Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 14.560
1.
Medicina (Kaunas) ; 60(6)2024 May 31.
Article En | MEDLINE | ID: mdl-38929537

Background and Objectives: Mucin has been implicated via various mechanisms in the development and growth of tumour cells. However, mucin expression studies in salivary gland tumours are limited, especially with samples from minor salivary glands. This study aims to investigate and compare mucin expression in benign and malignant salivary gland tumours of minor and major salivary gland origins. Materials and Methods: Special stains were used to stain neutral mucin (Periodic acid Schiff), sialomucin (Alcian Blue) and sulfomucin (Aldehyde Fuschin) within tissues from six normal salivary glands and 73 salivary gland tumours including 31 pleomorphic adenomas, 27 mucoepidermoid carcinomas, and 15 adenoid cystic carcinomas. A semi-quantitative approach was used to evaluate mucin expression within ductal lumens. Sialomucin was the most expressed mucin in all salivary gland tumours, regardless of origin. Results: A significant difference was observed in the mucin expression between benign and malignant salivary gland tumours, as pleomorphic adenoma showed three times significantly higher expression of sialomucin compared to mucoepidermoid carcinoma and adenoid cystic carcinoma (p = 0.028). Pleomorphic adenomas of major glands showed 42 times significantly higher expression of sialomucin compared to those of minor glands (p = 0.000). Conclusions: Sialomucin content in pleomorphic adenomas of major glands was vastly increased compared to that in minor glands. Differential sialomucin expression in benign and malignant salivary gland tumours suggests a role in diagnosing of borderline salivary gland tumours.


Adenoma, Pleomorphic , Carcinoma, Mucoepidermoid , Mucins , Salivary Gland Neoplasms , Humans , Salivary Gland Neoplasms/metabolism , Mucins/analysis , Mucins/metabolism , Male , Female , Adenoma, Pleomorphic/metabolism , Middle Aged , Carcinoma, Mucoepidermoid/metabolism , Carcinoma, Mucoepidermoid/pathology , Adult , Aged , Carcinoma, Adenoid Cystic/metabolism , Sialomucins/analysis , Sialomucins/metabolism
2.
Inorg Chem ; 63(25): 11616-11627, 2024 Jun 24.
Article En | MEDLINE | ID: mdl-38856909

Mucin 7 (MUC7) is one of the salivary proteins whose role in the innate immune system is widely known, but still, neither its mechanism of action nor the impact of its metal coordination is fully understood. MUC7 and its fragments demonstrate potent antimicrobial activity, serving as a natural defense mechanism for organisms against pathogens. This study delves into the bioinorganic chemistry of MUC7 fragments (L1─EGRERDHELRHRRHHHQSPK; L2─EGRERDHELRHRR; L3─HHHQSPK) and their complexes with Cu(II) and Zn(II) ions. The antimicrobial characteristics of the investigated peptides and their complexes were systematically assessed against bacterial and fungal strains at pH 5.40 and pH 7.40. Our findings highlight the efficacy of these systems against Streptococcus sanguinis, a common oral cavity pathogen. Most interestingly, Zn(II) coordination increased (or triggered) the MUC7 antimicrobial activity, which underscores the pivotal role of metal ion coordination in governing the antimicrobial activity of human salivary MUC7 fragments against S. sanguinis.


Coordination Complexes , Copper , Microbial Sensitivity Tests , Mucins , Salivary Proteins and Peptides , Zinc , Zinc/chemistry , Zinc/pharmacology , Humans , Copper/chemistry , Copper/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Mucins/chemistry , Mucins/metabolism , Mucins/pharmacology , Salivary Proteins and Peptides/pharmacology , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis
3.
Invest Ophthalmol Vis Sci ; 65(6): 39, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38935032

Purpose: This study aimed to explore protective effects and potential mechanism of ectoine, a natural osmoprotectant, on ocular surface mucin production in dry eye disease. Methods: A dry eye model was established in C57BL/6 mice exposed to desiccating stress (DS) with untreated (UT) mice as controls. DS mice were topically treated with 2.0% ectoine or PBS vehicle. Corneal epithelial defects were assessed by Oregon Green Dextran (OGD) fluorescent staining. Conjunctival goblet cells, ocular mucins, and T help (Th) cytokines were evaluated by immunofluorescent staining or ELISA, and RT-qPCR. Results: Compared with UT mice, corneal epithelial defects were detected as strong punctate OGD fluorescent staining in DS mice with vehicle, whereas ectoine treatment largely reduced OGD staining to near-normal levels. Conjunctival goblet cell density and cell size decreased markedly in DS mice, but was significantly recovered by ectoine treatment. The protein production and mRNA expression of two gel-forming secreted MUC5AC and MUC2, and 4 transmembrane mucins, MUC1, MUC4, MUC16, and MUC15, largely decreased in DS mice, but was restored by ectoine. Furthermore, Th2 cytokine IL-13 was inhibited, whereas Th1 cytokine IFN-γ was stimulated at protein and mRNA levels in conjunctiva and draining cervical lymph nodes (CLNs) of DS mice, leading to decreased IL-13/IFN-γ ratio. Interestingly, 2.0% ectoine reversed their alternations and restored IL-13/IFN-γ balance. Conclusions: Our findings demonstrate that topical ectoine significantly reduces corneal damage, and enhances goblet cell density and mucin production through restoring imbalanced IL-13/IFN-γ signaling in murine dry eye model. This suggests therapeutic potential of natural osmoprotectant ectoine for dry eye disease.


Disease Models, Animal , Dry Eye Syndromes , Goblet Cells , Interferon-gamma , Interleukin-13 , Mice, Inbred C57BL , Mucins , Animals , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/drug therapy , Mice , Goblet Cells/metabolism , Goblet Cells/drug effects , Goblet Cells/pathology , Interferon-gamma/metabolism , Mucins/metabolism , Mucins/biosynthesis , Mucins/genetics , Interleukin-13/metabolism , Conjunctiva/metabolism , Conjunctiva/drug effects , Conjunctiva/pathology , Enzyme-Linked Immunosorbent Assay , Female , Epithelium, Corneal/metabolism , Epithelium, Corneal/drug effects , Real-Time Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Amino Acids, Diamino
4.
Biomolecules ; 14(6)2024 Jun 10.
Article En | MEDLINE | ID: mdl-38927079

Cholelithiasis is a common biliary tract disease. However, the exact mechanism underlying gallstone formation remains unclear. Mucin plays a vital role in the nuclear formation and growth of cholesterol and pigment stones. Excessive mucin secretion can result in cholestasis and decreased gallbladder activity, further facilitating stone formation and growth. Moreover, gallstones may result in inflammation and the secretion of inflammatory factors, which can further increase mucin expression and secretion to promote the growth of gallstones. This review systematically summarises and analyses the role of mucins in gallstone occurrence and development and its related mechanisms to explore new ideas for interventions in stone formation or recurrence.


Cholelithiasis , Mucins , Humans , Mucins/metabolism , Cholelithiasis/metabolism , Cholelithiasis/etiology , Animals , Gallstones/metabolism , Gallstones/etiology , Gallbladder/metabolism , Gallbladder/pathology
5.
Sci Rep ; 14(1): 13306, 2024 06 10.
Article En | MEDLINE | ID: mdl-38858411

This study aimed to compare the clinical efficacy and investigate patients' preferences for two mucin secretagogues in the treatment of dry eye disease (DED). Thirty patients with DED were randomly treated with either 3% diquafosol or 2% rebamipide ophthalmic solution for 4 weeks, followed by an additional 4-week treatment using the other eye drop after a 2-week washout period. Objective and subjective assessments, including the corneal and conjunctival staining score, tear breakup time (TBUT), Schirmer 1 test, tear osmolarity, tear matrix metalloproteinase-9 (MMP-9), lipid layer thickness (LLT) and ocular surface disease index (OSDI), were performed at baseline, 4 weeks, 6 weeks, and 10 weeks. Patient preferences were assessed based on four categories (comfort, efficacy, convenience, willingness to continue) using a questionnaire and the overall subjective satisfaction score for each drug was obtained at the end of the trial. In total, 28 eyes from 28 patients were included in the analysis. Both diquafosol and rebamipide significantly improved the OSDI (p = 0.033 and 0.034, respectively), TBUT (p < 0.001 and 0.026, respectively), and corneal (p < 0.001 and 0.001, respectively) and conjunctival (p = 0.017 and 0.042, respectively) staining after 4 weeks of treatment. An increase in Schirmer test scores was observed only after rebamipide treatment (p = 0.007). No significant changes were detected in tear osmolarity, MMP-9, and LLT following both treatments. The patients' preference was slightly greater for diquafosol (46.4%) than rebamipide (36.7%), presumably due to rebamipide's bitter taste. The self-efficacy of both drugs and overall satisfaction scores were comparable. These findings indicate that two mucin secretagogues showed comparable effects in ameliorating symptoms and improving signs (TBUT, corneal and conjunctival staining) in patients with DED.


Alanine , Dry Eye Syndromes , Mucins , Quinolones , Uracil Nucleotides , Humans , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/metabolism , Female , Male , Middle Aged , Quinolones/therapeutic use , Prospective Studies , Mucins/metabolism , Uracil Nucleotides/therapeutic use , Uracil Nucleotides/administration & dosage , Alanine/analogs & derivatives , Alanine/therapeutic use , Aged , Tears/metabolism , Cross-Over Studies , Ophthalmic Solutions , Polyphosphates/therapeutic use , Treatment Outcome , Adult , Matrix Metalloproteinase 9/metabolism
6.
Semin Diagn Pathol ; 41(4): 165-172, 2024 Jul.
Article En | MEDLINE | ID: mdl-38853124

Salivary gland neoplasms characterized by abundant mucin production are rare but have long been recognized. Due to their scarcity, precise classification has long eluded these mucin-rich tumors. Recent molecular discoveries, however, have shed considerable light on the genetic underpinnings of mucin-rich salivary gland neoplasms. This manuscript will review the most up-to-date information on this fascinating group of salivary gland neoplasms.


Mucins , Salivary Gland Neoplasms , Humans , Salivary Gland Neoplasms/pathology , Salivary Gland Neoplasms/genetics , Mucins/metabolism , Biomarkers, Tumor/genetics
7.
Microbiome ; 12(1): 104, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38845047

BACKGROUND: Ruminant gut microbiota are critical in ecological adaptation, evolution, and nutrition utilization because it regulates energy metabolism, promotes nutrient absorption, and improves immune function. To study the functional roles of key gut microbiota in sheep and goats, it is essential to construct reference microbial gene catalogs and high-quality microbial genomes database. RESULTS: A total of 320 fecal samples were collected from 21 different sheep and goat breeds, originating from 32 distinct farms. Metagenomic deep sequencing and binning assembly were utilized to construct a comprehensive microbial genome information database for the gut microbiota. We successfully generated the largest reference gene catalogs for gut microbiota in sheep and goats, containing over 162 million and 82 million nonredundant predicted genes, respectively, with 49 million shared nonredundant predicted genes and 1138 shared species. We found that the rearing environment has a greater impact on microbial composition and function than the host's species effect. Through subsequent assembly, we obtained 5810 medium- and high-quality metagenome-assembled genomes (MAGs), out of which 2661 were yet unidentified species. Among these MAGs, we identified 91 bacterial taxa that specifically colonize the sheep gut, which encode polysaccharide utilization loci for glycan and mucin degradation. CONCLUSIONS: By shedding light on the co-symbiotic microbial communities in the gut of small ruminants, our study significantly enhances the understanding of their nutrient degradation and disease susceptibility. Our findings emphasize the vast potential of untapped resources in functional bacterial species within ruminants, further expanding our knowledge of how the ruminant gut microbiota recognizes and processes glycan and mucins. Video Abstract.


Bacteria , Feces , Gastrointestinal Microbiome , Goats , Mucins , Polysaccharides , Animals , Goats/microbiology , Sheep/microbiology , Mucins/metabolism , Polysaccharides/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Feces/microbiology , Metagenome , Genome, Bacterial , Metagenomics/methods , Phylogeny , High-Throughput Nucleotide Sequencing
8.
BMC Gastroenterol ; 24(1): 202, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38886669

BACKGROUND: B3GNT7, a glycosyltransferase of significant importance that is highly expressed in intestinal epithelial cells, plays a pivotal role in intestinal physiological processes. This study elucidates novel insights into the potential role and underlying mechanisms of B3GNT7 in ulcerative colitis (UC). METHODS: An experimental colitis model was induced using DSS in mice to investigate B3GNT7 expression in the colon via transcriptomics and immunohistochemistry. Bioinformatics analysis was employed to delineate the biological functions of B3GNT7. Additionally, the correlation between the transcription levels of B3GNT7 in colonic tissues from patients with UC, sourced from the IBDMDB database, and the severity of colonic inflammation was analyzed to elucidate potential mechanisms. RESULTS: The DSS-induced colitis model was successfully established, and transcriptomic analysis identified a marked downregulation of B3GNT7 expression in the colonic tissues compared to the controls. Functional enrichment analysis indicated B3GNT7's predominant role in mucin O-glycosylation. Protein interaction analysis revealed that B3GNT7 predominantly interacts with members of the mucin MUC family, including MUC2, MUC3, and MUC6. In patients with UC, B3GNT7 transcription levels were significantly reduced, particularly in those with moderate to severe disease activity. The expression level of B3GNT7 exhibited a negative correlation with the endoscopic severity of UC. Gene set enrichment analysis (GSEA) further demonstrated significant enrichment of B3GNT7 in the mucin O-glycosylation synthesis pathway. CONCLUSION: The downregulation of B3GNT7 expression in the colonic tissues of UC patients may contribute to the compromised mucin barrier function and the exacerbation of colitis.


Colitis, Ulcerative , Disease Models, Animal , Mucins , Animals , Glycosylation , Mice , Humans , Mucins/metabolism , Mucins/genetics , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/genetics , Colitis, Ulcerative/pathology , Colon/metabolism , Colon/pathology , N-Acetylglucosaminyltransferases/metabolism , N-Acetylglucosaminyltransferases/genetics , Mice, Inbred C57BL , Dextran Sulfate , Down-Regulation , Intestinal Mucosa/metabolism , Male
9.
Asian Pac J Cancer Prev ; 25(6): 2139-2145, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38918677

BACKGROUND: Mucin-producing cholangiocarcinoma (MPCC) was rare biliary tract malignancy. Studies regarding this type of cholangiocarcinoma (CCA) were limited, particularly the survival outcome. We aim to evaluate the survival rate, median survival time after surgery among CCA patients and to determine the association between MPCC and survival. OBJECTIVE: To evaluate survival rate, median survival time after surgery among cholangiocarcinoma patients and to determine the association between mucin-producing cholangiocarcinoma and survival. METHODS: CCA patients who underwent surgery between 2013 and 2020 from the Cholangiocarcinoma Screening and Care Program (CASCAP), Northeast Thailand were included in the study. The MPCC was based on pathological findings after surgery. The survival of CCA patients was verified through medical records and civil registration. Survival rates and median survival time since the date of CCA surgery and its 95% confidence intervals (CI) were estimated. Multiple cox regression was performed to evaluate factors associated with survival which were quantified by adjusted hazard ratios (AHR) and their 95% CI. RESULTS: Of 1,249 CCA patients which constituted 24,593 person-months, 687 died at the completion of the study. The overall incidence rate was 2.79 per 100 patients per month, the median survival time was 21.77 months (95% CI: 19.87 - 23.84), and the 5-year survival rate was 28.29% (95% CI: 24.99 - 31.67). From these patients, 210 (16.81%) were MPCC, the incidence rate was 1.81 per 100 patients per month, median survival time was 41.21 months (95% CI: 26.16 - 81.97), and 5-year survival rate was 44.69% (95% CI: 32.47 - 56.16). MPCC were 35% less likely to died compared with non-MPCC (AHR = 0.65; 95% CI: 0.50 - 0.84). CONCLUSIONS: Our study revealed that CCA patients with MPCC had longer survival times and higher survival rates than those without MPCC. This classification will lead to appropriate treatment guidelines for CCA patients.


Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Cholangiocarcinoma/surgery , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/mortality , Female , Male , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/surgery , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/mortality , Middle Aged , Survival Rate , Thailand/epidemiology , Prognosis , Aged , Mucins/metabolism , Follow-Up Studies
10.
PLoS One ; 19(6): e0306058, 2024.
Article En | MEDLINE | ID: mdl-38935605

Mucosal-delivered drugs have to pass through the mucus layer before absorption through the epithelial cell membrane. Although there has been increasing interest in polymeric mucins, a major structural component of mucus, potentially acting as important physiological regulators of mucosal drug absorption, there are no reports that have systematically evaluated the interaction between mucins and drugs. In this study, we assessed the potential interaction between human polymeric mucins (MUC2, MUC5B, and MUC5AC) and various drugs with different chemical profiles by simple centrifugal method and fluorescence analysis. We found that paclitaxel, rifampicin, and theophylline likely induce the aggregation of MUC5B and/or MUC2. In addition, we showed that the binding affinity of drugs for polymeric mucins varied, not only between individual drugs but also among mucin subtypes. Furthermore, we demonstrated that deletion of MUC5AC and MUC5B in A549 cells increased the cytotoxic effects of cyclosporin A and paclitaxel, likely due to loss of mucin-drug interaction. In conclusion, our results indicate the necessity to determine the binding of drugs to mucins and their potential impact on the mucin network property.


Mucin 5AC , Paclitaxel , Humans , Paclitaxel/pharmacology , Paclitaxel/metabolism , Mucin 5AC/metabolism , Mucin 5AC/genetics , A549 Cells , Drug Interactions , Mucin-5B/metabolism , Mucin-5B/genetics , Mucins/metabolism , Mucin-2/metabolism , Mucin-2/genetics , Rifampin/pharmacology , Cyclosporine/pharmacology , Protein Binding
11.
Medicina (Kaunas) ; 60(6)2024 May 27.
Article En | MEDLINE | ID: mdl-38929494

Introduction: Signet-ring cells are typically associated with mucin-secreting epithelium; thus, they are most commonly found in the gastrointestinal tract, but not exclusively. Primary signet-ring cell carcinoma of the prostate is a rare and poorly differentiated, aggressive acinar adenocarcinoma variant with a grim prognosis. Clinical Case: In June of 2023, a 54-year-old Caucasian male presented with a complaint of lower urinary tract obstructive symptoms with occasional macrohematuria, non-specific body aches, and shortness of breath. A prostate specimen obtained in transurethral resection of the prostate was sent for histopathological examination. After a series of extraprostatic diagnostic workups, including fibrogastroduodenoscopy, colonoscopy computed tomography imaging, and immunohistochemical studies, the patient was diagnosed with primary prostatic signet-ring cell adenocarcinoma stage IV. Unfortunately, due to the advanced stage of the disease, PE, and third-degree thrombocytopenia, the patient was not a candidate for chemotherapy and died of cardiopulmonary insufficiency later that week. Discussion: Prostatic signet-ring cell carcinoma accounts for 0.02% of all prostate adenocarcinoma cases. Due to its nature and epidemiology, a diligent extraprostatic investigation has to be carried out. The disease often presents with unremarkable clinical symptoms and variable serum prostate-specific antigen results, which may contribute to its late diagnosis. Inconsistent immunohistochemical findings and an unpredictable response to hormonal treatment together pose both diagnostic and therapeutic challenges that negatively affect the prognosis. Conclusions: This study highlights the importance of a multidisciplinary approach and the need for diagnostic and therapeutic consensus within the research community in search of the primary site of the disease, which may positively influence the prognosis.


Carcinoma, Signet Ring Cell , Mucins , Prostatic Neoplasms , Humans , Male , Middle Aged , Prostatic Neoplasms/pathology , Prostatic Neoplasms/diagnosis , Carcinoma, Signet Ring Cell/diagnosis , Carcinoma, Signet Ring Cell/pathology , Mucins/analysis , Adenocarcinoma/diagnosis , Fatal Outcome
12.
Gut Microbes ; 16(1): 2356270, 2024.
Article En | MEDLINE | ID: mdl-38797998

High-fat diets alter gut barrier integrity, leading to endotoxemia by impacting epithelial functions and inducing endoplasmic reticulum (ER) stress in intestinal secretory goblet cells. Indeed, ER stress, which is an important contributor to many chronic diseases such as obesity and obesity-related disorders, leads to altered synthesis and secretion of mucins that form the protective mucus barrier. In the present study, we investigated the relative contribution of omega-3 polyunsaturated fatty acid (PUFAs)-modified microbiota to alleviating alterations in intestinal mucus layer thickness and preserving gut barrier integrity. Male fat-1 transgenic mice (exhibiting endogenous omega-3 PUFAs tissue enrichment) and wild-type (WT) littermates were fed either an obesogenic high-fat diet (HFD) or a control diet. Unlike WT mice, HFD-fed fat-1 mice were protected against mucus layer alterations as well as an ER stress-mediated decrease in mucin expression. Moreover, cecal microbiota transferred from fat-1 to WT mice prevented changes in the colonic mucus layer mainly through colonic ER stress downregulation. These findings highlight a novel feature of the preventive effects of omega-3 fatty acids against intestinal permeability in obesity-related conditions.


Colon , Diet, High-Fat , Endoplasmic Reticulum Stress , Fatty Acids, Omega-3 , Gastrointestinal Microbiome , Intestinal Mucosa , Mice, Transgenic , Animals , Diet, High-Fat/adverse effects , Mice , Male , Fatty Acids, Omega-3/metabolism , Colon/microbiology , Colon/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Obesity/metabolism , Obesity/microbiology , Mucus/metabolism , Mice, Inbred C57BL , Mucins/metabolism , Goblet Cells/metabolism , Fecal Microbiota Transplantation
13.
Parasite Immunol ; 46(5): e13040, 2024 May.
Article En | MEDLINE | ID: mdl-38801355

Cystic echinococcosis is caused by the tissue-dwelling larva (hydatid) of Echinococcus granulosus sensu lato. A salient feature is that this larva is protected by the acellular laminated layer (LL). As the parasite grows, the LL sheds abundant particles that can accumulate in the parasite's vicinity. The potential of LL particles to induce inflammation in vivo has not been specifically analysed. It is not known how each of its two major components, namely highly glycosylated mucins and calcium inositol hexakisphosphate (InsP6) deposits, impacts inflammation induced by the LL as a whole. In this work, we show that LL particles injected intraperitoneally cause infiltration of eosinophils, neutrophils and monocytes/macrophages as well as the disappearance of resident (large peritoneal) macrophages. Strikingly, the absence of calcium InsP6 enhanced the recruitment of all the inflammatory cell types analysed. In contrast, oxidation of the mucin carbohydrates caused decreased recruitment of neutrophils. The carbohydrate-oxidised particles caused cell influx nonetheless, which may be explained by possible receptor-independent effects of LL particles on innate immune cells, as suggested by previous works from our group. In summary, LL particles can induce acute inflammatory cell recruitment partly dependent on its mucin glycans, and this recruitment is attenuated by the calcium InsP6 component.


Echinococcus granulosus , Phytic Acid , Animals , Echinococcus granulosus/immunology , Phytic Acid/pharmacology , Phytic Acid/metabolism , Echinococcosis/immunology , Echinococcosis/parasitology , Inflammation , Neutrophils/immunology , Mucins/metabolism , Mice , Macrophages/immunology , Macrophages/metabolism , Eosinophils/immunology , Female , Larva/immunology
14.
Nat Commun ; 15(1): 4582, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811534

The intestinal anaerobic bacterium Akkermansia muciniphila is specialized in the degradation of mucins, which are heavily O-glycosylated proteins that constitute the major components of the mucus lining the intestine. Despite that adhesion to mucins is considered critical for the persistence of A. muciniphila in the human intestinal tract, our knowledge of how this intestinal symbiont recognizes and binds to mucins is still limited. Here, we first show that the mucin-binding properties of A. muciniphila are independent of environmental oxygen concentrations and not abolished by pasteurization. We then dissected the mucin-binding properties of pasteurized A. muciniphila by use of a recently developed cell-based mucin array that enables display of the tandem repeats of human mucins with distinct O-glycan patterns and structures. We found that A. muciniphila recognizes the unsialylated LacNAc (Galß1-4GlcNAcß1-R) disaccharide selectively on core2 and core3 O-glycans. This disaccharide epitope is abundantly found on human colonic mucins capped by sialic acids, and we demonstrated that endogenous A. muciniphila neuraminidase activity can uncover the epitope and promote binding. In summary, our study provides insights into the mucin-binding properties important for colonization of a key mucin-foraging bacterium.


Akkermansia , Mucins , Polysaccharides , Akkermansia/metabolism , Humans , Mucins/metabolism , Polysaccharides/metabolism , Neuraminidase/metabolism , Protein Binding , Glycosylation , Disaccharides/metabolism , Verrucomicrobia/metabolism , Epitopes/metabolism , Bacterial Adhesion
15.
Food Res Int ; 183: 114185, 2024 May.
Article En | MEDLINE | ID: mdl-38760122

Low- and no-calorie sweeteners reduce the amount of carbohydrates in foods and beverages. However, concerns about taste perception surrounding the role of non-nutritive sweeteners in the oral cavity remain unanswered. One of the parameters that influences taste perception is the diffusion coefficient of the sweetener molecules inside the mucin layer lining the mouth. This study investigated the impact of diffusion coefficients of common high-intensity sweeteners on taste perception focusing on the sweeteners' diffusion through mucin. Transwell Permeable Support well plates were used to measure diffusion coefficients of samples that were collected at specific intervals to estimate the coefficients based on concentration measurements. The diffusion coefficients of acesulfame-K, aspartame, rebaudioside M, sucralose, and sucrose with and without NaCl were compared. We found that different sweeteners show different diffusion behavior through mucin and that the presence of salt enhances the diffusion. These findings contribute insights into the diffusion of high-intensity sweeteners, offer a way to evaluate diffusion coefficients in real-time, and inform the development of products with improved taste profiles.


Mucins , Sucrose , Sweetening Agents , Diffusion , Mucins/metabolism , Sucrose/analogs & derivatives , Taste Perception , Humans , Thiazines
16.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1498-1508, 2024 May 25.
Article Zh | MEDLINE | ID: mdl-38783811

To investigate the role of recombinant mussel mucin in wound healing, we aimed to prepare this mucin using Pichia pastoris as the host microbe. Our method involved constructing a genetically engineered strain of P. pastoris that expressed a fusion protein consisting of Mfp-3 and preCol-P peptide segments of mussel. After fermentation and purification, we obtained a pure recombinant mussel mucin product. We then conducted experiments to evaluate its effect at both the cellular and animal levels. At the cellular level, we examined its impact on the proliferation and migration of mouse fibroblast L929. At the animal level, we assessed its ability to promote wound healing after full-layer skin resection in rats. Our results showed that the recombinant mussel mucin protein has a content of 90.28% and a purity of 96.49%. The content of 3,4-dihydroxyphenylalanine (DOPA) was 0.73 wt%, and the endotoxin content was less than 0.5 EU/mg. Importantly, the recombinant mussel mucin protein significantly promoted both the migration and proliferation of mouse fibroblast, as well as the wound healing in rat skin. In conclusion, our findings demonstrate that recombinant mussel mucin has the potential to promote wound healing and can be considered a promising medical biomaterial.


Wound Healing , Animals , Wound Healing/drug effects , Rats , Mice , Mucins/metabolism , Mucins/genetics , Bivalvia , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Fibroblasts/metabolism , Fibroblasts/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/pharmacology , Male , Rats, Sprague-Dawley , Saccharomycetales
17.
Allergol Int ; 73(3): 375-381, 2024 Jul.
Article En | MEDLINE | ID: mdl-38692992

Mucus provides a protective barrier that is crucial for host defense in the lungs. However, excessive or abnormal mucus can have pathophysiological consequences in many pulmonary diseases, including asthma. Patients with asthma are treated with agents that relax airway smooth muscle and reduce airway inflammation, but responses are often inadequate. In part, this is due to the inability of existing therapeutic agents to directly target mucus. Accordingly, there is a critical need to better understand how mucus hypersecretion and airway plugging are affected by the epithelial cells that synthesize, secrete, and transport mucus components. This review highlights recent advances in the biology of mucin glycoproteins with a specific focus on MUC5AC and MUC5B, the chief macromolecular components of airway mucus. An improved mechanistic understanding of key steps in mucin production and secretion will help reveal novel potential therapeutic strategies.


Asthma , Mucus , Humans , Asthma/metabolism , Asthma/drug therapy , Mucus/metabolism , Animals , Molecular Targeted Therapy , Mucins/metabolism , Mucin 5AC/metabolism , Mucin-5B/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/immunology
18.
FEMS Microbiol Ecol ; 100(7)2024 Jun 17.
Article En | MEDLINE | ID: mdl-38794902

Mucin is a glycoprotein secreted throughout the mammalian gastrointestinal tract that can support endogenous microorganisms in the absence of complex polysaccharides. While several mucin-degrading bacteria have been identified, the interindividual differences in microbial communities capable of metabolizing this complex polymer are not well described. To determine whether community assembly on mucin is deterministic across individuals or whether taxonomically distinct but functionally similar mucin-degrading communities are selected across fecal inocula, we used a 10-day in vitro sequential batch culture fermentation from three human donors with mucin as the sole carbon source. For each donor, 16S rRNA gene amplicon sequencing was used to characterize microbial community succession, and the short-chain fatty acid profile was determined from the final community. All three communities reached a steady-state by day 7 in which the community composition stabilized. Taxonomic comparisons amongst communities revealed that one of the final communities had Desulfovibrio, another had Akkermansia, and all three shared other members, such as Bacteroides. Metabolic output differences were most notable for one of the donor's communities, with significantly less production of acetate and propionate than the other two communities. These findings demonstrate the feasibility of developing stable mucin-degrading communities with shared and unique taxa. Furthermore, the mechanisms and efficiencies of mucin degradation across individuals are important for understanding how this community-level process impacts human health.


Feces , Fermentation , Microbial Consortia , Mucins , RNA, Ribosomal, 16S , Humans , Mucins/metabolism , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome , Akkermansia/metabolism , Desulfovibrio/metabolism , Desulfovibrio/genetics , Desulfovibrio/classification , Bacteroides/metabolism , Bacteroides/genetics , Bacteroides/classification , Bacteroides/growth & development
19.
Cell Rep ; 43(5): 114206, 2024 May 28.
Article En | MEDLINE | ID: mdl-38733584

The interleukin (IL)-22 cytokine can be protective or inflammatory in the intestine. It is unclear if IL-22 receptor (IL-22Ra1)-mediated protection involves a specific type of intestinal epithelial cell (IEC). By using a range of IEC type-specific Il22Ra1 conditional knockout mice and a dextran sulfate sodium (DSS) colitis model, we demonstrate that IL-22Ra1 signaling in MATH1+ cells (goblet and progenitor cells) is essential for maintaining the mucosal barrier and intestinal tissue regeneration. The IL-22Ra1 signaling in IECs promotes mucin core-2 O-glycan extension and induces beta-1,3-galactosyltransferase 5 (B3GALT5) expression in the colon. Adenovirus-mediated expression of B3galt5 is sufficient to rescue Il22Ra1IEC mice from DSS colitis. Additionally, we observe a reduction in the expression of B3GALT5 and the Tn antigen, which indicates defective mucin O-glycan, in the colon tissue of patients with ulcerative colitis. Lastly, IL-22Ra1 signaling in MATH1+ progenitor cells promotes organoid regeneration after DSS injury. Our findings suggest that IL-22-dependent protective responses involve O-glycan modification, proliferation, and differentiation in MATH1+ progenitor cells.


Colitis , Dextran Sulfate , Interleukin-22 , Interleukins , Receptors, Interleukin , Animals , Interleukins/metabolism , Mice , Glycosylation , Colitis/metabolism , Colitis/pathology , Colitis/chemically induced , Receptors, Interleukin/metabolism , Mucins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Humans , Signal Transduction , Mice, Inbred C57BL , Inflammation/pathology , Inflammation/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice, Knockout , Galactosyltransferases/metabolism , Galactosyltransferases/genetics , Stem Cells/metabolism
20.
Front Cell Infect Microbiol ; 14: 1391758, 2024.
Article En | MEDLINE | ID: mdl-38716194

Campylobacter jejuni, a Gram-negative bacterium, is one of the most common causes of foodborne illness worldwide. Its adhesion mechanism is mediated by several bacterial factors, including flagellum, protein adhesins, lipooligosaccharides, proteases, and host factors, such as surface glycans on epithelial cells and mucins. Fungal lectins, specialized carbohydrate-binding proteins, can bind to specific glycans on host and bacterial cells and thus influence pathogenesis. In this study, we investigated the effects of fungal lectins and protease inhibitors on the adhesion of C. jejuni to model biotic surfaces (mucin, fibronectin, and collagen) and Caco-2 cells as well as the invasion of Caco-2 cells. The lectins Marasmius oreades agglutinin (MOA) and Laccaria bicolor tectonin 2 (Tec2) showed remarkable efficacy in all experiments. In addition, different pre-incubations of lectins with C. jejuni or Caco-2 cells significantly inhibited the ability of C. jejuni to adhere to and invade Caco-2 cells, but to varying degrees. Pre-incubation of Caco-2 cells with selected lectins reduced the number of invasive C. jejuni cells the most, while simultaneous incubation showed the greatest reduction in adherent C. jejuni cells. These results suggest that fungal lectins are a promising tool for the prevention and treatment of C. jejuni infections. Furthermore, this study highlights the potential of fungi as a rich reservoir for novel anti-adhesive agents.


Bacterial Adhesion , Campylobacter jejuni , Lectins , Protease Inhibitors , Campylobacter jejuni/drug effects , Campylobacter jejuni/physiology , Campylobacter jejuni/metabolism , Humans , Caco-2 Cells , Bacterial Adhesion/drug effects , Lectins/metabolism , Lectins/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Fungi/drug effects , Mucins/metabolism , Epithelial Cells/microbiology , Fibronectins/metabolism
...