Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 359.700
1.
Sci Rep ; 14(1): 12801, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834710

We use complex systems science to explore the emergent behavioral patterns that typify eusocial species, using collective ant foraging as a paradigmatic example. Our particular aim is to provide a methodology to quantify how the collective orchestration of foraging provides functional advantages to ant colonies. For this, we combine (i) a purpose-built experimental arena replicating ant foraging across realistic spatial and temporal scales, and (ii) a set of analytical tools, grounded in information theory and spin-glass approaches, to explore the resulting data. This combined approach yields computational replicas of the colonies; these are high-dimensional models that store the experimental foraging patterns through a training process, and are then able to generate statistically similar patterns, in an analogous way to machine learning tools. These in silico models are then used to explore the colony performance under different resource availability scenarios. Our findings highlight how replicas of the colonies trained under constant and predictable experimental food conditions exhibit heightened foraging efficiencies, manifested in reduced times for food discovery and gathering, and accelerated transmission of information under similar conditions. However, these same replicas demonstrate a lack of resilience when faced with new foraging conditions. Conversely, replicas of colonies trained under fluctuating and uncertain food conditions reveal lower efficiencies at specific environments but increased resilience to shifts in food location.


Ants , Feeding Behavior , Animals , Ants/physiology , Feeding Behavior/physiology , Computer Simulation , Spatio-Temporal Analysis , Social Behavior , Behavior, Animal/physiology , Models, Biological
2.
Phys Rev Lett ; 132(20): 208402, 2024 May 17.
Article En | MEDLINE | ID: mdl-38829072

We analyze the flow physics inside the body cavity and downstream the deep-sea glass sponge Euplectella aspergillum. We provide evidence that the helical skeletal motifs of the sponge give rise to a rich fluid dynamic field, allowing the organism to scavenge flow from the bottom of the sea and promoting a spontaneous, organized vertical flow within its body cavity toward the osculum. Our analysis points at a functional adaptation of the organism, which can passively divert flow through the osculum in unfavorable, low ambient currents, with no need for active pumping, with potential repercussions in functional ecology, as well as the design of chemical reactors, air-treatment units, and civil and aeronaval structures.


Porifera , Porifera/physiology , Animals , Models, Biological , Adaptation, Physiological , Hydrodynamics , Oceans and Seas
3.
Phys Rev Lett ; 132(20): 204002, 2024 May 17.
Article En | MEDLINE | ID: mdl-38829103

Many eukaryotic microorganisms propelled by multiple flagella can swim very rapidly with distinct gaits. Here, we model a three-dimensional mutiflagellate swimmer, resembling the microalgae. When the flagella are actuated synchronously, the swimming efficiency can be enhanced or reduced by interflagella hydrodynamic interactions (HIs), determined by the intrinsic tilting angle of the flagella. The asynchronous gait with a phase difference between neighboring flagella can reduce oscillatory motion via the basal mechanical coupling. In the presence of a spherical body, simulations taking into account the flagella-body interactions reveal the advantage of anterior configuration compared with posterior configuration, where in the latter case an optimal flagella number arises. Apart from understanding the role of HIs in the multiflagellate microorganisms, this work could also guide laboratory fabrications of novel microswimmers.


Flagella , Hydrodynamics , Models, Biological , Swimming , Flagella/physiology , Swimming/physiology , Microalgae/physiology
4.
Chaos ; 34(6)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38838106

In this paper, we delve into the intricate local dynamics at equilibria within a two-dimensional model of hepatitis C virus (HCV) alongside hepatocyte homeostasis. The study investigates the existence of bifurcation sets and conducts a comprehensive bifurcation analysis to elucidate the system's behavior under varying conditions. A significant focus lies on understanding how changes in parameters can lead to bifurcations, which are pivotal points where the qualitative behavior of the system undergoes fundamental transformations. Moreover, the paper introduces and employs hybrid control feedback and Ott-Grebogi-Yorke strategies as tools to manage and mitigate chaos inherent within the HCV model. This chaos arises due to the presence of flip and Neimark-Sacker bifurcations, which can induce erratic behavior in the system. Through the implementation of these control strategies, the study aims to stabilize the system and restore it to a more manageable and predictable state. Furthermore, to validate the theoretical findings and the efficacy of the proposed control strategies, extensive numerical simulations are conducted. These simulations serve as a means of confirming the theoretical predictions and provide insight into the practical implications of the proposed control methodologies. By combining theoretical analysis with computational simulations, the paper offers a comprehensive understanding of the dynamics of the HCV model and provides valuable insights into potential strategies for controlling and managing chaos in such complex biological systems.


Hepacivirus , Hepatocytes , Homeostasis , Models, Biological , Nonlinear Dynamics , Homeostasis/physiology , Hepacivirus/physiology , Hepatocytes/virology , Humans , Computer Simulation , Hepatitis C
5.
Food Microbiol ; 122: 104554, 2024 Sep.
Article En | MEDLINE | ID: mdl-38839220

Challenge tests are commonly employed to evaluate the growth behavior of L. monocytogenes in food matrices; they are known for being expensive and time-consuming. An alternative could be the use of predictive models to forecast microbial behavior under different conditions. In this study, the growth behavior of L. monocytogenes in different fresh produce was evaluated using a predictive model based on the Gamma concept considering pH, water activity (aw), and temperature as input factors. An extensive literature search resulted in a total of 105 research articles selected to collect growth/no growth behavior data of L. monocytogenes. Up to 808 L. monocytogenes behavior values and physicochemical characteristics were extracted for different fruits and vegetables. The predictive performance of the model as a tool for identifying the produce commodities supporting the growth of L. monocytogenes was proved by comparing with the experimental data collected from the literature. The model provided satisfactory predictions on the behavior of L. monocytogenes in vegetables (>80% agreement with experimental observations). For leafy greens, a 90% agreement was achieved. In contrast, the performance of the Gamma model was less satisfactory for fruits, as it tends to overestimate the potential of acid commodities to inhibit the growth of L. monocytogenes.


Food Microbiology , Fruit , Listeria monocytogenes , Vegetables , Listeria monocytogenes/growth & development , Vegetables/microbiology , Vegetables/growth & development , Fruit/microbiology , Hydrogen-Ion Concentration , Temperature , Models, Biological , Water/metabolism , Colony Count, Microbial , Food Contamination/analysis
6.
Drug Des Devel Ther ; 18: 1771-1784, 2024.
Article En | MEDLINE | ID: mdl-38828021

Several population pharmacokinetic (PPK) models of B cell lymphoma-2 (BCL-2) venetoclax (VEN) have been developed and published to characterize the influencing factors of pharmacokinetics in hematologic malignancies. This review described PPK models of VEN examining the magnitude and types of covariate effects in PK parameters, as well as identified areas that require further investigation in order to facilitate their use. Currently, there are six analyses on PPK models of VEN summarized in this review. Most analyses described the pharmacokinetics of VEN with a two-compartment model and all covariates are categorical. The median estimated apparent clearance (CL/F) was 446 L/Day and apparent volume of distribution of the central compartment (V2/F) was 114.5 L. The median IIV of CL/F reported was 39.5% and V2/F was 46.7%. Most commonly, CYP3A inhibitors, OATP1B3 inhibitors and rituximab co-administration were found to be significant covariates on CL/F. In addition, sex and population were influential covariates on V2/F. A detailed description of the characteristics of PPK models of VEN is provided in this review, as well as the effects of covariates on the PK parameters. For future development of the VEN PPK model, CYP3A inhibitors, rituximab co-administration, OATP1B1 transporter inhibitors, sex, population, and food might be considered. Further research and comprehensive investigations should be undertaken to explore reference ranges for therapeutic drug monitoring, define the potential role of patients with cerebrospinal fluid complications, and assess new or potential covariates. These endeavors will facilitate the development of personalized VEN therapy.


Antineoplastic Agents , Bridged Bicyclo Compounds, Heterocyclic , Hematologic Neoplasms , Sulfonamides , Humans , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/metabolism , Sulfonamides/pharmacokinetics , Sulfonamides/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Antineoplastic Agents/pharmacokinetics , Models, Biological
7.
BMC Plant Biol ; 24(1): 502, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840053

BACKGROUND: Lentil is a significant legume that are consumed as a staple food and have a significant economic impact around the world. The purpose of the present research on lentil was to assess the hydrothermal time model's capacity to explain the dynamics of Lens culinaris L. var. Markaz-09 seed germination, as well as to ascertain the germination responses at various sub-optimal temperatures (T) and water potentials (Ψ). In order to study lentil seed germination (SG) behavior at variable water potentials (Ψs) and temperatures (Ts). A lab experiment employing the hydrothermal time model was created. Seeds were germinated at six distinct temperatures: 15 0С, 20 0С, 25 0С, 30 0С, 35 0С, and 40 0С, with five Ψs of 0, -0.3, -0.6, -0.9, and - 1.2 MPa in a PEG-6000 (Polyethylene glycol 6000) solution. RESULTS: The results indicated that the agronomic parameters like Germination index (GI), Germination energy (GE), Timson germination index (TGI), were maximum in 25 0C at (-0.9 MPa) and lowest at 40 0C in 0 MPa. On other hand, mean germination time (MGT) value was highest at 15 0C in -1.2 MPa and minimum at 40 0C in (-0.6 MPa) while Mean germination rate (MGR) was maximum at 40 0C in (0 MPa) and minimum at 15 0C in (-0.6 MPa). CONCLUSIONS: The HTT model eventually defined the germination response of Lens culinaris L. var. Markaz-09 (Lentil) for all Ts and Ψs, allowing it to be employed as a predictive tool in Lens culinaris L. var. Markaz-09 (Lentil) seed germination simulation models.


Germination , Lens Plant , Seeds , Temperature , Germination/physiology , Seeds/physiology , Seeds/growth & development , Lens Plant/physiology , Lens Plant/growth & development , Water/metabolism , Models, Biological , Osmotic Pressure
8.
Appl Microbiol Biotechnol ; 108(1): 363, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842572

In addition to genetic mutations, biomechanical factors also affect the structures and functions of the tumors during tumor growth, including solid stress, interstitial fluid pressure, stiffness, and microarchitecture. Solid stress affects tumors by compressing cancer and stromal cells and deforming blood and lymphatic vessels which reduce supply of oxygen, nutrients and drug delivery, making resistant to treatment. Researchers simulate the stress by creating mechanical models both in vitro and in vivo. Cell models in vitro are divided into two dimensions (2D) and three dimensions (3D). 2D models are simple to operate but exert pressure on apical surface of the cells. 3D models, the multicellular tumor spheres, are more consistent with the actual pathological state in human body. However, the models are more difficult to establish compared with the 2D models. Besides, the procedure of the animal models in vivo is even more complex and tougher to operate. Then, researchers challenged to quantify the solid stress through some measurement methods. We compared the advantages and limitations of these models and methods, which may help to explore new therapeutic targets for normalizing the tumor's physical microenvironment. KEY POINTS: •This is the first review to conclude the mechanical models and measurement methods in tumors. •The merit and demerit of these models and methods are compared. •Insights into further models are discussed.


Neoplasms , Humans , Neoplasms/pathology , Animals , Biomechanical Phenomena , Tumor Microenvironment , Models, Biological , Stress, Mechanical
9.
Bull Math Biol ; 86(7): 83, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842602

5-Aminolevulinic Acid (5-ALA) is the only fluorophore approved by the FDA as an intraoperative optical imaging agent for fluorescence-guided surgery in patients with glioblastoma. The dosing regimen is based on rodent tests where a maximum signal occurs around 6 h after drug administration. Here, we construct a computational framework to simulate the transport of 5-ALA through the stomach, blood, and brain, and the subsequent conversion to the fluorescent agent protoporphyrin IX at the tumor site. The framework combines compartmental models with spatially-resolved partial differential equations, enabling one to address questions regarding quantity and timing of 5-ALA administration before surgery. Numerical tests in two spatial dimensions indicate that, for tumors exceeding the detection threshold, the time to peak fluorescent concentration is 2-7 h, broadly consistent with the current surgical guidelines. Moreover, the framework enables one to examine the specific effects of tumor size and location on the required dose and timing of 5-ALA administration before glioblastoma surgery.


Aminolevulinic Acid , Brain Neoplasms , Computer Simulation , Glioblastoma , Mathematical Concepts , Models, Biological , Protoporphyrins , Surgery, Computer-Assisted , Glioblastoma/surgery , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/diagnostic imaging , Aminolevulinic Acid/administration & dosage , Humans , Brain Neoplasms/surgery , Protoporphyrins/administration & dosage , Protoporphyrins/metabolism , Surgery, Computer-Assisted/methods , Animals , Photosensitizing Agents/administration & dosage , Optical Imaging/methods , Fluorescent Dyes/administration & dosage
10.
Nat Commun ; 15(1): 4694, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824157

Engineering natural microbiomes for biotechnological applications remains challenging, as metabolic interactions within microbiomes are largely unknown, and practical principles and tools for microbiome engineering are still lacking. Here, we present a combinatory top-down and bottom-up framework to engineer natural microbiomes for the construction of function-enhanced synthetic microbiomes. We show that application of herbicide and herbicide-degrader inoculation drives a convergent succession of different natural microbiomes toward functional microbiomes (e.g., enhanced bioremediation of herbicide-contaminated soils). We develop a metabolic modeling pipeline, SuperCC, that can be used to document metabolic interactions within microbiomes and to simulate the performances of different microbiomes. Using SuperCC, we construct bioremediation-enhanced synthetic microbiomes based on 18 keystone species identified from natural microbiomes. Our results highlight the importance of metabolic interactions in shaping microbiome functions and provide practical guidance for engineering natural microbiomes.


Biodegradation, Environmental , Herbicides , Microbiota , Microbiota/genetics , Herbicides/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Models, Biological , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification
11.
Ecol Lett ; 27(6): e14453, 2024 Jun.
Article En | MEDLINE | ID: mdl-38844411

Climate change threatens many species by a poleward/upward movement of their thermal niche. While we know that faster movement has stronger impacts, little is known on how fluctuations of niche movement affect population outcomes. Environmental fluctuations often affect populations negatively, but theory and experiments have revealed some positive effects. We study how fluctuations around the average speed of the niche impact a species' persistence, abundance and realized niche width under climate change. We find that the outcome depends on how fluctuations manifest and what the relative time scale of population growth and climate fluctuations are. When populations are close to extinction with the average speed, fluctuations around this average accelerate population decline. However, populations not yet close to extinction can increase in abundance and/or realized niche width from such fluctuations. Long-lived species increase more when their niche size remains constant, short-lived species increase more when their niche size varies.


Climate Change , Population Density , Animals , Ecosystem , Population Dynamics , Models, Biological , Animal Distribution
12.
J Math Biol ; 89(1): 9, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844702

In this work, we introduce a compartmental model of ovarian follicle development all along lifespan, based on ordinary differential equations. The model predicts the changes in the follicle numbers in different maturation stages with aging. Ovarian follicles may either move forward to the next compartment (unidirectional migration) or degenerate and disappear (death). The migration from the first follicle compartment corresponds to the activation of quiescent follicles, which is responsible for the progressive exhaustion of the follicle reserve (ovarian aging) until cessation of reproductive activity. The model consists of a data-driven layer embedded into a more comprehensive, knowledge-driven layer encompassing the earliest events in follicle development. The data-driven layer is designed according to the most densely sampled experimental dataset available on follicle numbers in the mouse. Its salient feature is the nonlinear formulation of the activation rate, whose formulation includes a feedback term from growing follicles. The knowledge-based, coating layer accounts for cutting-edge studies on the initiation of follicle development around birth. Its salient feature is the co-existence of two follicle subpopulations of different embryonic origins. We then setup a complete estimation strategy, including the study of structural identifiability, the elaboration of a relevant optimization criterion combining different sources of data (the initial dataset on follicle numbers, together with data in conditions of perturbed activation, and data discriminating the subpopulations) with appropriate error models, and a model selection step. We finally illustrate the model potential for experimental design (suggestion of targeted new data acquisition) and in silico experiments.


Computer Simulation , Mathematical Concepts , Models, Biological , Nonlinear Dynamics , Ovarian Follicle , Ovarian Follicle/growth & development , Ovarian Follicle/physiology , Female , Animals , Mice , Aging/physiology
13.
AAPS J ; 26(4): 65, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844719

The recruitment of a parallel, healthy participants (HPs) arm in renal and hepatic impairment (RI and HI) studies is a common strategy to assess differences in pharmacokinetics. Limitations in this approach include the underpowered estimate of exposure differences and the use of the drug in a population for which there is no benefit. Recently, a method was published by Purohit et. al. (2023) that leveraged prior population pharmacokinetic (PopPK) modeling-based simulation to infer the distribution of exposure ratios between the RI/HI arms and HPs. The approach was successful, but it was a single example with a robust model having several iterations of development and fitting to extensive HP data. To test in more studies and models at different stages of development, our catalogue of RI/HI studies was searched, and those with suitable properties and from programs with available models were analyzed with the simulation approach. There were 9 studies included in the analysis. Most studies were associated with models that would have been available at the time (ATT) of the study, and all had a current, final model. For 3 studies, the HP PK was not predicted well by the ATT (2) or final (1) models. In comparison to conventional analysis of variance (ANOVA), the simulation approach provided similar point estimates and confidence intervals of exposure ratios. This PopPK based approach can be considered as a method of choice in situations where the simulation of HP data would not be an extrapolation, and when no other complicating factors are present.


Computer Simulation , Healthy Volunteers , Models, Biological , Humans , Retrospective Studies , Pharmacokinetics , Liver Diseases/metabolism , Kidney Diseases , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/administration & dosage , Renal Insufficiency/metabolism
14.
PLoS One ; 19(6): e0303834, 2024.
Article En | MEDLINE | ID: mdl-38837960

We derive an equation that applies for the wing-beat frequency of flying animals and to the fin-stroke frequency of diving animals like penguins and whales. The equation states that the wing/fin-beat frequency is proportional to the square root of the animal's mass divided by the wing area. Data for birds, insects, bats, and even a robotic bird-supplemented by data for whales and penguins that must swim to stay submerged-show that the constant of proportionality is to a good approximation the same across all species; thus the equation is universal. The wing/fin-beat frequency equation is derived by dimensional analysis, which is a standard method of reasoning in physics. We finally demonstrate that a mathematically even simpler expression without the animal mass does not apply.


Flight, Animal , Wings, Animal , Animals , Wings, Animal/physiology , Wings, Animal/anatomy & histology , Flight, Animal/physiology , Animal Fins/physiology , Chiroptera/physiology , Whales/physiology , Spheniscidae/physiology , Birds/physiology , Models, Biological , Swimming/physiology , Insecta/physiology
15.
Artif Cells Nanomed Biotechnol ; 52(1): 345-354, 2024 Dec.
Article En | MEDLINE | ID: mdl-38829715

Cell encapsulation into spherical microparticles is a promising bioengineering tool in many fields, including 3D cancer modelling and pre-clinical drug discovery. Cancer microencapsulation models can more accurately reflect the complex solid tumour microenvironment than 2D cell culture and therefore would improve drug discovery efforts. However, these microcapsules, typically in the range of 1 - 5000 µm in diameter, must be carefully designed and amenable to high-throughput production. This review therefore aims to outline important considerations in the design of cancer cell microencapsulation models for drug discovery applications and examine current techniques to produce these. Extrusion (dripping) droplet generation and emulsion-based techniques are highlighted and their suitability to high-throughput drug screening in terms of tumour physiology and ease of scale up is evaluated.


3D microencapsulation models of cancer offer a customisable platform to mimic key aspects of solid tumour physiology in vitro. However, many 3D models do not recapitulate the hypoxic conditions and altered tissue stiffness established in many tumour types and stages. Furthermore, microparticles for cancer cell encapsulation are commonly produced using methods that are not necessarily suitable for scale up to high-throughput manufacturing. This review aims to evaluate current technologies for cancer cell-laden microparticle production with a focus on physiological relevance and scalability. Emerging techniques will then be touched on, for production of uniform microparticles suitable for high-throughput drug discovery applications.


Drug Discovery , Neoplasms , Humans , Neoplasms/pathology , Neoplasms/drug therapy , Neoplasms/metabolism , Drug Discovery/methods , Cell Encapsulation/methods , Models, Biological , Capsules , Animals , Drug Compounding/methods , Tumor Microenvironment/drug effects
16.
Chaos ; 34(6)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38829789

This paper reports an important conclusion that self-diffusion is not a necessary condition for inducing Turing patterns, while taxis could establish complex pattern phenomena. We investigate pattern formation in a zooplankton-phytoplankton model incorporating phytoplankton-taxis, where phytoplankton-taxis describes the zooplankton that tends to move toward the high-densities region of the phytoplankton population. By using the phytoplankton-taxis sensitivity coefficient as the Turing instability threshold, one shows that the model exhibits Turing instability only when repulsive phytoplankton-taxis is added into the system, while the attractive-type phytoplankton-taxis cannot induce Turing instability of the system. In addition, the system does not exhibit Turing instability when the phytoplankton-taxis disappears. Numerically, we display the complex patterns in 1D, 2D domains and on spherical and zebra surfaces, respectively. In summary, our results indicate that the phytoplankton-taxis plays a pivotal role in giving rise to the Turing pattern formation of the model. Additionally, these theoretical and numerical results contribute to our understanding of the complex interaction dynamics between zooplankton and phytoplankton populations.


Models, Biological , Phytoplankton , Zooplankton , Animals , Zooplankton/physiology , Phytoplankton/physiology , Computer Simulation , Nonlinear Dynamics , Ecosystem , Plankton/physiology , Population Dynamics
17.
Elife ; 132024 Jun 03.
Article En | MEDLINE | ID: mdl-38828844

Muscle regeneration is a complex process due to dynamic and multiscale biochemical and cellular interactions, making it difficult to identify microenvironmental conditions that are beneficial to muscle recovery from injury using experimental approaches alone. To understand the degree to which individual cellular behaviors impact endogenous mechanisms of muscle recovery, we developed an agent-based model (ABM) using the Cellular-Potts framework to simulate the dynamic microenvironment of a cross-section of murine skeletal muscle tissue. We referenced more than 100 published studies to define over 100 parameters and rules that dictate the behavior of muscle fibers, satellite stem cells (SSCs), fibroblasts, neutrophils, macrophages, microvessels, and lymphatic vessels, as well as their interactions with each other and the microenvironment. We utilized parameter density estimation to calibrate the model to temporal biological datasets describing cross-sectional area (CSA) recovery, SSC, and fibroblast cell counts at multiple timepoints following injury. The calibrated model was validated by comparison of other model outputs (macrophage, neutrophil, and capillaries counts) to experimental observations. Predictions for eight model perturbations that varied cell or cytokine input conditions were compared to published experimental studies to validate model predictive capabilities. We used Latin hypercube sampling and partial rank correlation coefficient to identify in silico perturbations of cytokine diffusion coefficients and decay rates to enhance CSA recovery. This analysis suggests that combined alterations of specific cytokine decay and diffusion parameters result in greater fibroblast and SSC proliferation compared to individual perturbations with a 13% increase in CSA recovery compared to unaltered regeneration at 28 days. These results enable guided development of therapeutic strategies that similarly alter muscle physiology (i.e. converting extracellular matrix [ECM]-bound cytokines into freely diffusible forms as studied in cancer therapeutics or delivery of exogenous cytokines) during regeneration to enhance muscle recovery after injury.


Muscle, Skeletal , Regeneration , Animals , Regeneration/physiology , Mice , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Cytokines/metabolism , Models, Biological , Fibroblasts/metabolism , Fibroblasts/physiology , Macrophages/metabolism
18.
Nat Commun ; 15(1): 4709, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830891

Microbial communities often exhibit more than one possible stable composition for the same set of external conditions. In the human microbiome, these persistent changes in species composition and abundance are associated with health and disease states, but the drivers of these alternative stable states remain unclear. Here we experimentally demonstrate that a cross-kingdom community, composed of six species relevant to the respiratory tract, displays four alternative stable states each dominated by a different species. In pairwise coculture, we observe widespread bistability among species pairs, providing a natural origin for the multistability of the full community. In contrast with the common association between bistability and antagonism, experiments reveal many positive interactions within and between community members. We find that multiple species display cooperative growth, and modeling predicts that this could drive the observed multistability within the community as well as non-canonical pairwise outcomes. A biochemical screening reveals that glutamate either reduces or eliminates cooperativity in the growth of several species, and we confirm that such supplementation reduces the extent of bistability across pairs and reduces multistability in the full community. Our findings provide a mechanistic explanation of how cooperative growth rather than competitive interactions can underlie multistability in microbial communities.


Microbial Interactions , Microbiota , Microbiota/physiology , Humans , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/growth & development , Glutamic Acid/metabolism , Models, Biological , Coculture Techniques
19.
Sci Rep ; 14(1): 12736, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830973

The purpose of this study was to develop and validate a physiologically based pharmacokinetic (PBPK) model combined with an EGFR occupancy (EO) model for osimertinib (OSI) to predict plasma trough concentration (Ctrough) and the intracranial time-course of EGFR (T790M and L858R mutants) engagement in patient populations. The PBPK model was also used to investigate the key factors affecting OSI pharmacokinetics (PK) and intracranial EGFR engagement, analyze resistance to the target mutation C797S, and determine optimal dosing regimens when used alone and in drug-drug interactions (DDIs). A population PBPK-EO model of OSI was developed using physicochemical, biochemical, binding kinetic, and physiological properties, and then validated using nine clinical PK studies, observed EO study, and two clinical DDI studies. The PBPK-EO model demonstrated good consistency with observed data, with most prediction-to-observation ratios falling within the range of 0.7 to 1.3 for plasma AUC, Cmax, Ctrough and intracranial free concentration. The simulated time-course of C797S occupancy by the PBPK model was much lower than T790M and L858R occupancy, providing an explanation for OSI on-target resistance to the C797S mutation. The PBPK model identified ABCB1 CLint,u, albumin level, and EGFR expression as key factors affecting plasma Ctrough and intracranial EO for OSI. Additionally, PBPK-EO simulations indicated that the optimal dosing regimen for OSI in patients with brain metastases is either 80 mg once daily (OD) or 160 mg OD, or 40 mg or 80 mg twice daily (BID). When used concomitantly with CYP enzyme perpetrators, the PBPK-EO model suggested appropriate dosing regimens of 80 mg OD with fluvoxamine (FLUV) itraconazole (ITR) or fluvoxamine (FLUC) for co-administration and an increase to 160 mg OD with rifampicin (RIF) or efavirenz (EFA). In conclusion, the PBPK-EO model has been shown to be capable of simulating the pharmacokinetic concentration-time profiles and the time-course of EGFR engagement for OSI, as well as determining the optimum dosing in various clinical situations.


Acrylamides , Aniline Compounds , Brain Neoplasms , ErbB Receptors , Humans , Aniline Compounds/pharmacokinetics , Aniline Compounds/administration & dosage , Acrylamides/pharmacokinetics , Acrylamides/administration & dosage , ErbB Receptors/genetics , ErbB Receptors/metabolism , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Models, Biological , Mutation , Female , Male , Drug Interactions , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/blood , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/blood , Antineoplastic Agents/administration & dosage , Middle Aged , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Indoles , Pyrimidines
20.
Sci Rep ; 14(1): 12810, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834566

A finite element model was developed for assessing the efficacy of rugby body padding in reducing the risk of sustaining cuts and abrasions. The model was developed to predict the onset of damage to a soft tissue simulant from concentrated impact loading (i.e., stud impact) and compared against a corresponding experiment. The damage modelling techniques involved defining an element deletion criterion, whereby those on the surface of the surrogate were deleted if their maximum principal stress reached a predefined value. Candidate maximum principal stress values for element deletion criteria were identified independently from puncture test simulations on the soft tissue simulant. Experimental impacts with a stud were carried out at three energies (2, 4 and 6 J), at three angular orientations (0°, 15° and 30°) and compared to corresponding simulations. Suitable maximum principal stress values for element deletion criteria settings were first identified for the 4 J impact, selecting the candidates that best matched the experimental results. The same element deletion settings were then applied in simulations at 2 and 6 J and the validity of the model was further assessed (difference < 15% for the force at tear and < 30% for time to tear). The damage modelling techniques presented here could be applied to other skin simulants to assess the onset of skin injuries and the ability of padding to prevent them.


Finite Element Analysis , Skin , Humans , Skin/injuries , Skin/pathology , Stress, Mechanical , Computer Simulation , Models, Biological , Football/injuries
...