrastructure and in country capacity to conduct the collection and processing of microplastics in environmental samples. The laboratory network was also extended to include a network developed by the University of East Anglia, UK. All the laboratories were provided with similar equipment for the collection, processing and analysis of microplastics in environmental samples. Harmonised protocols and training were also provided in country during laboratory setup to ensure comparability of quality-controlled outputs between laboratories. Such large networks are needed to produce comparable baseline and monitoring assessments.


Environmental Monitoring , Laboratories , Microplastics , Microplastics/analysis , Environmental Monitoring/methods , Laboratories/standards , International Cooperation
9.
Cells ; 13(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38727304

We have described the influence of selected factors that increase the toxicity of nanoplastics (NPs) and microplastics (MPs) with regard to cell viability, various types of cell death, reactive oxygen species (ROS) induction, and genotoxicity. These factors include plastic particle size (NPs/MPs), zeta potential, exposure time, concentration, functionalization, and the influence of environmental factors and cell type. Studies have unequivocally shown that smaller plastic particles are more cytotoxic, penetrate cells more easily, increase ROS formation, and induce oxidative damage to proteins, lipids, and DNA. The toxic effects also increase with concentration and incubation time. NPs with positive zeta potential are also more toxic than those with a negative zeta potential because the cells are negatively charged, inducing stronger interactions. The deleterious effects of NPs and MPs are increased by functionalization with anionic or carboxyl groups, due to greater interaction with cell membrane components. Cationic NPs/MPs are particularly toxic due to their greater cellular uptake and/or their effects on cells and lysosomal membranes. The effects of polystyrene (PS) vary from one cell type to another, and normal cells are more sensitive to NPs than cancerous ones. The toxicity of NPs/MPs can be enhanced by environmental factors, including UV radiation, as they cause the particles to shrink and change their shape, which is a particularly important consideration when working with environmentally-changed NPs/MPs. In summary, the cytotoxicity, oxidative properties, and genotoxicity of plastic particles depends on their concentration, duration of action, and cell type. Also, NPs/MPs with a smaller diameter and positive zeta potential, and those exposed to UV and functionalized with amino groups, demonstrate higher toxicity than larger, non-functionalized and environmentally-unchanged particles with a negative zeta potential.


Cell Death , DNA Damage , Microplastics , Nanoparticles , Oxidative Stress , Oxidative Stress/drug effects , Microplastics/toxicity , Humans , Nanoparticles/toxicity , Nanoparticles/chemistry , Cell Death/drug effects , Reactive Oxygen Species/metabolism , Animals , Particle Size
10.
World J Gastroenterol ; 30(16): 2191-2194, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38690026

This editorial explores the intricate relationship between microplastics (MPs) and gut microbiota, emphasizing the complexity and environmental health implications. The gut microbiota, a crucial component of gastrointestinal health, is examined in the context of potential microbial degradation of MPs. Furthermore, dysbiosis induced by MPs emerges as a consensus, disrupting the balance of gut microbiota and decreasing diversity. The mechanisms triggering dysbiosis, including physical interactions and chemical composition, are under investigation. Ongoing research addresses the consequences of MPs on immune fun-ction, nutrient metabolism, and overall host health. The bidirectional relationship between MPs and gut microbiota has significant implications for environmental and human health. Despite uncertainties, MPs negatively impact gut microbiota and health. Further research is essential to unravel the complex interactions and assess the long-term consequences of MPs on both environmental and human well-being.


Dysbiosis , Gastrointestinal Microbiome , Microplastics , Microplastics/adverse effects , Humans , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Environmental Health , Environmental Exposure/adverse effects , Animals
11.
Environ Geochem Health ; 46(6): 185, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695908

Microplastics (MPs), as emerging contaminants, usually experience aging processes in natural environments and further affect their interactions with coexisted contaminants, resulting in unpredictable ecological risks. Herein, the effect of MPs aging on their adsorption for coexisting antibiotics and their joint biotoxicity have been investigated. Results showed that the adsorption capacity of aged polystyrene (PS, 100 d and 50 d) for ciprofloxacin (CIP) was 1.10-4.09 times higher than virgin PS due to the larger BET surface area and increased oxygen-containing functional groups of aged PS. Following the increased adsorption capacity of aged PS, the joint toxicity of aged PS and CIP to Shewanella Oneidensis MR-1 (MR-1) was 1.03-1.34 times higher than virgin PS and CIP. Combined with the adsorption process, CIP posed higher toxicity to MR-1 compared to aged PS due to the rapid adsorption of aged PS for CIP in the first 12 h. After that, the adsorption process tended to be gentle and hence the joint toxicity to MR-1 was gradually dominated by aged PS. A similar transformation between the adsorption rate and the joint toxicity of PS and CIP was observed under different conditions. This study supplied a novel perception of the synergistic effects of PS aging and CIP on ecological health.


Ciprofloxacin , Polystyrenes , Shewanella , Ciprofloxacin/chemistry , Ciprofloxacin/toxicity , Polystyrenes/toxicity , Polystyrenes/chemistry , Adsorption , Shewanella/drug effects , Microplastics/toxicity , Microplastics/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry
12.
Environ Geochem Health ; 46(6): 189, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695970

The potential effect of microplastics is an increasingly growing environmental issue. However, very little is known regarding the impact of microplastics on the vermicomposting process. The present study explored the effect of non-biodegradable (low density polyethylene; LDPE) and biodegradable (polybutylene succinate-co-adipate; PBSA) microplastics on earthworm Eisenia fetida during vermicomposting of cow dung. For this, earthworms were exposed to different concentrations (0, 0.5, 1 and 2%) of LDPE and PBSA of 2 mm size. The cow dung supported the growth and hatchlings of earthworms, and the toxicity effect of both LDPE and PBSA microplastics on Eisenia fetida was analyzed. Microplastics decreased the body weight of earthworms and there was no impact on hatchlings. The body weight of earthworm decreased from 0 to 60th day by 18.18% in 0.5% of LDPE treatment, 5.42% in 1% of LDPE, 20.58% in 2% of LDPE, 19.99% in 0.5% of PBSA, 15.09% in 1% of PBSA and 16.36% in 2% of PBSA. The physico-chemical parameters [pH (8.55-8.66), electrical conductivity (0.93-1.02 (S/m), organic matter (77.6-75.8%), total nitrogen (3.95-4.25 mg/kg) and total phosphorus (1.16-1.22 mg/kg)] do not show much significant changes with varying microplastics concentrations. Results of SEM and FTIR-ATR analysis observed the surface damage of earthworms, morphological and biochemical changes at higher concentrations of both LDPE and PBSA. The findings of the present study contribute to a better understanding of microplastics in vermicomposting system.


Microplastics , Oligochaeta , Soil Pollutants , Animals , Oligochaeta/drug effects , Microplastics/toxicity , Soil Pollutants/toxicity , Composting , Polyethylene/toxicity , Biodegradable Plastics
13.
Environ Geochem Health ; 46(6): 193, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696028

Microplastics (MPs) and copper (Cu) pollution coexist widely in cultivation environment. In this paper, polyvinyl chloride (PVC) were used to simulate the MPs exposure environment, and the combined effects of MPs + Cu on the germination of perilla seeds were analyzed. The results showed that low concentrations of Cu promoted seed germination, while medium to high concentrations exhibited inhibition and deteriorated the morphology of germinated seeds. The germination potential, germination index and vitality index of 8 mg • L-1 Cu treatment group with were 23.08%, 76.32% and 65.65%, respectively, of the control group. The addition of low concentration PVC increased the above indicators by 1.27, 1.15, and 1.35 times, respectively, while high concentration addition led to a decrease of 65.38%, 82.5%, and 66.44%, respectively. The addition of low concentration PVC reduced the amount of PVC attached to radicle. There was no significant change in germination rate. PVC treatment alone had no significant effect on germination. MPs + Cu inhibited seed germination, which was mainly reflected in the deterioration of seed morphology. Cu significantly enhanced antioxidant enzyme activity, increased reactive oxygen species (ROS) and MDA content. The addition of low concentration PVC enhanced SOD activity, reduced MDA and H2O2 content. The SOD activity of the Cu2+8 + PVC10 group was 4.05 and 1.35 times higher than that of the control group and Cu treatment group at their peak, respectively. At this time, the CAT activity of the Cu2+8 + PVC5000 group increased by 2.66 and 1.42 times, and the H2O2 content was 2.02 times higher than the control. Most of the above indicators reached their peak at 24 h. The activity of α-amylase was inhibited by different treatments, but ß-amylase activity, starch and soluble sugar content did not change regularly. The research results can provide new ideas for evaluating the impact of MPs + Cu combined pollution on perilla and its potential ecological risk.


Copper , Germination , Perilla , Polyvinyl Chloride , Seeds , Germination/drug effects , Copper/toxicity , Seeds/drug effects , Perilla/drug effects , Microplastics/toxicity , Particle Size , Reactive Oxygen Species/metabolism , Malondialdehyde/metabolism , Soil Pollutants/toxicity
14.
Environ Geochem Health ; 46(6): 197, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696118

Micro/nanoplastics (MNPs) are emerging as environmental pollutants with potential threats to human health. The accumulation of MNPs in the body can cause oxidative stress and increase the risk of cardiovascular disease (CVD). With the aim to systematically evaluate the extent of MNPs-induced oxidative damage and serum biochemical parameters in rats and mice, a total of 36 eligible articles were included in this meta-analysis study. The results reported that MNPs can significantly increase the levels of oxidants such as reactive oxygen species (ROS) and malondialdehyde (MDA) (P < 0.05), and resulted in notable increase in serum biochemical parameters including aspartate aminotransferase (AST) and alanine aminotransferase (ALT) (P < 0.05). Conversely, MNPs significantly reduced levels of antioxidants such as superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx) and catalase (CAT) (P < 0.05). Subgroup analysis revealed that smaller MNPs with oral administration and prolonged treatment, were associated with more pronounced oxidative stress and enhanced serum biochemical parameters alteration. In addition, after affected by MNPs, the levels of ALT and AST in liver group (SMD = 2.26, 95% CI = [1.59, 2.94] and SMD = 3.10, 95% CI = [1.25, 4.94]) were higher than those in other organs. These comprehensive results provide a scientific foundation for devising strategies to prevent MNPs-induced damage, contributing to solution of this environmental and health challenge.


Oxidative Stress , Animals , Oxidative Stress/drug effects , Rats , Mice , Aspartate Aminotransferases/blood , Microplastics/toxicity , Alanine Transaminase/blood , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Liver/drug effects , Liver/metabolism , Environmental Pollutants/toxicity , Nanoparticles , Malondialdehyde/blood , Superoxide Dismutase/metabolism
15.
Water Environ Res ; 96(5): e11033, 2024.
Article En | MEDLINE | ID: mdl-38720414

The escalating issue of microplastic (MP) pollution poses a significant threat to the marine environment due to increasing plastic production and improper waste management. The current investigation was aimed at quantifying the MP concentration on 25 beaches on the Maharashtra coast, India. Beach sediments (1 kg) were collected from each site, with five replicates to evaluate the extent of MPs. The samples were homogenized, and three 20 g replicas were prepared for subsequent analysis. Later, the samples were sieved, and MPs were extracted using previously published protocols. The abundance of MPs found as 1.56 ± 0.79 MPs/g, ranges from 0.43 ± 0.07 to 3 ± 0.37 MPs/g. Fibers were found as the most abundant shape of MPs. Size-wise classification revealed dominance of <1 mm and 1-2 mm-sized MPs. Blue- and black-colored MPs were recorded dominantly. Polymer identification of MPs revealed polyurethane, polypropylene, polyvinyl chloride, acrylic or polymethyl methacrylate, and rubber. The findings revealed that MPs were found to be higher at highly impacted sites, followed by moderately impacted sites and low-impacted sites, possibly due to a different degree of anthropogenic pressure. The study recommended the urgent need for effective policy to prevent plastics accumulation in the coastal environment of Maharashtra State, India. PRACTITIONER POINTS: The study investigated the abundance and distribution of microplastics in the marine environment, specifically in sediments. The most common type of microplastic found was fibers, followed by fragments and films. Microplastics were found to pose a potential risk to the marine ecosystem, although further research is needed to fully understand their ecological impact. Future research should focus on expanding the sample size, assessing long-term effects, exploring sources and pathways, and considering size and shape of microplastics. The findings recommended urgent action to mitigate plastic pollution in Maharashtra coast.


Bathing Beaches , Environmental Monitoring , Geologic Sediments , Microplastics , India , Microplastics/analysis , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Plastics/chemistry , Plastics/analysis
16.
Water Environ Res ; 96(5): e11029, 2024 May.
Article En | MEDLINE | ID: mdl-38708452

Microplastics (MPs) pollution has wreaked havoc on biodiversity and food safety globally. The false ingestion of MPs causes harmful effects on organisms, resulting in a decline in biodiversity. The present review comprehended the current knowledge of MP contamination in Crustacea and Mollusca from 75 peer-reviewed articles published in Asia between 2015 and 2023. A total of 79 species (27 Crustacea and 52 Mollusca) have been recorded to be contaminated with MPs. Out of the total 27 species of Crustacea, Metopograpsus quadridentatus (327.56 MPs/individual) and Balanus albicostatus (0.42 MPs/individual) showed the highest and lowest contamination, respectively. Out of the total 52 species of Mollusca, Dolabella auricularia (2325 MPs/individual) and Crassostrea gigas and Mytilus edulis (0.2 MPs/individual) showed the highest and lowest contamination, respectively. In terms of country-wise MP contamination, China has the highest number of contaminated species in both phylums among Asia. Findings of pollution indices revealed a very high risk of MP contamination in all the countries. Fiber was reported predominantly in both groups. Blue and black-colored MPs having <500 µm and <500 µm-1 mm size were found dominantly in Crustacea and Mollusca, respectively. Polypropylene was recorded as the dominant plastic polymer in both Crustacea and Mollusca. In essence, this review has provided a comprehensive insight into MP concentration in Crustacea and Mollusca of Asia, highlighting variations among species and geographic locations. This understanding is crucial for tackling urgent environmental challenges, safeguarding human health, and promoting global sustainability initiatives amid the escalating issue of plastic pollution. PRACTITIONER POINTS: Microplastic pollution has created havoc on biodiversity and food safety. A total of 27 and 52 species of crustaceans and Mollusca have been recorded to be contaminated with MPs. Metopograpsus quadridentate and Dolabella auricularia have shown higher MPs contamination. Polypropylene was recorded as the dominant plastic polymer in both crustacean and Mollusca. Findings of pollution indices revealed a very high risk of MP contamination in all the countries.


Crustacea , Microplastics , Mollusca , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Risk Assessment , Asia , Microplastics/analysis , Environmental Monitoring
17.
Front Immunol ; 15: 1382655, 2024.
Article En | MEDLINE | ID: mdl-38803494

Introduction: Global microplastic (MP) pollution is now well recognized, with humans and animals consuming and inhaling MPs on a daily basis, with a growing body of concern surrounding the potential impacts on human health. Methods: Using a mouse model of mild COVID-19, we describe herein the effects of azide-free 1 µm polystyrene MP beads, co-delivered into lungs with a SARS-CoV-2 omicron BA.5 inoculum. The effect of MPs on the host response to SARS-CoV-2 infection was analysed using histopathology and RNA-Seq at 2 and 6 days post-infection (dpi). Results: Although infection reduced clearance of MPs from the lung, virus titres and viral RNA levels were not significantly affected by MPs, and overt MP-associated clinical or histopathological changes were not observed. However, RNA-Seq of infected lungs revealed that MP exposure suppressed innate immune responses at 2 dpi and increased pro-inflammatory signatures at 6 dpi. The cytokine profile at 6 dpi showed a significant correlation with the 'cytokine release syndrome' signature observed in some COVID-19 patients. Discussion: The findings are consistent with the recent finding that MPs can inhibit phagocytosis of apoptotic cells via binding of Tim4. They also add to a growing body of literature suggesting that MPs can dysregulate inflammatory processes in specific disease settings.


COVID-19 , Disease Models, Animal , Immunity, Innate , Lung , Microplastics , SARS-CoV-2 , Animals , COVID-19/immunology , COVID-19/virology , Immunity, Innate/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Mice , Lung/immunology , Lung/virology , Lung/pathology , Cytokines/metabolism , Humans , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Female , Cytokine Release Syndrome/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Betacoronavirus/immunology , Pandemics
18.
Front Public Health ; 12: 1365906, 2024.
Article En | MEDLINE | ID: mdl-38784569

The quality of water in urban parks is closely related to people's daily lives, but the pollution caused by microplastics in park water and sediments has not been comprehensively studied. Therefore, eight typical parks in the urban area of Changsha, China, were selected, and Raman spectroscopy was used to explore the spatial distributions and compositions of the microplastics in the water and sediments, analyze their influencing factors, and evaluate their environmental risks. The results showed that the abundances of surface water microplastics in all parks ranged from 150 to 525 n L-1, and the abundances of sediment microplastics ranged from 120 to 585 n kg-1. The microplastics in the surface water included polyethylene terephthalate (PET), chlorinated polyethylene (CPE), and fluororubber (FLU), while those in the sediments included polyvinyl chloride (PVC), wp-acrylate copolymer (ACR), and CPE. Regression analyses revealed significant positive correlations between human activities and the abundances of microplastics in the parks. Among them, the correlations of population, industrial discharge and domestic wastewater discharge with the abundance of microplastics in park water were the strongest. However, the correlations of car flow and tourists with the abundance of microplastics in park water were the weakest. Based on the potential ecological risk indices (PERI) classification assessment method, the levels of microplastics in the waters and sediments of the eight parks were all within the II-level risk zone (53-8,549), among which the risk indices for Meixi Lake and Yudai Lake were within the IV risk zone (1,365-8,549), which may have been caused by the high population density near the park. This study provides new insights into the characteristics of microplastics in urban park water and sediment.


Environmental Monitoring , Geologic Sediments , Lakes , Microplastics , Water Pollutants, Chemical , Wetlands , China , Microplastics/analysis , Risk Assessment , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Lakes/chemistry , Humans , Cities , Parks, Recreational , Spectrum Analysis, Raman
19.
Ecotoxicol Environ Saf ; 279: 116518, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38820874

Microplastics (MP) can influence a plethora of fungal species within the rhizosphere. Nevertheless, there are few studies on the direct impacts of MPs on soil fungi and their intricate interplay with plants. Here, we investigated the impact of polyethylene microspheres (PEMS) on the ecological interactions between Fusarium solani, a plant pathogenic fungus, and Trichoderma viride, a fungal plant growth promotor, within the rhizosphere of Solanum lycopersicum (tomato). Spores of F. solani and T. viride were pre-incubated with PEMS at two concentrations, 100 and 1000 mg L-1. Mycelium growth, sporulation, spore germination, and elongation were evaluated. Tomato seeds were exposed to fungal spore suspensions treated with PEMS, and plant development was subsequently assessed after 4 days. The results showed that PEMS significantly enhanced the sporulation (106.0 % and 70.1 %) but compromised the spore germination (up to 27.3 % and 32.2 %) and radial growth (up to -5.2% and -21.7 %) of F. solani and T. viride, respectively. Furthermore, the 100 and 1000 mg L-1 concentrations of PEMS significantly (p<0.05) enhanced the mycelium density of T. viride (9.74 % and 22.30 %, respectively), and impaired the germ-tube elongation of F. solani after 4 h (16.16 % and 11.85 %, respectively) and 8 h (4 % and 17.10 %, respectively). In addition, PEMS amplified the pathogenicity of F. solani and boosted the bio-enhancement effect of T. viride on tomato root growth. Further, PEMS enhanced the bio-fungicidal effect of T. viride toward F. solani (p<0.05). In summary, PEMS had varying effects on F. solani and T. viride, impacting their interactions and influencing their relationship with tomato plants. It intensified the beneficial effects of T. viride and increased the aggressiveness of F. solani. This study highlights concerns regarding the effects of MPs on fungal interactions in the rhizosphere, which are essential for crop soil colonization and resource utilization.


Fusarium , Microplastics , Solanum lycopersicum , Spores, Fungal , Solanum lycopersicum/microbiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/drug effects , Fusarium/physiology , Fusarium/growth & development , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Microplastics/toxicity , Rhizosphere , Soil Microbiology , Soil Pollutants/toxicity , Polyethylene , Hypocreales/drug effects , Hypocreales/physiology , Microspheres , Plant Roots/microbiology , Plant Roots/growth & development , Plant Roots/drug effects
20.
Environ Int ; 188: 108782, 2024 Jun.
Article En | MEDLINE | ID: mdl-38821018

Snow dumping stations can be a hotspots for pollutants to water resources. However, little is known about the amount of microplastics including tyre wear particles transported this way. This study investigated microplastics and metals in snow from four snow dumping stations in Riga, Latvia, a remote site (Gauja National Park), and a roof top in Riga. Microplastics other than tyre wear particles were identified with Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) (>500 µm) and focal plane array based micro-Fourier Transform Infrared (FPA-µFTIR) imaging (10-500 µm), tyre wear particles by Pyrolysis Gas Chromatography-Mass Spectroscopy (Py-GC-MS), and total metals by Inductively Coupled Plasma with Optical Emission Spectroscopy (ICP-OES). Microplastics detected by FTIR were quantified by particle counts and their mass estimated, while tyre wear particles were quantified by mass. The concentrations varied substantially, with the highest levels in the urban areas. Microplastic concentrations measured by FTIR ranged between 26 and 2549 counts L-1 of melted snow with a corresponding estimated mass of 19-573 µg/L. Tyre wear particles were not detected at the two reference sites, while other sites held 44-3026 µg/L. Metal concentrations varied several orders of magnitude with for example sodium in the range 0.45-819.54 mg/L and cadmium in the range 0.05-0.94 µg/L. Correlating microplastic measured by FTIR to metal content showed a weak to moderate correlation. Tyre wear particles, however, correlated strongly to many of the metals. The study showed that snow can hold considerable amounts of these pollutants, which upon melting and release of the meltwater to the aquatic environment could impact receiving waters.


Environmental Monitoring , Metals, Heavy , Microplastics , Snow , Snow/chemistry , Metals, Heavy/analysis , Microplastics/analysis , Water Pollutants, Chemical/analysis , Latvia , Spectroscopy, Fourier Transform Infrared
...