Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Science ; 385(6709): eadf4478, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39116228

RESUMEN

Despite recent studies implicating liquid-like biomolecular condensates in diverse cellular processes, many biomolecular condensates exist in a solid-like state, and their function and regulation are less understood. We show that the tumor suppressor Merlin, an upstream regulator of the Hippo pathway, localizes to both cell junctions and medial apical cortex in Drosophila epithelia, with the latter forming solid-like condensates that activate Hippo signaling. Merlin condensation required phosphatidylinositol-4-phosphate (PI4P)-mediated plasma membrane targeting and was antagonistically controlled by Pez and cytoskeletal tension through plasma membrane PI4P regulation. The solid-like material properties of Merlin condensates are essential for physiological function and protect the condensates against external perturbations. Collectively, these findings uncover an essential role for solid-like condensates in normal physiology and reveal regulatory mechanisms for their formation and disassembly.


Asunto(s)
Condensados Biomoleculares , Proteínas de Drosophila , Drosophila melanogaster , Vía de Señalización Hippo , Neurofibromina 2 , Animales , Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Uniones Intercelulares/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Condensados Biomoleculares/metabolismo
2.
FASEB J ; 38(13): e23809, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38967126

RESUMEN

The neurofibromatosis type 2 (NF2) gene, known for encoding the tumor suppressor protein Merlin, is central to the study of tumorigenesis and associated cellular processes. This review comprehensively examines the multifaceted role of NF2/Merlin, detailing its structural characteristics, functional diversity, and involvement in various signaling pathways such as Wnt/ß-catenin, Hippo, TGF-ß, RTKs, mTOR, Notch, and Hedgehog. These pathways are crucial for cellular growth, proliferation, and differentiation. NF2 mutations are specifically linked to the development of schwannomas, meningiomas, and ependymomas, although the precise mechanisms of tumor formation in these specific cell types remain unclear. Additionally, the review explores Merlin's role in embryogenesis, highlighting the severe developmental defects and embryonic lethality caused by NF2 deficiency. The potential therapeutic strategies targeting these genetic aberrations are also discussed, emphasizing inhibitors of mTOR, HDAC, and VEGF as promising avenues for treatment. This synthesis of current knowledge underscores the necessity for ongoing research to elucidate the detailed mechanisms of NF2/Merlin and develop effective therapeutic strategies, ultimately aiming to improve the prognosis and quality of life for individuals with NF2 mutations.


Asunto(s)
Carcinogénesis , Neurofibromina 2 , Humanos , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Neurofibromatosis 2/genética , Neurofibromatosis 2/metabolismo , Neurofibromatosis 2/patología , Transducción de Señal , Mutación
3.
PLoS One ; 19(7): e0305121, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39083549

RESUMEN

Neurofibromatosis type 2 is a genetic disorder that results in the formation and progressive growth of schwannomas, ependymomas, and/or meningiomas. The NF2 gene encodes the Merlin protein, which links cell cortical elements to the actin cytoskeleton and regulates a number of key enzymes including Group I p21-activated kinases (PAKs), the Hippo-pathway kinase LATS, and mTORC. While PAK1 and PAK2 directly bind Merlin and transmit proliferation and survival signals when Merlin is mutated or absent, inhibition of Group 1 PAKs alone has not proven sufficient to completely stop the growth of NF2-deficient meningiomas or schwannomas in vivo, suggesting the need for a second pathway inhibitor. As the Hippo pathway is also activated in NF2-deficient cells, several inhibitors of the Hippo pathway have recently been developed in the form of YAP-TEAD binding inhibitors. These inhibitors prevent activation of pro-proliferation and anti-apoptotic Hippo pathway effectors. In this study, we show that PAK inhibition slows cell proliferation while TEAD inhibition promotes apoptotic cell death. Finally, we demonstrate the efficacy of PAK and TEAD inhibitor combinations in several NF2-deficient Schwannoma cell lines.


Asunto(s)
Proliferación Celular , Vía de Señalización Hippo , Neurilemoma , Neurofibromina 2 , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Factores de Transcripción , Quinasas p21 Activadas , Humanos , Neurilemoma/metabolismo , Neurilemoma/genética , Neurilemoma/patología , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/antagonistas & inhibidores , Quinasas p21 Activadas/genética , Proliferación Celular/efectos de los fármacos , Neurofibromina 2/genética , Neurofibromina 2/deficiencia , Neurofibromina 2/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Apoptosis/efectos de los fármacos , Sinergismo Farmacológico , Neurofibromatosis 2/metabolismo , Neurofibromatosis 2/genética , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
4.
Development ; 151(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39077779

RESUMEN

The Hippo pathway plays a crucial role in cell proliferation and differentiation during tumorigenesis, tissue homeostasis and early embryogenesis. Scaffold proteins from the ezrin-radixin-moesin (ERM) family, including neurofibromin 2 (NF2; Merlin), regulate the Hippo pathway through cell polarity. However, the mechanisms underlying Hippo pathway regulation via cell polarity in establishing outer cells remain unclear. In this study, we generated artificial Nf2 mutants in the N-terminal FERM domain (L64P) and examined Hippo pathway activity by assessing the subcellular localization of YAP1 in early embryos expressing these mutant mRNAs. The L64P-Nf2 mutant inhibited NF2 localization around the cell membrane, resulting in YAP1 cytoplasmic translocation in the polar cells. L64P-Nf2 expression also disrupted the apical centralization of both large tumor suppressor 2 (LATS2) and ezrin in the polar cells. Furthermore, Lats2 mutants in the FERM binding domain (L83K) inhibited YAP1 nuclear translocation. These findings demonstrate that NF2 subcellular localization mediates cell polarity establishment involving ezrin centralization. This study provides previously unreported insights into how the orchestration of the cell-surface components, including NF2, LATS2 and ezrin, modulates the Hippo pathway during cell polarization.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Polaridad Celular , Proteínas del Citoesqueleto , Vía de Señalización Hippo , Neurofibromina 2 , Proteínas Serina-Treonina Quinasas , Proteínas Supresoras de Tumor , Proteínas Señalizadoras YAP , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Animales , Ratones , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Transducción de Señal , Embrión de Mamíferos/metabolismo , Mutación/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Transporte de Proteínas , Membrana Celular/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética
5.
CNS Neurosci Ther ; 30(6): e14784, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828669

RESUMEN

INTRODUCTION: Programmed death-ligand 1 (PD-L1) expression is an immune evasion mechanism that has been demonstrated in many tumors and is commonly associated with a poor prognosis. Over the years, anti-PD-L1 agents have gained attention as novel anticancer therapeutics that induce durable tumor regression in numerous malignancies. They may be a new treatment choice for neurofibromatosis type 2 (NF2) patients. AIMS: The aims of this study were to detect the expression of PD-L1 in NF2-associated meningiomas, explore the effect of PD-L1 downregulation on tumor cell characteristics and T-cell functions, and investigate the possible pathways that regulate PD-L1 expression to further dissect the possible mechanism of immune suppression in NF2 tumors and to provide new treatment options for NF2 patients. RESULTS: PD-L1 is heterogeneously expressed in NF2-associated meningiomas. After PD-L1 knockdown in NF2-associated meningioma cells, tumor cell proliferation was significantly inhibited, and the apoptosis rate was elevated. When T cells were cocultured with siPD-L1-transfected NF2-associated meningioma cells, the expression of CD69 on both CD4+ and CD8+ T cells was partly reversed, and the capacity of CD8+ T cells to kill siPD-L1-transfected tumor cells was partly restored. Results also showed that the PI3K-AKT-mTOR pathway regulates PD-L1 expression, and the mTOR inhibitor rapamycin rapidly and persistently suppresses PD-L1 expression. In vivo experimental results suggested that anti-PD-L1 antibody may have a synergetic effect with the mTOR inhibitor in reducing tumor cell proliferation and that reduced PD-L1 expression could contribute to antitumor efficacy. CONCLUSIONS: Targeting PD-L1 could be helpful for restoring the function of tumor-infiltrating lymphocytes and inducing apoptosis to inhibit tumor proliferation in NF2-associated meningiomas. Dissecting the mechanisms of the PD-L1-driven tumorigenesis of NF2-associated meningioma will help to improve our understanding of the mechanisms underlying tumor progression and could facilitate further refinement of current therapies to improve the treatment of NF2 patients.


Asunto(s)
Antígeno B7-H1 , Proliferación Celular , Neoplasias Meníngeas , Meningioma , Neurofibromatosis 2 , Linfocitos T , Meningioma/metabolismo , Meningioma/inmunología , Meningioma/patología , Humanos , Antígeno B7-H1/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patología , Neoplasias Meníngeas/inmunología , Animales , Linfocitos T/metabolismo , Linfocitos T/efectos de los fármacos , Neurofibromatosis 2/metabolismo , Ratones , Masculino , Femenino , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Línea Celular Tumoral , Persona de Mediana Edad , Ratones Desnudos , Apoptosis/efectos de los fármacos , Apoptosis/fisiología
7.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928264

RESUMEN

NF2-related schwannomatosis (NF2) is a genetic syndrome characterized by the growth of benign tumors in the nervous system, particularly bilateral vestibular schwannomas, meningiomas, and ependymomas. This review consolidates the current knowledge on NF2 syndrome, emphasizing the molecular pathology associated with the mutations in the gene of the same name, the NF2 gene, and the subsequent dysfunction of its product, the Merlin protein. Merlin, a tumor suppressor, integrates multiple signaling pathways that regulate cell contact, proliferation, and motility, thereby influencing tumor growth. The loss of Merlin disrupts these pathways, leading to tumorigenesis. We discuss the roles of another two proteins potentially associated with NF2 deficiency as well as Merlin: Yes-associated protein 1 (YAP), which may promote tumor growth, and Raf kinase inhibitory protein (RKIP), which appears to suppress tumor development. Additionally, this review discusses the efficacy of various treatments, such as molecular therapies that target specific pathways or inhibit neomorphic protein-protein interaction caused by NF2 deficiency. This overview not only expands on the fundamental understanding of NF2 pathophysiology but also explores the potential of novel therapeutic targets that affect the clinical approach to NF2 syndrome.


Asunto(s)
Neurilemoma , Neurofibromatosis , Neurofibromina 2 , Neoplasias Cutáneas , Humanos , Neurofibromatosis/terapia , Neurofibromatosis/genética , Neurofibromatosis/metabolismo , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Neurilemoma/genética , Neurilemoma/terapia , Neurilemoma/metabolismo , Neurilemoma/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Animales , Neurofibromatosis 2/genética , Neurofibromatosis 2/terapia , Neurofibromatosis 2/metabolismo , Mutación , Transducción de Señal , Terapia Molecular Dirigida
8.
Nat Commun ; 15(1): 5115, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879607

RESUMEN

Neurofibromatosis Type II (NFII) is a genetic condition caused by loss of the NF2 gene, resulting in activation of the YAP/TAZ pathway and recurrent Schwann cell tumors, as well as meningiomas and ependymomas. Unfortunately, few pharmacological options are available for NFII. Here, we undertake a genome-wide CRISPR/Cas9 screen to search for synthetic-lethal genes that, when inhibited, cause death of NF2 mutant Schwann cells but not NF2 wildtype cells. We identify ACSL3 and G6PD as two synthetic-lethal partners for NF2, both involved in lipid biogenesis and cellular redox. We find that NF2 mutant Schwann cells are more oxidized than control cells, in part due to reduced expression of genes involved in NADPH generation such as ME1. Since G6PD and ME1 redundantly generate cytosolic NADPH, lack of either one is compatible with cell viability, but not down-regulation of both. Since genetic deficiency for G6PD is tolerated in the human population, G6PD could be a good pharmacological target for NFII.


Asunto(s)
Sistemas CRISPR-Cas , Coenzima A Ligasas , Glucosafosfato Deshidrogenasa , Neurofibromina 2 , Células de Schwann , Mutaciones Letales Sintéticas , Células de Schwann/metabolismo , Humanos , Glucosafosfato Deshidrogenasa/metabolismo , Glucosafosfato Deshidrogenasa/genética , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Animales , Neurofibromatosis 2/metabolismo , Neurofibromatosis 2/genética , NADP/metabolismo , Ratones , Oxidación-Reducción
9.
Glia ; 72(8): 1518-1540, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38794866

RESUMEN

In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that Nf2 knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific Pak1 loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths in vivo. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.


Asunto(s)
Vaina de Mielina , Oligodendroglía , Quinasas p21 Activadas , Quinasas p21 Activadas/metabolismo , Oligodendroglía/metabolismo , Animales , Vaina de Mielina/metabolismo , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Ratas , Actinas/metabolismo , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Citoesqueleto de Actina/metabolismo
10.
Commun Biol ; 7(1): 533, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710747

RESUMEN

Insect wing development is a fascinating and intricate process that involves the regulation of wing size through cell proliferation and apoptosis. In this study, we find that Ter94, an AAA-ATPase, is essential for proper wing size dependently on its ATPase activity. Loss of Ter94 enables the suppression of Hippo target genes. When Ter94 is depleted, it results in reduced wing size and increased apoptosis, which can be rescued by inhibiting the Hippo pathway. Biochemical experiments reveal that Ter94 reciprocally binds to Mer, a critical upstream component of the Hippo pathway, and disrupts its interaction with Ex and Kib. This disruption prevents the formation of the Ex-Mer-Kib complex, ultimately leading to the inactivation of the Hippo pathway and promoting proper wing development. Finally, we show that hVCP, the human homolog of Ter94, is able to substitute for Ter94 in modulating Drosophila wing size, underscoring their functional conservation. In conclusion, Ter94 plays a positive role in regulating wing size by interfering with the Ex-Mer-Kib complex, which results in the suppression of the Hippo pathway.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Proteínas de la Membrana , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteínas Supresoras de Tumor , Alas de Animales , Animales , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Apoptosis , Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
11.
Circulation ; 149(25): 1960-1979, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38752370

RESUMEN

BACKGROUND: Cardiomyocyte differentiation involves a stepwise clearance of repressors and fate-restricting regulators through the modulation of BMP (bone morphogenic protein)/Wnt-signaling pathways. However, the mechanisms and how regulatory roadblocks are removed with specific developmental signaling pathways remain unclear. METHODS: We conducted a genome-wide CRISPR screen to uncover essential regulators of cardiomyocyte specification in human embryonic stem cells using a myosin heavy chain 6 (MYH6)-GFP (green fluorescence protein) reporter system. After an independent secondary single guide ribonucleic acid validation of 25 candidates, we identified NF2 (neurofibromin 2), a moesin-ezrin-radixin like (MERLIN) tumor suppressor, as an upstream driver of early cardiomyocyte lineage specification. Independent monoclonal NF2 knockouts were generated using CRISPR-Cas9, and cell states were inferred through bulk RNA sequencing and protein expression analysis across differentiation time points. Terminal lineage differentiation was assessed by using an in vitro 2-dimensional-micropatterned gastruloid model, trilineage differentiation, and cardiomyocyte differentiation. Protein interaction and post-translation modification of NF2 with its interacting partners were assessed using site-directed mutagenesis, coimmunoprecipitation, and proximity ligation assays. RESULTS: Transcriptional regulation and trajectory inference from NF2-null cells reveal the loss of cardiomyocyte identity and the acquisition of nonmesodermal identity. Sustained elevation of early mesoderm lineage repressor SOX2 and upregulation of late anticardiac regulators CDX2 and MSX1 in NF2 knockout cells reflect a necessary role for NF2 in removing regulatory roadblocks. Furthermore, we found that NF2 and AMOT (angiomotin) cooperatively bind to YAP (yes-associated protein) during mesendoderm formation, thereby preventing YAP activation, independent of canonical MST (mammalian sterile 20-like serine-threonine protein kinase)-LATS (large tumor suppressor serine-threonine protein kinase) signaling. Mechanistically, cardiomyocyte lineage identity was rescued by wild-type and NF2 serine-518 phosphomutants, but not NF2 FERM (ezrin-radixin-meosin homology protein) domain blue-box mutants, demonstrating that the critical FERM domain-dependent formation of the AMOT-NF2-YAP scaffold complex at the adherens junction is required for early cardiomyocyte lineage differentiation. CONCLUSIONS: These results provide mechanistic insight into the essential role of NF2 during early epithelial-mesenchymal transition by sequestering the repressive effect of YAP and relieving regulatory roadblocks en route to cardiomyocytes.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Miocitos Cardíacos , Neurofibromina 2 , Humanos , Miocitos Cardíacos/metabolismo , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Sistemas CRISPR-Cas , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología
12.
J Pathol ; 263(2): 257-269, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613194

RESUMEN

Genomic rearrangements of the neurotrophic receptor tyrosine kinase genes (NTRK1, NTRK2, and NTRK3) are the most common mechanism of oncogenic activation for this family of receptors, resulting in sustained cancer cell proliferation. Several targeted therapies have been approved for tumours harbouring NTRK fusions and a new generation of TRK inhibitors has already been developed due to acquired resistance. We established a patient-derived LMNA::NTRK1-rearranged soft-tissue sarcoma cell model ex vivo with an acquired resistance to targeted TRK inhibition. Molecular profiling of the resistant clones revealed an acquired NF2 loss of function mutation that was absent in the parental cell model. Parental cells showed continuous sensitivity to TRK-targeted treatment, whereas the resistant clones were insensitive. Furthermore, resistant clones showed upregulation of the MAPK and mTOR/AKT pathways in the gene expression based on RNA sequencing data and increased sensitivity to MEK and mTOR inhibitor therapy. Drug synergy was seen using trametinib and rapamycin in combination with entrectinib. Medium-throughput drug screening further identified small compounds as potential drug candidates to overcome resistance as monotherapy or in combination with entrectinib. In summary, we developed a comprehensive model of drug resistance in an LMNA::NTRK1-rearranged soft-tissue sarcoma and have broadened the understanding of acquired drug resistance to targeted TRK therapy. Furthermore, we identified drug combinations and small compounds to overcome acquired drug resistance and potentially guide patient care in a functional precision oncology setting. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Resistencia a Antineoplásicos , Reordenamiento Génico , Lamina Tipo A , Mutación , Neurofibromina 2 , Inhibidores de Proteínas Quinasas , Receptor trkA , Sarcoma , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Resistencia a Antineoplásicos/genética , Receptor trkA/genética , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Sarcoma/genética , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Sarcoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Piridonas/farmacología , Benzamidas/farmacología , Pirimidinonas/farmacología , Sirolimus/farmacología , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/tratamiento farmacológico , Neoplasias de los Tejidos Blandos/patología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Transducción de Señal/efectos de los fármacos , Sinergismo Farmacológico , Indazoles
13.
J Biol Chem ; 300(5): 107212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522513

RESUMEN

As an output effector of the Hippo signaling pathway, the TEAD transcription factor and co-activator YAP play crucial functions in promoting cell proliferation and organ size. The tumor suppressor NF2 has been shown to activate LATS1/2 kinases and interplay with the Hippo pathway to suppress the YAP-TEAD complex. However, whether and how NF2 could directly regulate TEAD remains unknown. We identified a direct link and physical interaction between NF2 and TEAD4. NF2 interacted with TEAD4 through its FERM domain and C-terminal tail and decreased the protein stability of TEAD4 independently of LATS1/2 and YAP. Furthermore, NF2 inhibited TEAD4 palmitoylation and induced the cytoplasmic translocation of TEAD4, resulting in ubiquitination and dysfunction of TEAD4. Moreover, the interaction with TEAD4 is required for NF2 function to suppress cell proliferation. These findings reveal an unanticipated role of NF2 as a binding partner and inhibitor of the transcription factor TEAD, shedding light on an alternative mechanism of how NF2 functions as a tumor suppressor through the Hippo signaling cascade.


Asunto(s)
Vía de Señalización Hippo , Neurofibromina 2 , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Factores de Transcripción de Dominio TEA , Humanos , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Células HEK293 , Lipoilación , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Factores de Transcripción de Dominio TEA/metabolismo , Proteínas Supresoras de Tumor , Ubiquitinación
14.
Oncogene ; 43(13): 921-930, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336988

RESUMEN

Neurofibromatosis Type 2 (NF2)-related schwannomatosis is a genetic disorder that causes development of multiple types of nervous system tumors. The primary and diagnostic tumor type is bilateral vestibular schwannoma. There is no cure or drug therapy for NF2. Recommended treatments include surgical resection and radiation, both of which can leave patients with severe neurological deficits or increase the risk of future malignant tumors. Results of our previous pilot high-throughput drug screen identified phosphoinositide 3-kinase (PI3K) inhibitors as strong candidates based on loss of viability of mouse merlin-deficient Schwann cells (MD-SCs). Here we used novel human schwannoma model cells to conduct combination drug screens. We identified a class I PI3K inhibitor, pictilisib and p21 activated kinase (PAK) inhibitor, PF-3758309 as the top combination due to high synergy in cell viability assays. Both single and combination therapies significantly reduced growth of mouse MD-SCs in an orthotopic allograft mouse model. The inhibitor combination promoted cell cycle arrest and apoptosis in mouse merlin-deficient Schwann (MD-SCs) cells and cell cycle arrest in human MD-SCs. This study identifies the PI3K and PAK pathways as potential targets for combination drug treatment of NF2-related schwannomatosis.


Asunto(s)
Indazoles , Neurilemoma , Neurofibromatosis , Neurofibromatosis 2 , Neoplasias Cutáneas , Sulfonamidas , Humanos , Animales , Ratones , Neurofibromatosis 2/tratamiento farmacológico , Neurofibromatosis 2/genética , Neurofibromatosis 2/metabolismo , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Fosfatidilinositol 3-Quinasas , Quinasas p21 Activadas/genética , Fosfatidilinositol 3-Quinasa/uso terapéutico , Neurilemoma/tratamiento farmacológico , Neurilemoma/genética
15.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338806

RESUMEN

Solid tumours can universally evade contact inhibition of proliferation (CIP), a mechanism halting cell proliferation when cell-cell contact occurs. Merlin, an ERM-like protein, crucially regulates CIP and is frequently deactivated in various cancers, indicating its significance as a tumour suppressor in cancer biology. Despite extensive investigations into Merlin's role in cancer, its lack of intrinsic catalytic activity and frequent conformation changes have made it notoriously challenging to study. To address this challenge, we harnessed innovative luciferase technologies to create and validate a NanoBiT split-luciferase biosensor system in which Merlin is cloned between two split components (LgBiT and SmBiT) of NanoLuc luciferase. This system enables precise quantification of Merlin's conformation and activity both in vitro and within living cells. This biosensor significantly enhances the study of Merlin's molecular functions, serving as a potent tool for exploring its contributions to CIP and tumorigenesis.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Neurofibromina 2 , Humanos , Transformación Celular Neoplásica , Genes Supresores de Tumor , Luciferasas , Neurofibromina 2/química , Neurofibromina 2/metabolismo , Técnicas Biosensibles/métodos
16.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37834234

RESUMEN

The type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family produces the critical lipid regulator phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in the plasma membrane (PM). Here, we investigated the potential role of PIP5Kγ, a PIP5K isoform, in the Hippo pathway. The ectopic expression of PIP5Kγ87 or PIP5Kγ90, two major PIP5Kγ splice variants, activated large tumor suppressor kinase 1 (LATS1) and inhibited Yes-associated protein (YAP), whereas PIP5Kγ knockdown yielded opposite effects. The regulatory effects of PIP5Kγ were dependent on its catalytic activity and the presence of Merlin and LATS1. PIP5Kγ knockdown weakened the restoration of YAP phosphorylation upon stimulation with epidermal growth factor or lysophosphatidic acid. We further found that PIP5Kγ90 bound to the Merlin's band 4.1/ezrin/radixin/moesin (FERM) domain, forming a complex with PI(4,5)P2 and LATS1 at the PM. Notably, PIP5Kγ90, but not its kinase-deficient mutant, potentiated Merlin-LATS1 interaction and recruited LATS1 to the PM. Consistently, PIP5Kγ knockdown or inhibitor (UNC3230) enhanced colony formation in carcinoma cell lines YAP-dependently. In addition, PIP5Kγ90 interacted with heat shock cognate 71-kDa protein (Hsc70), which also contributed to Hippo pathway activation. Collectively, our results suggest that PIP5Kγ regulates the Hippo-YAP pathway by forming a functional complex with Merlin and LATS1 at the PI(4,5)P2-rich PM and via interplay with Hsc70.


Asunto(s)
Vía de Señalización Hippo , Neurofibromina 2 , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proliferación Celular/fisiología , Transducción de Señal
17.
Mol Cancer Ther ; 22(11): 1280-1289, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527526

RESUMEN

Neurofibromatosis Type 2 (NF2) is a tumor predisposition syndrome caused by germline inactivating mutations in the NF2 gene encoding the merlin tumor suppressor. Patients develop multiple benign tumor types in the nervous system including bilateral vestibular schwannomas (VS). Standard treatments include surgery and radiation therapy, which may lead to loss of hearing, impaired facial nerve function, and other complications. Kinase inhibitor monotherapies have been evaluated clinically for NF2 patients with limited success, and more effective nonsurgical therapies are urgently needed. Schwannoma model cells treated with PI3K inhibitors upregulate activity of the focal adhesion kinase (FAK) family as a compensatory survival pathway. We screened combinations of 13 clinically relevant PI3K and FAK inhibitors using human isogenic normal and merlin-deficient Schwann cell lines. The most efficacious combination was PI3K/mTOR inhibitor omipalisib with SRC/FAK inhibitor dasatinib. Sub-GI50 doses of the single drugs blocked phosphorylation of their major target proteins. The combination was superior to either single agent in promoting a G1 cell-cycle arrest and produced a 44% decrease in tumor growth over a 2-week period in a pilot orthotopic allograft model. Evaluation of single and combination drugs in six human primary VS cell models revealed the combination was superior to the monotherapies in 3 of 6 VS samples, highlighting inter-tumor variability between patients consistent with observations from clinical trials with other molecular targeted agents. Dasatinib alone performed as well as the combination in the remaining three samples. Preclinically validated combination therapies hold promise for NF2 patients and warrants further study in clinical trials.


Asunto(s)
Antineoplásicos , Neurilemoma , Neurofibromatosis 2 , Humanos , Neurofibromatosis 2/tratamiento farmacológico , Neurofibromatosis 2/genética , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Dasatinib/farmacología , Fosfatidilinositol 3-Quinasa/farmacología , Fosfatidilinositol 3-Quinasa/uso terapéutico , Neurilemoma/tratamiento farmacológico , Neurilemoma/genética , Antineoplásicos/farmacología , Proliferación Celular
18.
Apoptosis ; 28(9-10): 1484-1495, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37368176

RESUMEN

Neutrophil and neutrophil extracellular traps (NETs) were reported to be associated with tumor development, but the exact role and concrete mechanisms are still poorly understood, especially in triple negative breast cancer (TNBC). In this study, our results exhibited that NETs formation in TNBC tissues was higher than that in non-TNBC tissues, and NETs formation was distinctly correlated with tumor size, ki67 level and lymph node metastasis in TNBC patients. Subsequent in vivo experiments demonstrated that NETs inhibition could suppress TNBC tumor growth and lung metastasis. Further in vitro experiments uncovered that oncogenic function of NETs on TNBC cells were possibly dependent on TLR9 expression. We also found that neutrophils from peripheral blood of TNBC patients with postoperative fever were prone to form NETs and could enhance the proliferation and invasion of TNBC cells. Mechanistically, we revealed that NETs could interact with TLR9 to decrease Merlin phosphorylation which contributed to TNBC cell ferroptosis resistance. Our work provides a novel insight into the mechanism of NETs promoting TNBC progression and blocking the key modulator of NETs might be a promising therapeutic strategy in TNBC.


Asunto(s)
Trampas Extracelulares , Ferroptosis , Neoplasias de la Mama Triple Negativas , Humanos , Trampas Extracelulares/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Neurofibromina 2/metabolismo , Ferroptosis/genética , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/patología , Apoptosis , Neutrófilos/patología , Proliferación Celular
19.
Cell Commun Signal ; 21(1): 149, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337213

RESUMEN

BACKGROUND: The Hippo pathway plays a critical role in controlled cell proliferation. The tumor suppressor Merlin and large tumor suppressor kinase 1 (LATS1) mediate activation of Hippo pathway, consequently inhibiting the primary effectors, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Phosphatidylinositol 4,5-bisphosphate (PIP2), a lipid present in the plasma membrane (PM), binds to and activates Merlin. Phosphatidylinositol 4-phosphate 5-kinase α (PIP5Kα) is an enzyme responsible for PIP2 production. However, the functional role of PIP5Kα in regulation of Merlin and LATS1 under Hippo signaling conditions remains unclear. METHODS: PIP5Kα, Merlin, or LATS1 knockout or knockdown cells and transfected cells with them were used. LATS1, YAP, and TAZ activities were measured using biochemical methods and PIP2 levels were evaluated using cell imaging. Low/high cell density and serum starvation/stimulation conditions were tested. Colocalization of PIP5Kα and PIP2 with Merlin and LATS1, and their protein interactions were examined using transfection, confocal imaging, immunoprecipitation, western blotting, and/or pull-down experiments. Colony formation and adipocyte differentiation assays were performed. RESULTS: We found that PIP5Kα induced LATS1 activation and YAP/TAZ inhibition in a kinase activity-dependent manner. Consistent with these findings, PIP5Kα suppressed cell proliferation and enhanced adipocyte differentiation of mesenchymal stem cells. Moreover, PIP5Kα protein stability and PIP2 levels were elevated at high cell density compared with those at low cell density, and both PIP2 and YAP phosphorylation levels initially declined, then recovered upon serum stimulation. Under these conditions, YAP/TAZ activity was aberrantly regulated by PIP5Kα deficiency. Mechanistically, either Merlin deficiency or LATS1 deficiency abrogated PIP5Kα-mediated YAP/TAZ inactivation. Additionally, the catalytic domain of PIP5Kα directly interacted with the band 4.1/ezrin/radixin/moesin domain of Merlin, and this interaction reinforced interaction of Merlin with LATS1. In accordance with these findings, PIP5Kα and PIP2 colocalized with Merlin and LATS1 in the PM. In PIP5Kα-deficient cells, Merlin colocalization with PIP2 was reduced, and LATS1 solubility increased. CONCLUSIONS: Collectively, our results support that PIP5Kα serves as an activator of the Hippo pathway through interaction and colocalization with Merlin, which promotes PIP2-dependent Merlin activation and induces local recruitment of LATS1 to the PIP2-rich PM and its activation, thereby negatively regulating YAP/TAZ activity. Video Abstract.


Asunto(s)
Vía de Señalización Hippo , Proteínas Serina-Treonina Quinasas , Proteínas Serina-Treonina Quinasas/metabolismo , Neurofibromina 2/metabolismo , Transducción de Señal , Proteínas de Ciclo Celular/metabolismo , Fosfatos/metabolismo , Membrana Celular/metabolismo , Lípidos , Fosfoproteínas/metabolismo , Proliferación Celular
20.
Life Sci Alliance ; 6(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37280085

RESUMEN

NF2 (moesin-ezrin-radixin-like [MERLIN] tumor suppressor) is frequently inactivated in cancer, where its NF2 tumor suppressor functionality is tightly coupled to protein conformation. How NF2 conformation is regulated and how NF2 conformation influences tumor suppressor activity is a largely open question. Here, we systematically characterized three NF2 conformation-dependent protein interactions utilizing deep mutational scanning interaction perturbation analyses. We identified two regions in NF2 with clustered mutations which affected conformation-dependent protein interactions. NF2 variants in the F2-F3 subdomain and the α3H helix region substantially modulated NF2 conformation and homomerization. Mutations in the F2-F3 subdomain altered proliferation in three cell lines and matched patterns of disease mutations in NF2 related-schwannomatosis. This study highlights the power of systematic mutational interaction perturbation analysis to identify missense variants impacting NF2 conformation and provides insight into NF2 tumor suppressor function.


Asunto(s)
Neoplasias , Neurofibromina 2 , Humanos , Neurofibromina 2/genética , Neurofibromina 2/química , Neurofibromina 2/metabolismo , Dominios FERM , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA