Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.939
Filtrar
1.
BMC Genomics ; 25(1): 637, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926663

RESUMEN

Dynamic metabolic reprogramming occurs at different stages of myogenesis and contributes to the fate determination of skeletal muscle satellite cells (MuSCs). Accumulating evidence suggests that mutations in myostatin (MSTN) have a vital role in regulating muscle energy metabolism. Here, we explored the metabolic reprogramming in MuSCs and myotube cells in MSTN and FGF5 dual-gene edited sheep models prepared previously, and also focused on the metabolic alterations during myogenic differentiation of MuSCs. Our study revealed that the pathways of nucleotide metabolism, pantothenate and CoA biosynthesis were weakened, while the unsaturated fatty acids biosynthesis were strengthened during myogenic differentiation of sheep MuSCs. The MSTN and FGF5 dual-gene editing mainly inhibited nucleotide metabolism and biosynthesis of unsaturated fatty acids in sheep MuSCs, reduced the number of lipid droplets in per satellite cell, and promoted the pentose phosphate pathway, and the interconversion of pentose and glucuronate. The MSTN and FGF5 dual-gene editing also resulted in the inhibition of nucleotide metabolism and TCA cycle pathway in differentiated myotube cells. The differential metabolites we identified can be characterized as biomarkers of different cellular states, and providing a new reference for MSTN and FGF5 dual-gene editing in regulation of muscle development. It may also provide a reference for the development of muscle regeneration drugs targeting biomarkers.


Asunto(s)
Factor 5 de Crecimiento de Fibroblastos , Edición Génica , Desarrollo de Músculos , Miostatina , Animales , Miostatina/genética , Miostatina/metabolismo , Desarrollo de Músculos/genética , Ovinos , Factor 5 de Crecimiento de Fibroblastos/genética , Factor 5 de Crecimiento de Fibroblastos/metabolismo , Diferenciación Celular , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/citología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citología
2.
STAR Protoc ; 5(2): 103109, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38829736

RESUMEN

Based on our hypothesis that myotubes exhibit a bistable response to insulin, here we present a protocol for finely measuring Akt phosphorylation in single myotubes under insulin stimulation. We describe steps to stably express a Förster resonance energy transfer (FRET)-based Akt biosensor in C2C12-derived myotubes and perform single-cell FRET imaging. This protocol highlights its potential for precision medicine in analyzing protein phosphorylation dynamics at the single-cell level. For complete details on the use and execution of this protocol, please refer to Akhtar et al.1.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Insulina , Fibras Musculares Esqueléticas , Transferencia Resonante de Energía de Fluorescencia/métodos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citología , Insulina/metabolismo , Insulina/farmacología , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular , Fosforilación , Análisis de la Célula Individual/métodos , Técnicas Biosensibles/métodos
3.
Mol Med Rep ; 30(1)2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38785149

RESUMEN

Promotion of myoblast differentiation by activating mitochondrial biogenesis and protein synthesis signaling pathways provides a potential alternative strategy to balance energy and overcome muscle loss and muscle disorders. Saururus chinensis (Lour.) Baill. extract (SCE) has been used extensively as a traditional herbal medicine and has several physiological activities, including anti­asthmatic, anti­oxidant, anti­inflammatory, anti­atopic, anticancer and hepatoprotective properties. However, the effects and mechanisms of action of SCE on muscle differentiation have not yet been clarified. In the present study, it was investigated whether SCE affects skeletal muscle cell differentiation through the regulation of mitochondrial biogenesis and protein synthesis in murine C2C12 myoblasts. The XTT colorimetric assay was used to determine cell viability, and myosin heavy chain (MyHC) levels were determined using immunocytochemistry. SCE was applied to C2C12 myotube at different concentrations (1, 5, or 10 ng/ml) and times (1,3, or 5 days). Reverse transcription­quantitative PCR and western blotting were used to analyze the mRNA and protein expression change of factors related to differentiation, mitochondrial biogenesis and protein synthesis. Treatment of C2C12 cells with SCE at 1,5, and 10 ng/ml did not affect cell viability. SCE promoted C2C12 myotube formation and significantly increased MyHC expression in a concentration­ and time­dependent manner. SCE significantly increased the mRNA and protein expression of muscle differentiation­specific markers, such as MyHC, myogenic differentiation 1, myogenin, Myogenic Factor 5, and ß­catenin, mitochondrial biosynthesis­related factors, such as peroxisome proliferator­activated receptor­gamma coactivator­1α, nuclear respirator factor­1, AMP­activated protein kinase phosphorylation, and histone deacetylase 5 and AKT/mTOR signaling factors related to protein synthesis. SCE may prevent skeletal muscle dysfunction by enhancing myoblast differentiation through the promotion of mitochondrial biogenesis and protein synthesis.


Asunto(s)
Diferenciación Celular , Biogénesis de Organelos , Extractos Vegetales , Proteínas Proto-Oncogénicas c-akt , Saururaceae , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Ratones , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Extractos Vegetales/farmacología , Línea Celular , Saururaceae/química , Supervivencia Celular/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/citología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/citología
5.
PLoS One ; 19(5): e0298827, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722949

RESUMEN

Glutathione peroxidase 2 (GPX2) is a selenium-dependent enzyme and protects cells against oxidative damage. Recently, GPX2 has been identified as a candidate gene for backfat and feed efficiency in pigs. However, it is unclear whether GPX2 regulates the development of porcine preadipocytes and skeletal muscle cells. In this study, adenoviral gene transfer was used to overexpress GPX2. Our findings suggest that overexpression of GPX2 gene inhibited proliferation of porcine preadipocytes. And the process is accompanied by the reduction of the p-p38. GPX2 inhibited adipogenic differentiation and promoted lipid degradation, while ERK1/2 was reduced and p-p38 was increased. Proliferation of porcine skeletal muscle cells was induced after GPX2 overexpression, was accompanied by activation in JNK, ERK1/2, and p-p38. Overexpression methods confirmed that GPX2 has a promoting function in myoblastic differentiation. ERK1/2 pathway was activated and p38 was suppressed during the process. This study lays a foundation for the functional study of GPX2 and provides theoretical support for promoting subcutaneous fat reduction and muscle growth.


Asunto(s)
Adipocitos , Glutatión Peroxidasa , Sistema de Señalización de MAP Quinasas , Animales , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/genética , Adipocitos/metabolismo , Adipocitos/citología , Porcinos , Diferenciación Celular/genética , Proliferación Celular , Adipogénesis/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citología , Músculo Esquelético/metabolismo , Músculo Esquelético/citología
6.
Biomed Eng Online ; 23(1): 47, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38750477

RESUMEN

BACKGROUND: Electrotransfection is based on application of high-voltage pulses that transiently increase membrane permeability, which enables delivery of DNA and RNA in vitro and in vivo. Its advantage in applications such as gene therapy and vaccination is that it does not use viral vectors. Skeletal muscles are among the most commonly used target tissues. While siRNA delivery into undifferentiated myoblasts is very efficient, electrotransfection of siRNA into differentiated myotubes presents a challenge. Our aim was to develop efficient protocol for electroporation-based siRNA delivery in cultured primary human myotubes and to identify crucial mechanisms and parameters that would enable faster optimization of electrotransfection in various cell lines. RESULTS: We established optimal electroporation parameters for efficient siRNA delivery in cultured myotubes and achieved efficient knock-down of HIF-1α while preserving cells viability. The results show that electropermeabilization is a crucial step for siRNA electrotransfection in myotubes. Decrease in viability was observed for higher electric energy of the pulses, conversely lower pulse energy enabled higher electrotransfection silencing yield. Experimental data together with the theoretical analysis demonstrate that siRNA electrotransfer is a complex process where electropermeabilization, electrophoresis, siRNA translocation, and viability are all functions of pulsing parameters. However, despite this complexity, we demonstrated that pulse parameters for efficient delivery of small molecule such as PI, can be used as a starting point for optimization of electroporation parameters for siRNA delivery into cells in vitro if viability is preserved. CONCLUSIONS: The optimized experimental protocol provides the basis for application of electrotransfer for silencing of various target genes in cultured human myotubes and more broadly for electrotransfection of various primary cell and cell lines. Together with the theoretical analysis our data offer new insights into mechanisms that underlie electroporation-based delivery of short RNA molecules, which can aid to faster optimisation of the pulse parameters in vitro and in vivo.


Asunto(s)
Diferenciación Celular , Electroporación , Silenciador del Gen , Fibras Musculares Esqueléticas , ARN Interferente Pequeño , Humanos , Electroporación/métodos , ARN Interferente Pequeño/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citología , Supervivencia Celular , Electroforesis , Transfección/métodos
7.
PLoS One ; 19(5): e0301690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38701072

RESUMEN

Myogenesis is regulated mainly by transcription factors known as Myogenic Regulatory Factors (MRFs), and the transcription is affected by epigenetic modifications. However, the epigenetic regulation of myogenesis is poorly understood. Here, we focused on the epigenomic modification enzyme, PHF2, which demethylates histone 3 lysine 9 dimethyl (H3K9me2) during myogenesis. Phf2 mRNA was expressed during myogenesis, and PHF2 was localized in the nuclei of myoblasts and myotubes. We generated Phf2 knockout C2C12 myoblasts using the CRISPR/Cas9 system and analyzed global transcriptional changes via RNA-sequencing. Phf2 knockout (KO) cells 2 d post differentiation were subjected to RNA sequencing. Gene ontology (GO) analysis revealed that Phf2 KO impaired the expression of the genes related to skeletal muscle fiber formation and muscle cell development. The expression levels of sarcomeric genes such as Myhs and Mybpc2 were severely reduced in Phf2 KO cells at 7 d post differentiation, and H3K9me2 modification of Mybpc2, Mef2c and Myh7 was increased in Phf2 KO cells at 4 d post differentiation. These findings suggest that PHF2 regulates sarcomeric gene expression via epigenetic modification.


Asunto(s)
Desarrollo de Músculos , Sarcómeros , Animales , Ratones , Diferenciación Celular/genética , Línea Celular , Epigénesis Genética , Técnicas de Inactivación de Genes , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Histonas/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citología , Mioblastos/metabolismo , Mioblastos/citología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Sarcómeros/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transcripción Genética
8.
BMC Genomics ; 25(1): 514, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789922

RESUMEN

BACKGROUND: In aquaculture, sturgeons are generally maintained in the confined spaces, which not only hinders sturgeon movement, but also threatens their flesh quality that seriously concerned by aquaculture industry. As a typical antioxidant, resveratrol can improve the flesh quality of livestock and poultry. However, the mechanism of resveratrol's effect on the muscle of Siberian sturgeon is still unclear. RESULTS: In this study, the dietary resveratrol increased the myofiber diameter, the content of the amino acids, antioxidant capacity markers (CAT, LDH and SOD) levels and the expression levels of mTORC1 and MYH9 in muscle of Siberian sturgeon. Further transcriptome analysis displayed that ROS production-related pathways ("Oxidative phosphorylation" and "Chemical carcinogenes-reactive oxygen species") were enriched in KEGG analysis, and the expression levels of genes related to the production of ROS (COX4, COX6A, ATPeF1A, etc.) in mitochondria were significantly down-regulated, while the expression levels of genes related to scavenging ROS (SOD1) were up-regulated. CONCLUSIONS: In summary, this study reveals that resveratrol may promote the flesh quality of Siberian sturgeon probably by enhancing myofiber growth, nutritional value and the antioxidant capacity of muscle, which has certain reference significance for the development of a new type of feed for Siberian sturgeon.


Asunto(s)
Antioxidantes , Peces , Resveratrol , Animales , Resveratrol/farmacología , Peces/metabolismo , Peces/crecimiento & desarrollo , Peces/genética , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nutrientes/metabolismo , Alimentación Animal/análisis , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Dieta/veterinaria , Perfilación de la Expresión Génica
9.
ACS Biomater Sci Eng ; 10(5): 3500-3512, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38563398

RESUMEN

Cultured meat is a meat analogue produced by in vitro cell culture, which can replace the conventional animal production system. Tissue engineering using myogenic cells and biomaterials is a core technology for cultured meat production. In this study, we provide an efficient and economical method to produce skeletal muscle tissue-like structures by culturing chicken myoblasts in a fetal bovine serum (FBS)-free medium and plant-derived scaffolds. An FBS-free medium supplemented with 10% horse serum (HS) and 5% chick embryo extract (CEE) was suitable for the proliferation and differentiation of chicken myoblasts. Decellularized celery scaffolds (Decelery), manufactured using 1% sodium dodecyl sulfate (SDS), were nontoxic to cells and supported myoblast proliferation and differentiation. Decelery could support the 3D culture of chicken myoblasts, which could adhere and coagulate to the surface of the Decelery and form MYH1E+ and F-actin+ myotubes. After 2 weeks of culture on Decelery, fully grown myoblasts completely covered the surface of the scaffolds and formed fiber-like myotube structures. They further differentiated to form spontaneously contracting myofiber-like myotubes on the scaffold surface, indicating that the Decelery scaffold system could support the formation of a functional mature myofiber structure. In addition, as the spontaneously contracting myofibers did not detach from the surface of the Decelery, the Decelery system is a suitable biomaterial for the long-term culture and maintenance of the myofiber structures.


Asunto(s)
Diferenciación Celular , Pollos , Músculo Esquelético , Mioblastos , Ingeniería de Tejidos , Andamios del Tejido , Animales , Andamios del Tejido/química , Músculo Esquelético/citología , Ingeniería de Tejidos/métodos , Mioblastos/citología , Mioblastos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Contracción Muscular/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Células Cultivadas
10.
Dev Cell ; 59(11): 1457-1474.e5, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569550

RESUMEN

The function of many organs, including skeletal muscle, depends on their three-dimensional structure. Muscle regeneration therefore requires not only reestablishment of myofibers but also restoration of tissue architecture. Resident muscle stem cells (SCs) are essential for regeneration, but how SCs regenerate muscle architecture is largely unknown. We address this problem using genetic labeling of mouse SCs and whole-mount imaging to reconstruct, in three dimensions, muscle regeneration. Unexpectedly, we found that myofibers form via two distinct phases of fusion and the residual basement membrane of necrotic myofibers is critical for promoting fusion and orienting regenerated myofibers. Furthermore, the centralized myonuclei characteristic of regenerated myofibers are associated with myofibrillogenesis and endure months post injury. Finally, we elucidate two cellular mechanisms for the formation of branched myofibers, a pathology characteristic of diseased muscle. We provide a synthesis of the cellular events of regeneration and show that these differ from those used during development.


Asunto(s)
Imagenología Tridimensional , Músculo Esquelético , Regeneración , Animales , Regeneración/fisiología , Ratones , Músculo Esquelético/fisiología , Imagenología Tridimensional/métodos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citología , Desarrollo de Músculos/fisiología , Células Madre/citología , Células Madre/metabolismo , Membrana Basal/metabolismo
11.
Acta Biomater ; 180: 279-294, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38604466

RESUMEN

The myotendinous junction (MTJ) is a vulnerable region at the interface of skeletal muscle and tendon that forms an integrated mechanical unit. This study presents a technique for the spatially restrictive co-culture of human embryonic stem cell (hESC)-derived skeletal myocytes and primary tenocytes for two-dimensional modeling of the MTJ. Micropatterned lanes of extracellular matrix and a 2-well culture chamber define the initial regions of occupation. On day 1, both lines occupy less than 20 % of the initially vacant interstitial zone, referred to henceforth as the junction. Myocyte-tenocyte interdigitations are observed by day 7. Immunocytochemistry reveals enhanced organization and alignment of patterned myocyte and tenocyte features, as well as differential expression of multiple MTJ markers. On day 24, electrically stimulated junction myocytes demonstrate negative contractile strains, while positive tensile strains are exhibited by mechanically passive tenocytes at the junction. Unpatterned tenocytes distal to the junction experience significantly decreased strains in comparison to cells at the interface. Unpatterned myocytes have impaired organization and uncoordinated contractile behavior. These findings suggest that this platform is capable of inducing myocyte-tenocyte junction formation and mechanical coupling similar to the native MTJ, showing transduction of force across the cell-cell interface. STATEMENT OF SIGNIFICANCE: The myotendinous junction (MTJ) is an integrated structure that transduces force across the muscle-tendon boundary, making the region vulnerable to strain injury. Despite the clinical relevance, previous in vitro models of the MTJ lack the structure and mechanical accuracy of the native tissue and have difficulty transmitting force across the cell-cell interface. This study demonstrates an in vitro model of the MTJ, using spatially restrictive cues to inform human myocyte-tenocyte interactions and architecture. The model expressed MTJ markers and developed anisotropic myocyte-tenocyte integrations that resemble the native tissue and allow for force transduction from contracting myocytes to passive tenocyte regions. As such, this study presents a system capable of investigating development, injury, and pathology in the human MTJ.


Asunto(s)
Tendones , Tenocitos , Ingeniería de Tejidos , Humanos , Tendones/citología , Tendones/fisiología , Ingeniería de Tejidos/métodos , Tenocitos/citología , Tenocitos/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Modelos Biológicos , Técnicas de Cocultivo , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Unión Miotendinosa
12.
Sci Rep ; 14(1): 9370, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653980

RESUMEN

Culture of muscle cells from livestock species has typically involved laborious enzyme-based approaches that yield heterogeneous populations with limited proliferative and myogenic differentiation capacity, thus limiting their use in physiologically-meaningful studies. This study reports the use of a simple explant culture technique to derive progenitor cell populations from porcine muscle that could be maintained and differentiated long-term in culture. Fragments of semitendinosus muscle from 4 to 8 week-old piglets (n = 4) were seeded on matrigel coated culture dishes to stimulate migration of muscle-derived progenitor cells (MDPCs). Cell outgrowths appeared within a few days and were serially passaged and characterised using RT-qPCR, immunostaining and flow cytometry. MDPCs had an initial mean doubling time of 1.4 days which increased to 2.5 days by passage 14. MDPC populations displayed steady levels of the lineage-specific markers, PAX7 and MYOD, up until at least passage 2 (positive immunostaining in about 40% cells for each gene), after which the expression of myogenic markers decreased gradually. Remarkably, MDPCs were able to readily generate myotubes in culture up until passage 8. Moreover, a decrease in myogenic capacity during serial passaging was concomitant with a gradual increase in the expression of the pre-adipocyte markers, CD105 and PDGFRA, and an increase in the ability of MDPCs to differentiate into adipocytes. In conclusion, explant culture provided a simple and efficient method to harvest enriched myogenic progenitors from pig skeletal muscle which could be maintained long-term and differentiated in vitro, thus providing a suitable system for studies on porcine muscle biology and applications in the expanding field of cultured meat.


Asunto(s)
Diferenciación Celular , Músculo Esquelético , Células Madre , Animales , Porcinos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Células Madre/citología , Células Madre/metabolismo , Desarrollo de Músculos , Células Cultivadas , Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo
13.
Life Sci Space Res (Amst) ; 41: 146-157, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670641

RESUMEN

Astronauts are exposed to severely stressful physiological conditions due to microgravity and increased space radiation. Space environment affects every organ and cell in the body and the significant adverse effects of long-term weightlessness include muscle atrophy and deterioration of the skeleton (spaceflight osteopenia). Amorphous Calcium Carbonate (ACC) emerges as a promising candidate for prevention of these effects, owing to its unique physicochemical properties and its potential to address the intricately linked nature of bone-muscle crosstalk. Reported here are two studies carried out on the International Space Station (ISS). The first, performed in 2018 as a part of the Ramon-Spacelab project, was a preliminary experiment, in which stromal murine cells were differentiated into osteoblasts when ACC was added to the culture medium. A parallel experiment was done on Earth as a control. The second study was part of Axiom-1's Rakia project mission launched to the ISS on 2022 utilizing organ-on-a-chip methodology with a specially designed autonomous module. In this experiment, human bone-marrow derived mesenchymal stem cells (hBM-MSCs) and human primary muscle cells were cultured in the presence or absence of ACC, in duplicates. The results showed that ACC enhanced differentiation of human primary skeletal muscle cells into myotubes. Similarly, hBM-MSCs were differentiated significantly better into osteocytes in the presence of ACC leading to increased calcium deposits. The results, combined with previous data, support the use of ACC as an advantageous supplement for preventing muscle and bone deterioration in outer space conditions, facilitating extended extraterrestrial voyages and colonization.


Asunto(s)
Carbonato de Calcio , Diferenciación Celular , Células Madre Mesenquimatosas , Fibras Musculares Esqueléticas , Osteogénesis , Ingravidez , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Carbonato de Calcio/química , Células Cultivadas , Vuelo Espacial , Ratones
14.
J Biosci Bioeng ; 137(6): 480-486, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604883

RESUMEN

Functional tissue-engineered artificial skeletal muscle tissue has great potential for pharmacological and academic applications. This study demonstrates an in vitro tissue engineering system to construct functional artificial skeletal muscle tissues using self-organization and signal inhibitors. To induce efficient self-organization, we optimized the substrate stiffness and extracellular matrix (ECM) coatings. We modified the tissue morphology to be ring-shaped under optimized self-organization conditions. A bone morphogenetic protein (BMP) inhibitor was added to improve overall myogenic differentiation. This supplementation enhanced the myogenic differentiation ratio and myotube hypertrophy in two-dimensional cell cultures. Finally, we found that myotube hypertrophy was enhanced by a combination of self-organization with ring-shaped tissue and a BMP inhibitor. BMP inhibitor treatment significantly improved myogenic marker expression and contractile force generation in the self-organized tissue. These observations indicated that this procedure may provide a novel and functional artificial skeletal muscle for pharmacological studies.


Asunto(s)
Proteínas Morfogenéticas Óseas , Diferenciación Celular , Desarrollo de Músculos , Fibras Musculares Esqueléticas , Músculo Esquelético , Transducción de Señal , Ingeniería de Tejidos , Diferenciación Celular/efectos de los fármacos , Animales , Ingeniería de Tejidos/métodos , Ratones , Proteínas Morfogenéticas Óseas/metabolismo , Transducción de Señal/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Línea Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Andamios del Tejido/química
15.
Cells ; 11(24)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36552732

RESUMEN

Canonical Wnt signaling is involved in skeletal muscle cell biology. The exact way in which this pathway exerts its contribution to myogenesis or neuromuscular junctions (NMJ) is a matter of debate. Next to the common co-receptors of canonical Wnt signaling, Lrp5 and Lrp6, the receptor tyrosine kinase MuSK was reported to bind at NMJs WNT glycoproteins by its extracellular cysteine-rich domain. Previously, we reported canonical Wnt signaling being active in fast muscle fiber types. Here, we used conditional Lrp5 or Lrp6 knockout mice to investigate the role of these receptors in muscle cells. Conditional double knockout mice died around E13 likely due to ectopic expression of the Cre recombinase. Phenotypes of single conditional knockout mice point to a very divergent role for the two receptors. First, muscle fiber type distribution and size were changed. Second, canonical Wnt signaling reporter mice suggested less signaling activity in the absence of Lrps. Third, expression of several myogenic marker genes was changed. Fourth, NMJs were of fragmented phenotype. Fifth, recordings revealed impaired neuromuscular transmission. In sum, our data show fundamental differences in absence of each of the Lrp co-receptors and suggest a differentiated view of canonical Wnt signaling pathway involvement in adult skeletal muscle cells.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Unión Neuromuscular , Receptores Wnt , Animales , Ratones , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones Noqueados , Músculo Esquelético/metabolismo , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología , Receptores Wnt/genética , Receptores Wnt/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(24): e2103615119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35671424

RESUMEN

Skeletal muscle atrophy is commonly associated with aging, immobilization, muscle unloading, and congenital myopathies. Generation of mature muscle cells from skeletal muscle satellite cells (SCs) is pivotal in repairing muscle tissue. Exercise therapy promotes muscle hypertrophy and strength. Primary cilium is implicated as the mechanical sensor in some mammalian cells, but its role in skeletal muscle cells remains vague. To determine mechanical sensors for exercise-induced muscle hypertrophy, we established three SC-specific cilium dysfunctional mouse models-Myogenic factor 5 (Myf5)-Arf-like Protein 3 (Arl3)-/-, Paired box protein Pax-7 (Pax7)-Intraflagellar transport protein 88 homolog (Ift88)-/-, and Pax7-Arl3-/--by specifically deleting a ciliary protein ARL3 in MYF5-expressing SCs, or IFT88 in PAX7-expressing SCs, or ARL3 in PAX7-expressing SCs, respectively. We show that the Myf5-Arl3-/- mice develop grossly the same as WT mice. Intriguingly, mechanical stimulation-induced muscle hypertrophy or myoblast differentiation is abrogated in Myf5-Arl3-/- and Pax7-Arl3-/- mice or primary isolated Myf5-Arl3-/- and Pax7-Ift88-/- myoblasts, likely due to defective cilia-mediated Hedgehog (Hh) signaling. Collectively, we demonstrate SC cilia serve as mechanical sensors and promote exercise-induced muscle hypertrophy via Hh signaling pathway.


Asunto(s)
Cilios , Fuerza Muscular , Condicionamiento Físico Animal , Células Satélite del Músculo Esquelético , Animales , Diferenciación Celular , Cilios/fisiología , Terapia por Ejercicio , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/fisiología , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/fisiología
17.
Sci Rep ; 12(1): 2841, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35181706

RESUMEN

Skeletal muscle satellite cells cultured on soft surfaces (12 kPa) show improved differentiation than cells cultured on stiff surfaces (approximately 100 kPa). To better understand the reasons for this, we performed an RNA-Seq analysis for a single satellite cell clone (C1F) derived from the H2kb-tsA58 immortomouse, which differentiates into myotubes under tightly regulated conditions (withdrawal of É£-interferon, 37 °C). The largest change in overall gene expression occurred at day 1, as cells switched from proliferation to differentiation. Surprisingly, further analysis showed that proliferating C1F cells express Pax3 and not Pax7, confirmed by immunostaining, yet their subsequent differentiation into myotubes is normal, and enhanced on softer surfaces, as evidenced by significantly higher expression levels of myogenic regulatory factors, sarcomeric genes, enhanced fusion and improved myofibrillogenesis. Levels of mRNA encoding extracellular matrix structural constituents and related genes were consistently upregulated on hard surfaces, suggesting that a consequence of differentiating satellite cells on hard surfaces is that they attempt to manipulate their niche prior to differentiating. This comprehensive RNA-Seq dataset will be a useful resource for understanding Pax3 expressing cells.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Factor de Transcripción PAX3/genética , Propiedades de Superficie , Animales , Proliferación Celular/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Mioblastos/citología , Mioblastos/metabolismo , RNA-Seq , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Análisis de la Célula Individual
18.
Sci Rep ; 12(1): 1082, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058512

RESUMEN

Contractile activity is a fundamental property of skeletal muscles. We describe the establishment of a "feeder-supported in vitro exercise model" using human-origin primary satellite cells, allowing highly-developed contractile myotubes to readily be generated by applying electrical pulse stimulation (EPS). The use of murine fibroblasts as the feeder cells allows biological responses to EPS in contractile human myotubes to be selectively evaluated with species-specific analyses such as RT-PCR. We successfully applied this feeder-supported co-culture system to myotubes derived from primary satellite cells obtained from sporadic inclusion body myositis (sIBM) patients who are incapable of strenuous exercise testing. Our results demonstrated that sIBM myotubes possess essentially normal muscle functions, including contractility development, de novo sarcomere formation, and contraction-dependent myokine upregulation, upon EPS treatment. However, we found that some of sIBM myotubes, but not healthy control myotubes, often exhibit abnormal cytoplasmic TDP-43 accumulation upon EPS-evoked contraction, suggesting potential pathogenic involvement of the contraction-inducible TDP-43 distribution peculiar to sIBM. Thus, our "feeder-supported in vitro exercise model" enables us to obtain contractile human-origin myotubes, potentially utilizable for evaluating exercise-dependent intrinsic and pathogenic properties of patient muscle cells. Our approach, using feeder layers, further expands the usefulness of the "in vitro exercise model".


Asunto(s)
Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Células Satélite del Músculo Esquelético/fisiología , Animales , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Estimulación Eléctrica/métodos , Células Nutrientes/metabolismo , Humanos , Ratones , Modelos Biológicos , Fibras Musculares Esqueléticas/citología , Mioblastos/citología , Miositis por Cuerpos de Inclusión/fisiopatología , Sarcómeros/fisiología , Células Satélite del Músculo Esquelético/metabolismo
19.
Mol Med Rep ; 25(3)2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35059739

RESUMEN

Ginsenoside Rg3 (Rg3), amplified by iterative heating processing with fresh ginseng, has a broad range of pharmacological activities and improves mitochondrial biogenesis in skeletal muscle. However, thus far no study has examined how Rg3 affects myotube growth or muscle atrophy, to the best of the authors' knowledge. The present study was conducted to examine the myogenic effect of Rg3 on dexamethasone (DEX)­induced myotube atrophy and the underlying molecular mechanisms. Rg3 activated Akt/mammalian target of rapamycin signaling to prevent DEX­induced myotube atrophy thereby stimulating the expression of muscle­specific genes, including myosin heavy chain and myogenin, and suppressing muscle­specific ubiquitin ligases as demonstrated by immunoblotting and immunostaining assays. Furthermore, Rg3 efficiently prevented DEX­triggered mitochondrial dysfunction of myotubes through peroxisome proliferator­activated receptor­Î³ coactivator1α activities and its mitochondrial biogenetic transcription factors, nuclear respiratory factor­1 and mitochondrial transcription factor A. These were confirmed by immunoblotting, luciferase assays, RT­qPCR and mitochondrial analysis measuring the levels of ROS, ATP and membrane potential. By providing a mechanistic insight into the effect of Rg3 on myotube atrophy, the present study suggested that Rg3 has potential as a therapeutic or nutraceutical remedy to intervene in muscle aging or diseases including cancer cachexia.


Asunto(s)
Ginsenósidos/farmacología , Glucocorticoides/toxicidad , Mitocondrias Musculares/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Atrofia Muscular/metabolismo , Biogénesis de Organelos , Animales , Western Blotting , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dexametasona/toxicidad , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Ratones , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/genética , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Factor Nuclear 1 de Respiración/genética , Factor Nuclear 1 de Respiración/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sustancias Protectoras/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos
20.
Dev Cell ; 56(24): 3349-3363.e6, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34932950

RESUMEN

Myoblast fusion is essential for muscle development and regeneration. Yet, it remains poorly understood how mononucleated myoblasts fuse with preexisting fibers. We demonstrate that ERK1/2 inhibition (ERKi) induces robust differentiation and fusion of primary mouse myoblasts through a linear pathway involving RXR, ryanodine receptors, and calcium-dependent activation of CaMKII in nascent myotubes. CaMKII activation results in myotube growth via fusion with mononucleated myoblasts at a fusogenic synapse. Mechanistically, CaMKII interacts with and regulates MYMK and Rac1, and CaMKIIδ/γ knockout mice exhibit smaller regenerated myofibers following injury. In addition, the expression of a dominant negative CaMKII inhibits the formation of large multinucleated myotubes. Finally, we demonstrate the evolutionary conservation of the pathway in chicken myoblasts. We conclude that ERK1/2 represses a signaling cascade leading to CaMKII-mediated fusion of myoblasts to myotubes, providing an attractive target for the cultivated meat industry and regenerative medicine.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Fibras Musculares Esqueléticas/citología , Mioblastos/citología , Actinas/metabolismo , Animales , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Fusión Celular , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...