Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.275
Filtrar
1.
Neuroreport ; 35(14): 921-924, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39166398

RESUMEN

The objective is to determine the distribution of glutamic acid decarboxylase (GAD) in the olfactory bulb of a crocodilian, Caiman crocodilus . Avidin-biotin immunohistochemical methodology using a polyclonal antibody to GAD raised in sheep was employed. The following controls were used: substitution of the primary antibody with preimmune sheep serum at concentrations equal to that of the primary antibody; omission of the primary antibody; and omission of the primary antibody and biotinylated rabbit antisheep immunoglobulin. No GAD (+) cells were observed in the control sections. Based on cell and fiber staining, the layering and neuronal organization of the olfactory bulb in Caiman were similar to other vertebrates, including other reptiles. The following elements were GAD (+): granule cells, certain neurons in the outer plexiform layer, periglomerular neurons, and the glomeruli themselves. GAD (+) puncta were present throughout the olfactory bulb. In conclusion, these results in Caiman were similar, in part, to comparable studies in mammals and birds. Taken together, these data indicate that crocodiles not only have a similar pattern of layers that other amniotes possess but also that the immunocytochemical signatures of certain elements of the olfactory bulb are likewise shared.


Asunto(s)
Caimanes y Cocodrilos , Glutamato Descarboxilasa , Inmunohistoquímica , Bulbo Olfatorio , Animales , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/enzimología , Glutamato Descarboxilasa/metabolismo , Caimanes y Cocodrilos/metabolismo , Neuronas/metabolismo , Neuronas/enzimología
2.
Nature ; 631(8021): 601-609, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987587

RESUMEN

Exaggerated airway constriction triggered by repeated exposure to allergen, also called hyperreactivity, is a hallmark of asthma. Whereas vagal sensory neurons are known to function in allergen-induced hyperreactivity1-3, the identity of downstream nodes remains poorly understood. Here we mapped a full allergen circuit from the lung to the brainstem and back to the lung. Repeated exposure of mice to inhaled allergen activated the nuclei of solitary tract (nTS) neurons in a mast cell-, interleukin-4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA sequencing, followed by RNAscope assay at baseline and allergen challenges, showed that a Dbh+ nTS population is preferentially activated. Ablation or chemogenetic inactivation of Dbh+ nTS neurons blunted hyperreactivity whereas chemogenetic activation promoted it. Viral tracing indicated that Dbh+ nTS neurons project to the nucleus ambiguus (NA) and that NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that directly drive airway constriction. Delivery of noradrenaline antagonists to the NA blunted hyperreactivity, suggesting noradrenaline as the transmitter between Dbh+ nTS and NA. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. This knowledge informs how neural modulation could be used to control allergen-induced airway hyperreactivity.


Asunto(s)
Alérgenos , Tronco Encefálico , Hiperreactividad Bronquial , Dopamina beta-Hidroxilasa , Pulmón , Neuronas , Animales , Femenino , Masculino , Ratones , Alérgenos/inmunología , Asma/inmunología , Asma/fisiopatología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Hiperreactividad Bronquial/tratamiento farmacológico , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/fisiopatología , Interleucina-4/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/inervación , Pulmón/fisiopatología , Mastocitos/inmunología , Neuronas/enzimología , Neuronas/fisiología , Norepinefrina/antagonistas & inhibidores , Norepinefrina/metabolismo , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Nervio Vago/citología , Nervio Vago/fisiología , Bulbo Raquídeo/citología , Bulbo Raquídeo/efectos de los fármacos , Ganglios Autónomos/citología , Dopamina beta-Hidroxilasa/metabolismo
3.
CNS Neurosci Ther ; 30(6): e14808, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887205

RESUMEN

OBJECTIVE: Phenylethanolamine N-methyltransferase (PNMT)-expressing neurons in the nucleus tractus solitarii (NTS) contribute to the regulation of autonomic functions. However, the neural circuits linking these neurons to other brain regions remain unclear. This study aims to investigate the connectivity mechanisms of the PNMT-expressing neurons in the NTS (NTSPNMT neurons). METHODS: The methodologies employed in this study included a modified rabies virus-based retrograde neural tracing technique, conventional viral anterograde tracing, and immunohistochemical staining procedures. RESULTS: A total of 43 upstream nuclei projecting to NTSPNMT neurons were identified, spanning several key brain regions including the medulla oblongata, pons, midbrain, cerebellum, diencephalon, and telencephalon. Notably, dense projections to the NTSPNMT neurons were observed from the central amygdaloid nucleus, paraventricular nucleus of the hypothalamus, area postrema, and the gigantocellular reticular nucleus. In contrast, the ventrolateral medulla, lateral parabrachial nucleus, and lateral hypothalamic area were identified as the primary destinations for axon terminals originating from NTSPNMT neurons. Additionally, reciprocal projections were evident among 21 nuclei, primarily situated within the medulla oblongata. CONCLUSION: Our research findings demonstrate that NTSPNMT neurons form extensive connections with numerous nuclei, emphasizing their essential role in the homeostatic regulation of vital autonomic functions.


Asunto(s)
Neuronas , Feniletanolamina N-Metiltransferasa , Núcleo Solitario , Animales , Feniletanolamina N-Metiltransferasa/metabolismo , Feniletanolamina N-Metiltransferasa/genética , Núcleo Solitario/enzimología , Núcleo Solitario/metabolismo , Núcleo Solitario/citología , Neuronas/metabolismo , Neuronas/enzimología , Masculino , Vías Eferentes/enzimología , Vías Aferentes/enzimología , Ratas Sprague-Dawley , Mapeo Encefálico/métodos , Ratas
4.
BMC Cardiovasc Disord ; 24(1): 266, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773462

RESUMEN

BACKGROUND: Cardiopulmonary bypass (CPB) results in brain injury, which is primarily caused by inflammation. Ac2-26 protects against ischemic or hemorrhage brain injury. The present study was to explore the effect and mechanism of Ac2-26 on brain injury in CPB rats. METHODS: Forty-eight rats were randomized into sham, CPB, Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups. Rats in sham group only received anesthesia and in the other groups received standard CPB surgery. Rats in the sham and CPB groups received saline, and rats in the Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups received Ac2-26 immediately after CPB. Rats in the Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups were injected with shRNA, inhibitor and agonist of GSK3ß respectively. The neurological function score, brain edema and histological score were evaluated. The neuronal survival and hippocampal pyroptosis were assessed. The cytokines, activity of NF-κB, S100 calcium-binding protein ß(S100ß) and neuron-specific enolase (NSE), and oxidative were tested. The NLRP3, cleaved-caspase-1 and cleaved-gadermin D (GSDMD) in the brain were also detected. RESULTS: Compared to the sham group, all indicators were aggravated in rats that underwent CPB. Compared to the CPB group, Ac2-26 significantly improved neurological scores and brain edema and ameliorated pathological injury. Ac2-26 reduced the local and systemic inflammation, oxidative stress response and promoted neuronal survival. Ac2-26 reduced hippocampal pyroptosis and decreased pyroptotic proteins in brain tissue. The protection of Ac2-26 was notably lessened by shRNA and inhibitor of GSK3ß. The agonist of GSK3ß recovered the protection of Ac2-26 in presence of shRNA. CONCLUSIONS: Ac2-26 significantly improved neurological function, reduced brain injury via regulating inflammation, oxidative stress response and pyroptosis after CPB. The protective effect of Ac2-26 primarily depended on AKT1/ GSK3ß pathway.


Asunto(s)
Puente Cardiopulmonar , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta , Proteínas Proto-Oncogénicas c-akt , Piroptosis , Ratas Sprague-Dawley , Transducción de Señal , Animales , Puente Cardiopulmonar/efectos adversos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piroptosis/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/metabolismo , Neuronas/enzimología , Fármacos Neuroprotectores/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Edema Encefálico/prevención & control , Edema Encefálico/metabolismo , Edema Encefálico/enzimología , Edema Encefálico/patología , Antiinflamatorios/farmacología , Ratas , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Mediadores de Inflamación/metabolismo
5.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630337

RESUMEN

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Asunto(s)
Muerte Celular , Etanol , Neuronas , Fármacos Neuroprotectores , Extractos Vegetales , Hojas de la Planta , Sterculia , Animales , Ratas , Caspasa 3/metabolismo , Etanol/administración & dosificación , Etanol/química , Etanol/toxicidad , Peróxido de Hidrógeno/toxicidad , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Oxidopamina/toxicidad , Ratas Wistar , Sterculia/química , Hojas de la Planta/química , Plantas Medicinales/química , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Lactato Deshidrogenasas/metabolismo , Proteína GAP-43/análisis , Apoptosis/genética , Estrés Oxidativo/genética , Cerebelo/citología , Cerebelo/efectos de los fármacos , Cerebelo/patología , Cerebelo/fisiología , Masculino , Femenino , Células Cultivadas , Muerte Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Fitoquímicos/administración & dosificación , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/análisis , Antioxidantes/química , Antioxidantes/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Cromatografía Líquida con Espectrometría de Masas , Metabolismo Secundario
6.
J Virol ; 97(12): e0133823, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38009916

RESUMEN

IMPORTANCE: Betacoronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and mouse hepatitis virus (MHV), exploit the lysosomal exocytosis pathway for egress. However, whether all betacoronaviruses members use the same pathway to exit cells remains unknown. Here, we demonstrated that porcine hemagglutinating encephalomyelitis virus (PHEV) egress occurs by Arl8b-dependent lysosomal exocytosis, a cellular egress mechanism shared by SARS-CoV-2 and MHV. Notably, PHEV acidifies lysosomes and activates lysosomal degradative enzymes, while SARS-CoV-2 and MHV deacidify lysosomes and limit the activation of lysosomal degradative enzymes. In addition, PHEV release depends on V-ATPase-mediated lysosomal pH. Furthermore, this is the first study to evaluate ßCoV using lysosome for spreading through the body, and we have found that lysosome played a critical role in PHEV neural transmission and brain damage caused by virus infection in the central nervous system. Taken together, different betacoronaviruses could disrupt lysosomal function differently to exit cells.


Asunto(s)
Betacoronavirus 1 , Infecciones por Coronavirus , Exocitosis , Lisosomas , Neuronas , Animales , Ratones , Betacoronavirus 1/metabolismo , Lisosomas/enzimología , Lisosomas/metabolismo , Lisosomas/virología , Virus de la Hepatitis Murina/metabolismo , Neuronas/enzimología , Neuronas/metabolismo , Neuronas/patología , Neuronas/virología , SARS-CoV-2/metabolismo , Porcinos/virología , Concentración de Iones de Hidrógeno , ATPasas de Translocación de Protón Vacuolares/metabolismo , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología
7.
PLoS Pathog ; 19(9): e1011487, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37747931

RESUMEN

Select prion diseases are characterized by widespread cerebral plaque-like deposits of amyloid fibrils enriched in heparan sulfate (HS), a abundant extracellular matrix component. HS facilitates fibril formation in vitro, yet how HS impacts fibrillar plaque growth within the brain is unclear. Here we found that prion-bound HS chains are highly sulfated, and that the sulfation is essential for accelerating prion conversion in vitro. Using conditional knockout mice to deplete the HS sulfation enzyme, Ndst1 (N-deacetylase / N-sulfotransferase) from neurons or astrocytes, we investigated how reducing HS sulfation impacts survival and prion aggregate distribution during a prion infection. Neuronal Ndst1-depleted mice survived longer and showed fewer and smaller parenchymal plaques, shorter fibrils, and increased vascular amyloid, consistent with enhanced aggregate transit toward perivascular drainage channels. The prolonged survival was strain-dependent, affecting mice infected with extracellular, plaque-forming, but not membrane bound, prions. Live PET imaging revealed rapid clearance of recombinant prion protein monomers into the CSF of neuronal Ndst1- deficient mice, neuronal, further suggesting that HS sulfate groups hinder transit of extracellular prion protein monomers. Our results directly show how a host cofactor slows the spread of prion protein through the extracellular space and identify an enzyme to target to facilitate aggregate clearance.


Asunto(s)
Neuronas , Enfermedades por Prión , Priones , Sulfotransferasas , Animales , Ratones , Heparitina Sulfato/metabolismo , Ratones Noqueados , Neuronas/enzimología , Enfermedades por Prión/metabolismo , Proteínas Priónicas/genética , Priones/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo
8.
J Biol Chem ; 299(3): 102928, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36681123

RESUMEN

Inositol pyrophosphates regulate diverse physiological processes; to better understand their functional roles, assessing their tissue-specific distribution is important. Here, we profiled inositol pyrophosphate levels in mammalian organs using an originally designed liquid chromatography-mass spectrometry (LC-MS) protocol and discovered that the gastrointestinal tract (GIT) contained the highest levels of diphosphoinositol pentakisphosphate (IP7) and its precursor inositol hexakisphosphate (IP6). Although their absolute levels in the GIT are diet dependent, elevated IP7 metabolism still exists under dietary regimens devoid of exogenous IP7. Of the major GIT cells, enteric neurons selectively express the IP7-synthesizing enzyme IP6K2. We found that IP6K2-knockout mice exhibited significantly impaired IP7 metabolism in the various organs including the proximal GIT. In addition, our LC-MS analysis displayed that genetic ablation of IP6K2 significantly impaired IP7 metabolism in the gut and duodenal muscularis externa containing myenteric plexus. Whole transcriptome analysis of duodenal muscularis externa further suggested that IP6K2 inhibition significantly altered expression levels of the gene sets associated with mature neurons, neural progenitor/stem cells, and glial cells, as well as of certain genes modulating neuronal differentiation and functioning, implying critical roles of the IP6K2-IP7 axis in developmental and functional regulation of the enteric nervous system. These results collectively reveal an unexpected role of mammalian IP7-a highly active IP6K2-IP7 pathway is conducive to the enteric nervous system.


Asunto(s)
Sistema Nervioso Entérico , Fosfatos de Inositol , Transcriptoma , Animales , Ratones , Difosfatos/análisis , Difosfatos/metabolismo , Sistema Nervioso Entérico/crecimiento & desarrollo , Sistema Nervioso Entérico/metabolismo , Fosfatos de Inositol/análisis , Fosfatos de Inositol/metabolismo , Ratones Noqueados , Neuronas/enzimología , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Ácido Fítico/metabolismo , Tracto Gastrointestinal/metabolismo
9.
Aging Cell ; 22(3): e13780, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36644807

RESUMEN

The contribution of cellular senescence to the behavioral changes observed in the elderly remains elusive. Here, we observed that aging is associated with a decline in protein phosphatase 2A (PP2A) activity in the brains of zebrafish and mice. Moreover, drugs activating PP2A reversed age-related behavioral changes. We developed a transgenic zebrafish model to decrease PP2A activity in the brain through knockout of the ppp2r2c gene encoding a regulatory subunit of PP2A. Mutant fish exhibited the behavioral phenotype observed in old animals and premature accumulation of neural cells positive for markers of cellular senescence, including senescence-associated ß-galactosidase, elevated levels cdkn2a/b, cdkn1a, senescence-associated secretory phenotype gene expression, and an increased level of DNA damage signaling. The behavioral and cell senescence phenotypes were reversed in mutant fish through treatment with the senolytic ABT263 or diverse PP2A activators as well as through cdkn1a or tp53 gene ablation. Senomorphic function of PP2A activators was demonstrated in mouse primary neural cells with downregulated Ppp2r2c. We conclude that PP2A reduction leads to neural cell senescence thereby contributing to age-related behavioral changes and that PP2A activators have senotherapeutic properties against deleterious behavioral effects of brain aging.


Asunto(s)
Conducta Animal , Encéfalo , Senescencia Celular , Envejecimiento Cognitivo , Neuronas , Proteína Fosfatasa 2 , Senoterapéuticos , Animales , Ratones , Compuestos de Anilina/farmacología , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo , Biomarcadores/metabolismo , Encéfalo/enzimología , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Senescencia Celular/fisiología , Envejecimiento Cognitivo/fisiología , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Daño del ADN , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Modelos Animales , Mutación , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/fisiología , Cultivo Primario de Células , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Senoterapéuticos/farmacología , Sulfonamidas/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra
10.
Science ; 378(6623): 983-989, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36454826

RESUMEN

Neurons harbor high levels of single-strand DNA breaks (SSBs) that are targeted to neuronal enhancers, but the source of this endogenous damage remains unclear. Using two systems of postmitotic lineage specification-induced pluripotent stem cell-derived neurons and transdifferentiated macrophages-we show that thymidine DNA glycosylase (TDG)-driven excision of methylcytosines oxidized with ten-eleven translocation enzymes (TET) is a source of SSBs. Although macrophage differentiation favors short-patch base excision repair to fill in single-nucleotide gaps, neurons also frequently use the long-patch subpathway. Disrupting this gap-filling process using anti-neoplastic cytosine analogs triggers a DNA damage response and neuronal cell death, which is dependent on TDG. Thus, TET-mediated active DNA demethylation promotes endogenous DNA damage, a process that normally safeguards cell identity but can also provoke neurotoxicity after anticancer treatments.


Asunto(s)
Roturas del ADN de Cadena Simple , Desmetilación del ADN , Reparación del ADN , Elementos de Facilitación Genéticos , Células Madre Pluripotentes Inducidas , Neuronas , Timina ADN Glicosilasa , Diferenciación Celular , Neuronas/enzimología , 5-Metilcitosina/metabolismo , Humanos , Transdiferenciación Celular
11.
Nature ; 611(7937): 762-768, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36352228

RESUMEN

The canonical model of striatal function predicts that animal locomotion is associated with the opposing regulation of protein kinase A (PKA) in direct and indirect pathway striatal spiny projection neurons (SPNs) by dopamine1-7. However, the precise dynamics of PKA in dorsolateral SPNs during locomotion remain to be determined. It is also unclear whether other neuromodulators are involved. Here we show that PKA activity in both types of SPNs is essential for normal locomotion. Using two-photon fluorescence lifetime imaging8-10 of a PKA sensor10 through gradient index lenses, we measured PKA activity within individual SPNs of the mouse dorsolateral striatum during locomotion. Consistent with the canonical view, dopamine activated PKA activity in direct pathway SPNs during locomotion through the dopamine D1 receptor. However, indirect pathway SPNs exhibited a greater increase in PKA activity, which was largely abolished through the blockade of adenosine A2A receptors. In agreement with these results, fibre photometry measurements of an adenosine sensor11 revealed an acute increase in extracellular adenosine during locomotion. Functionally, antagonism of dopamine or adenosine receptors resulted in distinct changes in SPN PKA activity, neuronal activity and locomotion. Together, our results suggest that acute adenosine accumulation interplays with dopamine release to orchestrate PKA activity in SPNs and proper striatal function during animal locomotion.


Asunto(s)
Adenosina , Cuerpo Estriado , Proteínas Quinasas Dependientes de AMP Cíclico , Dopamina , Locomoción , Neuronas , Animales , Ratones , Adenosina/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/enzimología , Cuerpo Estriado/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dopamina/metabolismo , Locomoción/fisiología , Neuronas/enzimología , Neuronas/metabolismo , Receptores de Dopamina D1/metabolismo , Receptor de Adenosina A2A/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(37): e2120079119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067316

RESUMEN

The extracellular protein Reelin, expressed by Cajal-Retzius (CR) cells at early stages of cortical development and at late stages by GABAergic interneurons, regulates radial migration and the "inside-out" pattern of positioning. Current models of Reelin functions in corticogenesis focus on early CR cell-derived Reelin in layer I. However, developmental disorders linked to Reelin deficits, such as schizophrenia and autism, are related to GABAergic interneuron-derived Reelin, although its role in migration has not been established. Here we selectively inactivated the Reln gene in CR cells or GABAergic interneurons. We show that CR cells have a major role in the inside-out order of migration, while CR and GABAergic cells sequentially cooperate to prevent invasion of cortical neurons into layer I. Furthermore, GABAergic cell-derived Reelin compensates some features of the reeler phenotype and is needed for the fine tuning of the layer-specific distribution of cortical neurons. In the hippocampus, the inactivation of Reelin in CR cells causes dramatic alterations in the dentate gyrus and mild defects in the hippocampus proper. These findings lead to a model in which both CR and GABAergic cell-derived Reelin cooperate to build the inside-out order of corticogenesis, which might provide a better understanding of the mechanisms involved in the pathogenesis of neuropsychiatric disorders linked to abnormal migration and Reelin deficits.


Asunto(s)
Corteza Cerebral , Proteínas del Tejido Nervioso , Neuronas , Proteína Reelina , Animales , Movimiento Celular , Corteza Cerebral/citología , Corteza Cerebral/embriología , Neuronas GABAérgicas/enzimología , Hipocampo/embriología , Hipocampo/enzimología , Interneuronas/enzimología , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/enzimología , Proteína Reelina/genética , Proteína Reelina/metabolismo
13.
Neuroreport ; 33(11): 476-480, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35775322

RESUMEN

Seizures induce brain region-dependent enhancements in microglia/macrophage activation. Neuronal subset-specific phosphatase and tensin homolog (PTEN) knockout (KO) mice display hyperactive mammalian target of rapamycin (mTOR) signaling in the hippocampus, cerebellum, and cortex followed by seizures that increase in severity with age. To determine if KO mice also exhibit alterations in the spatiotemporal activation pattern of microglia, we used flow cytometry to compare the percentage of major histocompatibility complex-II activated microglia/macrophages between KO and wildtype (WT) mice at 5, 10, and 15 weeks of age. At 5 weeks, microglia/macrophage activation was greater in the cortex, P < 0.001, cerebellum, P < 0.001, and hippocampus, P < 0.001, of KO compared to WT mice. At 10 weeks, activation was greatest in the cortex of KO mice, P < 0.001, in the cerebellum of WT mice, P < 0.001, but similar in the hippocampus, P > 0.05. By 15 weeks, activation in the hippocampus was more than 25 times greater in KO mice compared to WT mice, P < 0.001. We show that hyperactive mTOR signaling is associated with an altered spatiotemporal pattern of microglia/macrophage activation in the brain and induces an enhanced neuroimmune response in the hippocampus.


Asunto(s)
Encéfalo , Macrófagos , Microglía , Neuronas , Fosfohidrolasa PTEN , Animales , Encéfalo/metabolismo , Encéfalo/patología , Activación de Macrófagos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Neuronas/enzimología , Neuronas/patología , Fosfohidrolasa PTEN/metabolismo , Convulsiones/metabolismo , Convulsiones/patología , Serina-Treonina Quinasas TOR/metabolismo
14.
Science ; 377(6605): eabo0001, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35857622

RESUMEN

In the 20th century, researchers studying animal and plant signaling pathways discovered a protein domain that is shared across diverse innate immune systems: the Toll/interleukin-1/resistance gene (TIR) domain. The TIR domain is found in several protein architectures and was defined as an adaptor that mediates protein-protein interactions in animal innate immunity and developmental signaling pathways. However, studies of nerve degeneration in animals-and subsequent breakthroughs in plant, bacterial, and archaeal systems-revealed that TIR domains possess enzymatic activities. We provide a synthesis of TIR functions and the role of various related TIR enzymatic products in evolutionarily diverse immune systems. These studies may ultimately guide interventions that would span the tree of life, from treating human neurodegenerative disorders and bacterial infections to preventing plant diseases.


Asunto(s)
Muerte Celular , Enzimas , Sistema Inmunológico , Inmunidad Innata , Enfermedades Neurodegenerativas , Animales , Enzimas/química , Enzimas/metabolismo , Evolución Molecular , Humanos , Sistema Inmunológico/enzimología , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/inmunología , Neuronas/enzimología , Dominios Proteicos , Transducción de Señal
15.
Proc Natl Acad Sci U S A ; 119(30): e2203503119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35867816

RESUMEN

Women with polycystic ovary syndrome (PCOS) frequently experience decreased sexual arousal, desire, and sexual satisfaction. While the hypothalamus is known to regulate sexual behavior, the specific neuronal pathways affected in patients with PCOS are not known. To dissect the underlying neural circuitry, we capitalized on a robust preclinical animal model that reliably recapitulates all cardinal PCOS features. We discovered that female mice prenatally treated with anti-Müllerian hormone (PAMH) display impaired sexual behavior and sexual partner preference over the reproductive age. Blunted female sexual behavior was associated with increased sexual rejection and independent of sex steroid hormone status. Structurally, sexual dysfunction was associated with a substantial loss of neuronal nitric oxide synthase (nNOS)-expressing neurons in the ventromedial nucleus of the hypothalamus (VMH) and other areas of hypothalamic nuclei involved in social behaviors. Using in vivo chemogenetic manipulation, we show that nNOSVMH neurons are required for the display of normal sexual behavior in female mice and that pharmacological replenishment of nitric oxide restores normal sexual performance in PAMH mice. Our data provide a framework to investigate facets of hypothalamic nNOS neuron biology with implications for sexual disturbances in PCOS.


Asunto(s)
Óxido Nítrico Sintasa de Tipo I , Óxido Nítrico , Síndrome del Ovario Poliquístico , Conducta Sexual , Núcleo Hipotalámico Ventromedial , Animales , Hormona Antimülleriana/farmacología , Modelos Animales de Enfermedad , Femenino , Preferencia en el Apareamiento Animal , Ratones , Neuronas/efectos de los fármacos , Neuronas/enzimología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Síndrome del Ovario Poliquístico/enzimología , Síndrome del Ovario Poliquístico/fisiopatología , Núcleo Hipotalámico Ventromedial/efectos de los fármacos , Núcleo Hipotalámico Ventromedial/metabolismo
16.
Biochem Biophys Res Commun ; 616: 110-114, 2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-35653825

RESUMEN

Earlier it was shown that a group of extracellular low-specific metallopeptidases is present in the mammalian brain Kropotova and Mosevitsky (2016) [1]. These enzymes are weakly connected to the axonal ends of neurons. They were named Neuron bound Extracellular MetalloPeptidases (NEMP). The enzyme named NEMP3 turned out to be a unique exopeptidase that exhibits two activities: it removes the dipeptide from the N-end of the peptide, and it can also remove the tripeptide from the C-end of the peptide. Therefore, NEMP3 possesses the activities of dipeptidylaminopeptidase and of tripeptidylcarboxypeptidase. Mass spectrometry has revealed a homology of NEMP3 with DPP3 (DPP III, EC3.4.14.4), known as cytosolic dipeptidylaminopeptidase. We isolated DPP3 from rat and bovine liver and brain by the procedures used for this purpose by other authors. The effect of DPP3 on test peptides is the same as that of NEMP3. In particular, all DPP3 samples delete the tripeptide (AKF) from the C-end of the test peptide blocked at the N-end. The data obtained show that NEMP3 and DPP3 are the same protein (enzyme). Thus, DPP3 has two exopeptidase activities: the previously known activity of dipeptidylaminopeptidase and the activity of tripeptidylcarboxypeptidase discovered in this study. Another discovery is the extracellular activity of DPP 3 in the mammalian brain near synapses, which controls neuropeptides. DPP3 is involved in various processes, but in many cases its role remains to be clarified. The results obtained in this study will be useful for solving these questions.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Neuropéptidos , Animales , Bovinos , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Metaloproteasas/metabolismo , Neuronas/enzimología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Péptidos/metabolismo , Ratas
17.
Proc Natl Acad Sci U S A ; 119(15): e2116844119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377811

RESUMEN

In pathological or artificial conditions, memory can be formed as silenced engrams that are unavailable for retrieval by presenting conditioned stimuli but can be artificially switched into the latent state so that natural recall is allowed. However, it remains unclear whether such different states of engrams bear any physiological significance and can be switched through physiological mechanisms. Here, we show that an acute social reward experience switches the silent memory engram into the latent state. Conversely, an acute social stress causes transient forgetting via turning a latent memory engram into a silent state. Such emotion-driven bidirectional switching between latent and silent states of engrams is mediated through regulation of Rac1 activity­dependent reversible forgetting in the hippocampus, as stress-activated Rac1 suppresses retrieval, while reward recovers silenced memory under amnesia by inhibiting Rac1. Thus, data presented reveal hippocampal Rac1 activity as the basis for emotion-mediated switching between latent and silent engrams to achieve emotion-driven behavioral flexibility.


Asunto(s)
Región CA1 Hipocampal , Recuerdo Mental , Conducta Social , Proteína de Unión al GTP rac1 , Animales , Región CA1 Hipocampal/enzimología , Señales (Psicología) , Recuerdo Mental/fisiología , Ratones , Neuronas/enzimología , Recompensa , Proteína de Unión al GTP rac1/metabolismo
18.
Int J Biol Sci ; 18(2): 693-706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35002518

RESUMEN

The aggregation of amyloid-ß (Aß) peptides into oligomers and fibrils is a key pathological feature of Alzheimer's disease (AD). An increasing amount of evidence suggests that oligomeric Aß might be the major culprit responsible for various neuropathological changes in AD. Death-associated protein kinase 1 (DAPK1) is abnormally elevated in brains of AD patients and plays an important role in modulating tau homeostasis by regulating prolyl isomerase Pin1 phosphorylation. However, it remains elusive whether and how Aß species influence the function of DAPK1, and whether this may further affect the function and phosphorylation of tau in neurons. Herein, we demonstrated that Aß aggregates (both oligomers and fibrils) prepared from synthetic Aß42 peptides were able to upregulate DAPK1 protein levels and thereby its function through heat shock protein 90 (HSP90)-mediated protein stabilization. DAPK1 activation not only caused neuronal apoptosis, but also phosphorylated Pin1 at the Ser71 residue, leading to tau accumulation and phosphorylation at multiple AD-related sites in primary neurons. Both DAPK1 knockout (KO) and the application of a specific DAPK1 inhibitor could effectively protect primary neurons against Aß aggregate-induced cell death and tau dysregulation, corroborating the critical role of DAPK1 in mediating Aß aggregation-induced neuronal damage. Our study suggests a mechanistic link between Aß oligomerization and tau hyperphosphorylation mediated by DAPK1, and supports the role of DAPK1 as a promising target for early intervention in AD.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Péptidos beta-Amiloides/metabolismo , Encéfalo/enzimología , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Neuronas/enzimología , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Apoptosis/genética , Encéfalo/patología , Proteínas Quinasas Asociadas a Muerte Celular/deficiencia , Proteínas Quinasas Asociadas a Muerte Celular/genética , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Neuronas/patología , Fragmentos de Péptidos/genética , Fosforilación , Proteínas tau/genética , Proteínas tau/metabolismo
19.
Nat Commun ; 13(1): 465, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075108

RESUMEN

Chromatin regulation is a key process in development but its contribution to the evolution of animals is largely unexplored. Chromatin is regulated by a diverse set of proteins, which themselves are tightly regulated in a cell/tissue-specific manner. Using the cnidarian Nematostella vectensis as a basal metazoan model, we explore the function of one such chromatin regulator, Lysine specific demethylase 1 (Lsd1). We generated an endogenously tagged allele and show that NvLsd1 expression is developmentally regulated and higher in differentiated neural cells than their progenitors. We further show, using a CRISPR/Cas9 generated mutant that loss of NvLsd1 leads to developmental abnormalities. This includes the almost complete loss of differentiated cnidocytes, cnidarian-specific neural cells, as a result of a cell-autonomous requirement for NvLsd1. Together this suggests that the integration of chromatin modifying proteins into developmental regulation predates the split of the cnidarian and bilaterian lineages and constitutes an ancient feature of animal development.


Asunto(s)
Diferenciación Celular , Histona Demetilasas/metabolismo , Neuronas/citología , Neuronas/enzimología , Anémonas de Mar/enzimología , Animales , Cromatina/genética , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histona Demetilasas/genética , Neuronas/metabolismo , Anémonas de Mar/embriología , Anémonas de Mar/metabolismo
20.
Protein Cell ; 13(1): 6-25, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33306168

RESUMEN

The serine/threonine p21-activated kinases (PAKs), as main effectors of the Rho GTPases Cdc42 and Rac, represent a group of important molecular switches linking the complex cytoskeletal networks to broad neural activity. PAKs show wide expression in the brain, but they differ in specific cell types, brain regions, and developmental stages. PAKs play an essential and differential role in controlling neural cytoskeletal remodeling and are related to the development and fate of neurons as well as the structural and functional plasticity of dendritic spines. PAK-mediated actin signaling and interacting functional networks represent a common pathway frequently affected in multiple neurodevelopmental and neurodegenerative disorders. Considering specific small-molecule agonists and inhibitors for PAKs have been developed in cancer treatment, comprehensive knowledge about the role of PAKs in neural cytoskeletal remodeling will promote our understanding of the complex mechanisms underlying neurological diseases, which may also represent potential therapeutic targets of these diseases.


Asunto(s)
Citoesqueleto/enzimología , Enfermedades del Sistema Nervioso/enzimología , Neuronas/enzimología , Transducción de Señal , Quinasas p21 Activadas/metabolismo , Animales , Citoesqueleto/genética , Humanos , Enfermedades del Sistema Nervioso/genética , Quinasas p21 Activadas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA