Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53.139
Filtrar
1.
Mol Cancer ; 23(1): 135, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951876

RESUMEN

In cells, signal transduction heavily relies on the intricate regulation of protein kinases, which provide the fundamental framework for modulating most signaling pathways. Dysregulation of kinase activity has been implicated in numerous pathological conditions, particularly in cancer. The druggable nature of most kinases positions them into a focal point during the process of drug development. However, a significant challenge persists, as the role and biological function of nearly one third of human kinases remains largely unknown.Within this diverse landscape, cyclin-dependent kinases (CDKs) emerge as an intriguing molecular subgroup. In human, this kinase family encompasses 21 members, involved in several key biological processes. Remarkably, 13 of these CDKs belong to the category of understudied kinases, and only 5 having undergone broad investigation to date. This knowledge gap underscores the pressing need to delve into the study of these kinases, starting with a comprehensive review of the less-explored ones.Here, we will focus on the PCTAIRE subfamily of CDKs, which includes CDK16, CDK17, and CDK18, arguably among the most understudied CDKs members. To contextualize PCTAIREs within the spectrum of human pathophysiology, we conducted an exhaustive review of the existing literature and examined available databases. This approach resulted in an articulate depiction of these PCTAIREs, encompassing their expression patterns, 3D configurations, mechanisms of activation, and potential functions in normal tissues and in cancer.We propose that this effort offers the possibility of identifying promising areas of future research that extend from basic research to potential clinical and therapeutic applications.


Asunto(s)
Quinasas Ciclina-Dependientes , Humanos , Quinasas Ciclina-Dependientes/metabolismo , Animales , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Transducción de Señal , Relación Estructura-Actividad , Conformación Proteica
2.
Mol Cancer ; 23(1): 134, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951879

RESUMEN

Natural killer (NK) cells are important immune cells in the organism and are the third major type of lymphocytes besides T cells and B cells, which play an important function in cancer therapy. In addition to retaining the tumor cell killing function of natural killer cells, natural killer cell-derived exosomes cells also have the characteristics of high safety, wide source, easy to preserve and transport. At the same time, natural killer cell-derived exosomes are easy to modify, and the engineered exosomes can be used in combination with a variety of current cancer therapies, which not only enhances the therapeutic efficacy, but also significantly reduces the side effects. Therefore, this review summarizes the source, isolation and modification strategies of natural killer cell-derived exosomes and the combined application of natural killer cell-derived engineered exosomes with other antitumor therapies, which is expected to accelerate the clinical translation process of natural killer cell-derived engineered exosomes in cancer therapy.


Asunto(s)
Exosomas , Células Asesinas Naturales , Neoplasias , Humanos , Exosomas/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Animales , Relevancia Clínica
3.
Adv Protein Chem Struct Biol ; 141: 123-176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960472

RESUMEN

Metalloproteins represents more than one third of human proteome, with huge variation in physiological functions and pathological implications, depending on the metal/metals involved and tissue context. Their functions range from catalysis, bioenergetics, redox, to DNA repair, cell proliferation, signaling, transport of vital elements, and immunity. The human metalloproteomic studies revealed that many families of metalloproteins along with individual metalloproteins are dysregulated under several clinical conditions. Also, several sorts of interaction between redox- active or redox- inert metalloproteins are observed in health and disease. Metalloproteins profiling shows distinct alterations in neurodegenerative diseases, cancer, inflammation, infection, diabetes mellitus, among other diseases. This makes metalloproteins -either individually or as families- a promising target for several therapeutic approaches. Inhibitors and activators of metalloenzymes, metal chelators, along with artificial metalloproteins could be versatile in diagnosis and treatment of several diseases, in addition to other biomedical and industrial applications.


Asunto(s)
Metaloproteínas , Proteómica , Humanos , Metaloproteínas/metabolismo , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
4.
Adv Protein Chem Struct Biol ; 141: 223-253, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960475

RESUMEN

Recent advances in genome-wide studies have revealed numerous epigenetic regulations brought about by genes involved in cellular metabolism. Isocitrate dehydrogenase (IDH), an essential enzyme, that converts isocitrate into -ketoglutarate (KG) predominantly in the tricarboxylic acid (TCA) cycle, has gained particular importance due to its cardinal role in the metabolic pathway in cells. IDH1, IDH2, and IDH3 are the three isomeric IDH enzymes that have been shown to regulate cellular metabolism. Of particular importance, IDH2 genes are associated with several cancers, including gliomas, oligodendroglioma, and astrocytomas. These mutations lead to the production of oncometabolite D-2-hydroxyglutarate (D-2-HG), which accumulates in cells promoting tumor growth. The enhanced levels of D-2-HG competitively inhibit α-KG dependent enzymes, inhibiting cell TCA cycle, upregulating the cell growth and survival relevant HIF-1α pathway, promoting DNA hypermethylation related epigenetic activity, all of which synergistically contribute to carcinogenesis. The present review discusses epigenetic mechanisms inIDH2 regulation in cells and further its clinical implications.


Asunto(s)
Epigénesis Genética , Isocitrato Deshidrogenasa , Neoplasias , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Metilación de ADN
5.
Biochem J ; 481(13): 865-881, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958472

RESUMEN

Filamin A is an essential protein in the cell cytoskeleton because of its actin binding properties and unique homodimer rod-shaped structure, which organises actin into three-dimensional orthogonal networks imperative to cell motility, spreading and adhesion. Filamin A is subject to extensive posttranslational modification (PTM) which serves to co-ordinate cellular architecture and to modulate its large protein-protein interaction network which is key to the protein's role as a cellular signalling hub. Characterised PTMs include phosphorylation, irreversible cleavage, ubiquitin mediated degradation, hydroxylation and O-GlcNAcylation, with preliminary evidence of tyrosylation, carbonylation and acetylation. Each modification and its relation to filamin A function will be described here. These modifications are often aberrantly applied in a range of diseases including, but not limited to, cancer, cardiovascular disease and neurological disease and we discuss the concept of target specific PTMs with novel therapeutic modalities. In summary, our review represents a topical 'one-stop-shop' that enables understanding of filamin A function in cell homeostasis and provides insight into how a variety of modifications add an extra level of Filamin A control.


Asunto(s)
Filaminas , Procesamiento Proteico-Postraduccional , Filaminas/metabolismo , Humanos , Animales , Fosforilación , Neoplasias/metabolismo
6.
Cancer Discov ; 14(7): 1143-1144, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946324

RESUMEN

In this issue, Ryan and colleagues describe the preclinical development of a pan-RAF:MEK molecular glue with superior efficacy, brain penetrance, and tolerability in xenograft models of Ras/Raf/MAPK pathway-driven tumors. See related article by Ryan et al., p. 1190 (1).


Asunto(s)
Inhibidores de Proteínas Quinasas , Humanos , Animales , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Quinasas raf/metabolismo , Quinasas raf/genética , Ratones , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
7.
Cell Biochem Funct ; 42(5): e4063, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961596

RESUMEN

The intricate consortium of microorganisms in the human gut plays a crucial role in different physiological functions. The complex known-unknown elements of the gut microbiome are perplexing and the absence of standardized procedures for collecting and preserving samples has hindered continuous research in comprehending it. The technological bias produced because of lack of standard protocols has affected the reproducibility of results. The complex nature of diseases like colorectal cancer, gastric cancer, hepatocellular carcinoma and breast cancer require a thorough understanding of its etiology for an efficient and timely diagnosis. The designated protocols for collection and preservation of stool specimens have great variance, hence generate inconsistencies in OMICS studies. Due to the complications associated to the nature of sample, it is important to preserve the sample to be studied later in a laboratory or to be used in the future research purpose. Stool preservation is gaining importance due to the increased use of treatment options like fecal microbiota transplantation to cure conditions like recurrent Clostridium difficile infections and for OMICS studies including metagenomics, metabolomics and culturomics. This review provides an insight into the importance of omics studies for the identification and development of novel biomarkers for quick and noninvasive diagnosis of various diseases.


Asunto(s)
Heces , Microbioma Gastrointestinal , Neoplasias , Humanos , Heces/microbiología , Heces/química , Neoplasias/metabolismo , Metabolómica , Metagenómica
8.
BMC Cancer ; 24(1): 794, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961454

RESUMEN

BACKGROUND: Kallikrein-related peptidase 7 (KLK7) is a chymotrypsin-like serine protease which is essential for the desquamation of corneocytes and thus plays a pivotal role in maintaining skin homeostasis. In cancer, KLK7 overexpression was suggested to represent a route for metastasis through cleavage of cell junction and extracellular matrix proteins of cancer cells. METHODS: To comprehensively determine KLK7 protein expression in normal and neoplastic tissues, a tissue microarray containing 13,447 samples from 147 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. RESULTS: KLK7 positivity was found in 64 of 147 tumor categories, including 17 tumor categories with at least one strongly positive case. The highest rate of KLK7 positivity was found in squamous cell carcinomas from various sites of origin (positive in 18.1%-63.8%), ovarian and endometrium cancers (4.8%-56.2%), salivary gland tumors (4.8%-13.7%), bilio-pancreatic adenocarcinomas (20.0%-40.4%), and adenocarcinomas of the upper gastrointestinal tract (3.3%-12.5%). KLK7 positivity was linked to nodal metastasis (p = 0.0005), blood vessel infiltration (p = 0.0037), and lymph vessel infiltration (p < 0.0001) in colorectal adenocarcinoma, nodal metastasis in hepatocellular carcinoma (p = 0.0382), advanced pathological tumor stage in papillary thyroid cancer (p = 0.0132), and low grade of malignancy in a cohort of 719 squamous cell carcinomas from 11 different sites of origin (p < 0.0001). CONCLUSIONS: These data provide a comprehensive overview on KLK7 expression in normal and neoplastic human tissues. The prognostic relevance of KLK7 expression and the possible role of KLK7 as a drug target need to be further investigated.


Asunto(s)
Calicreínas , Neoplasias , Análisis de Matrices Tisulares , Humanos , Calicreínas/metabolismo , Neoplasias/patología , Neoplasias/metabolismo , Biomarcadores de Tumor/metabolismo , Femenino , Inmunohistoquímica , Masculino
9.
Sci Adv ; 10(27): eadh9613, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959318

RESUMEN

Downstream-of-gene (DoG) transcripts are an emerging class of noncoding RNAs. However, it remains largely unknown how DoG RNA production is regulated and whether alterations in DoG RNA signatures exist in major cancers. Here, through transcriptomic analyses of matched tumors and nonneoplastic tissues and cancer cell lines, we reveal a comprehensive catalog of DoG RNA signatures. Through separate lines of evidence, we support the biological importance of DoG RNAs in carcinogenesis. First, we show tissue-specific and stage-specific differential expression of DoG RNAs in tumors versus paired normal tissues with their respective host genes involved in tumor-promoting versus tumor-suppressor pathways. Second, we identify that differential DoG RNA expression is associated with poor patient survival. Third, we identify that DoG RNA induction is a consequence of treating colon cancer cells with the topoisomerase I (TOP1) poison camptothecin and following TOP1 depletion. Our results underlie the significance of DoG RNAs and TOP1-dependent regulation of DoG RNAs in diversifying and modulating the cancer transcriptome.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias , Transcriptoma , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Línea Celular Tumoral , Perfilación de la Expresión Génica , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo I/genética
11.
J Proteome Res ; 23(7): 2452-2473, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965921

RESUMEN

Cancer cachexia is an involuntary loss of body weight, mostly of skeletal muscle. Previous research favors the existence of a microbiota-muscle crosstalk, so the aim of the study was to evaluate the impact of microbiota alterations induced by antibiotics on skeletal muscle proteins expression. Skeletal muscle proteome changes were investigated in control (CT) or C26 cachectic mice (C26) with or without antibiotic treatment (CT-ATB or C26-ATB, n = 8 per group). Muscle protein extracts were divided into a sarcoplasmic and myofibrillar fraction and then underwent label-free liquid chromatography separation, mass spectrometry analysis, Mascot protein identification, and METASCAPE platform data analysis. In C26 mice, the atrogen mafbx expression was 353% higher than CT mice and 42.3% higher than C26-ATB mice. No effect on the muscle protein synthesis was observed. Proteomic analyses revealed a strong effect of antibiotics on skeletal muscle proteome outside of cachexia, with adaptative processes involved in protein folding, growth, energy metabolism, and muscle contraction. In C26-ATB mice, proteome adaptations observed in CT-ATB mice were blunted. Differentially expressed proteins were involved in other processes like glucose metabolism, oxidative stress response, and proteolysis. This study confirms the existence of a microbiota-muscle axis, with a muscle response after antibiotics that varies depending on whether cachexia is present.


Asunto(s)
Antibacterianos , Caquexia , Músculo Esquelético , Proteoma , Caquexia/metabolismo , Caquexia/microbiología , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/efectos adversos , Proteoma/metabolismo , Proteoma/análisis , Ratones , Neoplasias/metabolismo , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Proteínas Musculares/metabolismo , Masculino , Proteómica/métodos , Microbiota/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos
12.
J Immunother Cancer ; 12(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38964783

RESUMEN

BACKGROUND: T cells play a central role in the antitumor response. However, they often face numerous hurdles in the tumor microenvironment, including the scarcity of available essential metabolites such as glucose and amino acids. Moreover, cancer cells can monopolize these resources to thrive and proliferate by upregulating metabolite transporters and maintaining a high metabolic rate, thereby outcompeting T cells. METHODS: Herein, we sought to improve T-cell antitumor function in the tumor vicinity by enhancing their glycolytic capacity to better compete with tumor cells. To achieve this, we engineered human T cells to express a key glycolysis enzyme, phosphofructokinase, in conjunction with Glucose transporter 3, a glucose transporter. We co-expressed these, along with tumor-specific chimeric antigen or T-cell receptors. RESULTS: Engineered cells demonstrated an increased cytokine secretion and upregulation of T-cell activation markers compared with control cells. Moreover, they displayed superior glycolytic capacity, which translated into an improved in vivo therapeutic potential in a xenograft model of human tumors. CONCLUSION: In summary, these findings support the implementation of T-cell metabolic engineering to enhance the efficacy of cellular immunotherapies for cancer.


Asunto(s)
Glucólisis , Linfocitos T , Humanos , Animales , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ratones , Ingeniería Genética , Microambiente Tumoral , Línea Celular Tumoral , Neoplasias/inmunología , Neoplasias/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cell Commun Signal ; 22(1): 350, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965548

RESUMEN

T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/terapia , Microambiente Tumoral/genética , Animales , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Terapia Molecular Dirigida
14.
Mol Biol Rep ; 51(1): 788, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970704

RESUMEN

Despite many efforts, a comprehensive understanding and clarification of the intricate connections within cancer cell metabolism remain elusive. This might pertain to intracellular dynamics and the complex interplay between cancer cells, and cells with the tumor stroma. Almost a century ago, Otto Warburg found that cancer cells exhibit a glycolytic phenotype, which continues to be a subject of thorough investigation. Past and ongoing investigations have demonstrated intricate mechanisms by which tumors modulate their functionality by utilizing extracellular glucose as a substrate, thereby sustaining the essential proliferation of cancer cells. This concept of "aerobic glycolysis," where cancer cells (even in the presence of enough oxygen) metabolize glucose to produce lactate plays a critical role in cancer progression and is regulated by various signaling pathways. Recent research has revealed that the canonical wingless-related integrated site (WNT) pathway promotes aerobic glycolysis, directly and indirectly, thereby influencing cancer development and progression. The present review seeks to gather knowledge about how the WNT/ß-catenin pathway influences aerobic glycolysis, referring to relevant studies in different types of cancer. Furthermore, we propose the concept of impeding the glycolytic phenotype of tumors by employing specific inhibitors that target WNT/ß-catenin signaling.


Asunto(s)
Glucólisis , Neoplasias , Vía de Señalización Wnt , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , beta Catenina/metabolismo , Efecto Warburg en Oncología , Animales , Glucosa/metabolismo
15.
Signal Transduct Target Ther ; 9(1): 170, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965243

RESUMEN

Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/ß-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-ß, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.


Asunto(s)
Neoplasias , Células Madre Neoplásicas , Humanos , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Neoplasias/terapia , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Transducción de Señal , Resistencia a Antineoplásicos/genética
16.
Adv Exp Med Biol ; 1445: 73-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38967751

RESUMEN

Immunoglobulin (Ig) has been widely acknowledged to be produced solely by B-lineage cells. However, growing evidence has demonstrated the expression of Ig in an array of cancer cells, as well as normal cells including epithelial cells, epidermal cells, mesangial cells, monocytes, and neutrophils. Ig has even been found to be expressed in non-B cells at immune-privileged sites such as neurons and spermatogenic cells. Despite these non-B cell-derived Igs (non-B-Igs) sharing the same symmetric structures with conventional Igs (B-Igs), further studies have revealed unique characteristics of non-B-Ig, such as restricted variable region and aberrant glycosylation. Moreover, non-B-Ig exhibits properties of promoting malignant behaviours of cancer cells, therefore it could be utilised in the clinic as a potential therapeutic biomarker or target. The elucidation of the generation and regulation of non-B-Ig will certainly broaden our understanding of immunology.


Asunto(s)
Inmunoglobulinas , Humanos , Animales , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Inmunoglobulinas/inmunología , Glicosilación , Linfocitos B/inmunología , Linfocitos B/metabolismo , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo
17.
Nat Commun ; 15(1): 5694, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972873

RESUMEN

Tumor-associated myeloid-derived cells (MDCs) significantly impact cancer prognosis and treatment responses due to their remarkable plasticity and tumorigenic behaviors. Here, we integrate single-cell RNA-sequencing data from different cancer types, identifying 29 MDC subpopulations within the tumor microenvironment. Our analysis reveals abnormally expanded MDC subpopulations across various tumors and distinguishes cell states that have often been grouped together, such as TREM2+ and FOLR2+ subpopulations. Using deconvolution approaches, we identify five subpopulations as independent prognostic markers, including states co-expressing TREM2 and PD-1, and FOLR2 and PDL-2. Additionally, TREM2 alone does not reliably predict cancer prognosis, as other TREM2+ macrophages show varied associations with prognosis depending on local cues. Validation in independent cohorts confirms that FOLR2-expressing macrophages correlate with poor clinical outcomes in ovarian and triple-negative breast cancers. This comprehensive MDC atlas offers valuable insights and a foundation for futher analyses, advancing strategies for treating solid cancers.


Asunto(s)
Glicoproteínas de Membrana , Células Mieloides , Neoplasias , Receptores Inmunológicos , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Análisis de la Célula Individual/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Células Mieloides/metabolismo , Células Mieloides/patología , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Pronóstico , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Femenino , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética
18.
Int J Nanomedicine ; 19: 6499-6513, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38946887

RESUMEN

Purpose: To address the problem of suboptimal reactive oxygen species (ROS) production in Radiation therapy (RT) which was resulted from exacerbated tumor hypoxia and the heterogeneous distribution of radiation sensitizers. Materials and Methods: In this work, a novel nanomedicine, designated as PLGA@IR780-Bi-DTPA (PIBD), was engineered by loading the radiation sensitizer Bi-DTPA and the photothermal agent IR780 onto poly(lactic-co-glycolic acid) (PLGA). This design leverages the tumor-targeting ability of IR780 to ensure selective accumulation of the nanoparticles in tumor cells, particularly within the mitochondria. The effect of the photothermal therapy-enhanced radiation therapy was also examined to assess the alleviation of hypoxia and the enhancement of radiation sensitivity. Results: The PIBD nanoparticles exhibited strong capacity in mitochondrial targeting and selective tumor accumulation. Upon activation by 808 nm laser irradiation, the nanoparticles effectively alleviated local hypoxia by photothermal effect enhanced blood supplying to improve oxygen content, thereby enhancing the ROS production for effective RT. Comparative studies revealed that PIBD-induced RT significantly outperformed conventional RT in treating hypoxic tumors. Conclusion: This design of tumor-targeting photothermal therapy-enhanced radiation therapy nanomedicine would advance the development of targeted drug delivery system for effective RT regardless of hypoxic microenvironment.


Asunto(s)
Nanopartículas , Terapia Fototérmica , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Especies Reactivas de Oxígeno , Animales , Terapia Fototérmica/métodos , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas/química , Línea Celular Tumoral , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratones , Indoles/farmacología , Indoles/química , Hipoxia Tumoral/efectos de los fármacos , Hipoxia Tumoral/efectos de la radiación , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/química , Ratones Endogámicos BALB C , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias/radioterapia , Neoplasias/terapia , Neoplasias/metabolismo , Nanomedicina
19.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 777-782, 2024 May 20.
Artículo en Chino | MEDLINE | ID: mdl-38948285

RESUMEN

As a member of the tumor necrosis factor receptor family, osteoprotegerin (OPG) is highly expressed in adults in the lung, heart, kidney, liver, spleen, thymus, prostate, ovary, small intestines, thyroid gland, lymph nodes, trachea, adrenal gland, the testis, and bone marrow. Together with the receptor activator of nuclear factor-κB (RANK) and the receptor activator of nuclear factor-κB ligand (RANKL), it forms the RANK/RANKL/OPG pathway, which plays an important role in the molecular mechanism of the development of various diseases. MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs performing regulatory functions in eukaryotes, with a size of about 20-25 nucleotides. miRNA genes are transcribed into primary transcripts by RNA polymerase, bind to RNA-induced silencing complexes, identify target mRNAs through complementary base pairing, with a single miRNA being capable of targeting hundreds of mRNAs, and influence the expression of many genes through pathways involved in functional interactions. In recent years, a large number of studies have been done to explore the mechanism of action of miRNA in diseases through miRNA isolation, miRNA quantification, miRNA spectrum analysis, miRNA target detection, in vitro and in vivo regulation of miRNA levels, and other technologies. It was found that miRNA can play a key role in the pathogenesis of osteoporosis, rheumatoid arthritis, and other diseases by targeting OPG. The purpose of this review is to explore the interaction between miRNA and OPG in various diseases, and to propose new ideas for studying the mechanism of action of OPG in diseases.


Asunto(s)
MicroARNs , Osteoprotegerina , Receptor Activador del Factor Nuclear kappa-B , Osteoprotegerina/metabolismo , Osteoprotegerina/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Receptor Activador del Factor Nuclear kappa-B/genética , Ligando RANK/metabolismo , Ligando RANK/genética , Neoplasias/genética , Neoplasias/metabolismo , Animales , Transducción de Señal , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo
20.
Front Endocrinol (Lausanne) ; 15: 1378356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948528

RESUMEN

Background: Cellular senescence is a common biological process with a well-established link to cancer. However, the impact of cellular senescence on tumor progression remains unclear. To investigate this relationship, we utilized transcriptomic data from a senescence gene set to explore the connection between senescence and cancer prognosis. Methods: We developed the senescence score by the Least Absolute Shrinkage and Selection Operator (LASSO) Cox model. We obtained transcriptomic information of the senescence gene set from The Cancer Genome Atlas (TCGA) program. Additionally, we created a nomogram that integrates these senescence scores with clinical characteristics, providing a more comprehensive tool for prognosis evaluation. Results: We calculated the senescence score based on the expression level of 42 senescence-related genes. We established the nomogram based on the senescence score and clinical characteristics. The senescence score showed a positive correlation with epithelial-to-mesenchymal transition, cell cycle, and glycolysis, and a negative correlation with autophagy. Furthermore, we carried out Gene Ontology (GO) analysis to explore the signaling pathways and biological process in different senescence score groups. Conclusions: The senescence score, a novel tool constructed in this study, shows promise in predicting survival outcomes across various cancer types. These findings not only highlight the complex interplay between senescence and cancer but also indicate that cellular senescence might serve as a biomarker for tumor prognosis.


Asunto(s)
Senescencia Celular , Neoplasias , Humanos , Neoplasias/patología , Neoplasias/genética , Neoplasias/metabolismo , Pronóstico , Transición Epitelial-Mesenquimal , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Nomogramas , Transcriptoma , Femenino , Masculino , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...