Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.815
1.
Nutrients ; 16(12)2024 Jun 14.
Article En | MEDLINE | ID: mdl-38931240

Osteoarthritis (OA) is a chronic degenerative joint disease that causes chronic pain, swelling, stiffness, disability, and significantly reduces the quality of life. Typically, OA is treated using painkillers and non-steroidal anti-inflammatory drugs (NSAIDs). While current pharmacologic treatments are common, their potential side effects have prompted exploration into functional dietary supplements. Recently, eggshell membrane (ESM) has emerged as a potential functional ingredient for joint and connective tissue disorders due to its clinical efficacy in relieving joint pain and stiffness. Despite promising clinical evidence, the effects of ESM on OA progression and its mechanism of action remain poorly understood. This study evaluated the efficacy of Ovomet®, a powdered natural ESM, against joint pain and disease progression in a monosodium iodoacetate (MIA)-induced rodent model of OA in mice and rats. The results demonstrate that ESM significantly alleviates joint pain and attenuates articular cartilage destruction in both mice and rats that received oral supplementation for 5 days prior to OA induction and for 28 days thereafter. Interestingly, ESM significantly inhibited mRNA expression levels of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), as well as inflammatory mediators, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase in the knee joint cartilage at the early stage of OA, within 7 days after OA induction. However, this effect was not observed in the late stage at 28 days after OA induction. ESM further attenuates the induction of protein expression for cartilage-degrading enzymes like matrix metalloproteinase (MMPs) 3 and 13, and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), in the late-stage. In addition, MIA-induced reduction of the protein expression levels of cartilage components, cartilage oligomeric matrix protein (COMP), aggrecan (ACAN) and collagen type II α-1 chain (COL2α1), and cartilage extracellular matrix (ECM) synthesis promoting transcriptional factor SRY-Box 9 (SOX-9) were increased via ESM treatment in the cartilage tissue. Our findings suggest that Ovomet®, a natural ESM powder, is a promising dietary functional ingredient that can alleviate pain, inflammatory response, and cartilage degradation associated with the progression of OA.


Cartilage, Articular , Egg Shell , Osteoarthritis , Animals , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Osteoarthritis/drug therapy , Osteoarthritis/chemically induced , Male , Mice , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Rats , Inflammation/drug therapy , Dietary Supplements , Cytokines/metabolism , Disease Models, Animal , Rats, Sprague-Dawley , Arthralgia/drug therapy , Arthralgia/chemically induced , Time Factors , Iodoacetic Acid , Anti-Inflammatory Agents/pharmacology
2.
Biomolecules ; 14(6)2024 May 29.
Article En | MEDLINE | ID: mdl-38927041

The genus Brassica is an important source of food in the Mediterranean diet with documented nutritional and medicinal properties. However, few studies have investigated the phytochemical composition and the biological activity of wild Sicilian taxa. Thus, we aimed to study the chemical profile and the antioxidant potential, in vitro and in LPS-stimulated RAW 264.7 cells, of a methanolic extract of leaves of wild Brassica macrocarpa Guss (B. macrocarpa) (Egadi Islands; Sicily-Italy). B. macrocarpa methanolic extract showed a large amount of glucosinolates and different phenolic compounds. It exhibited antioxidant activity in the DPPH assay and in LPS-stimulated RAW 264.7 cells, being able to reduce NO and ROS levels and NOS2 mRNA expression. Our study demonstrated that Sicilian B. macrocarpa methanolic extract, in LPS-stimulated macrophages, efficiently counteracts oxidative stress and displays radical scavenging activity. Future studies are required to identify the contribution of the single phytocomponents, to characterize the action mechanism, and to reveal possible applications in human health.


Antioxidants , Brassica , Free Radical Scavengers , Plant Extracts , Plant Leaves , RAW 264.7 Cells , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice , Plant Leaves/chemistry , Animals , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Brassica/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Nitric Oxide/metabolism , Macrophages/drug effects , Macrophages/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Lipopolysaccharides/pharmacology , Oxidative Stress/drug effects , Phenols/pharmacology , Phenols/chemistry , Sicily , Glucosinolates/pharmacology , Glucosinolates/chemistry
3.
Pestic Biochem Physiol ; 202: 105941, 2024 Jun.
Article En | MEDLINE | ID: mdl-38879332

Emamectin benzoate (EMB) is extensively used as a crop protection agent. Overuse of EMB poses a serious threat to the quality of water and non-target organisms in the environment. Resveratrol (RES) is a natural phytoalexin with the function of anti-oxidation and anti-inflammation. Nonetheless, it is unclear whether EMB affects the expression of cytokines and induces autophagy, apoptosis, and necroptosis of hepatocytes (L8824 cell) in grass carp (Ctenopharyngodon idella), and whether RES has an attenuate function in this process. Therefore, we established the L8824 cells model of EMB exposure and treated it with RES. The results showed that compared with the control (CON) group, EMB exposure significantly increased the nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, and the expression of iNOS and phosphorylated nuclear factor kappa B (p-NF-κB) (P < 0.05). In addition, compared with the CON group, the results of flow cytometry and dansylcadaverine (MDC) staining showed a significant increase in apoptosis and autophagy in the EMB-exposed group (P < 0.05) with the activation of the B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X (Bax)/cysteine-aspartic acid protease 3 (Caspase-3)/cysteine-aspartic acid protease 9 (Caspase-9) pathway and microtubule-associated protein light chain 3 (LC3)/sequestosome 1 (p62)/Beclin1 pathway. EMB exposure significantly increased the mRNA and protein expression of receptor-interacting protein 1 (RIPK1)/receptor-interacting protein 3 (RIPK3)/mixed the lineage kinase domain-like (MLKL) pathway (P < 0.05). Moreover, EMB exposure significantly increased the expression of genes related to immunity (immunoglobulin G (IgG), immunoglobulin M (IgM), and immunoglobulin D (IgD), and antimicrobial peptide-related genes expression including ß-defensin and hepcidin) (P < 0.05). The addition of RES significantly diminished autophagy, apoptosis, necroptosis, and immunity-related gene expression by inhibiting iNOS activity, NO content, and the protein expression of iNOS and p-NF-κB. In conclusion, RES attenuated autophagy, apoptosis, and necroptosis in EMB-exposed L8824 cells via suppression of the NO system/NF-κB signaling pathway.


Carps , Ivermectin , NF-kappa B , Nitric Oxide , Resveratrol , Signal Transduction , Animals , Carps/metabolism , NF-kappa B/metabolism , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Ivermectin/pharmacology , Nitric Oxide/metabolism , Signal Transduction/drug effects , Resveratrol/pharmacology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Apoptosis/drug effects , Cell Line , Autophagy/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism
4.
PLoS One ; 19(6): e0303702, 2024.
Article En | MEDLINE | ID: mdl-38833454

Nile tilapia (Oreochromis niloticus) is valued in aquaculture because of its quick development and ability to thrive in various environments. Myxosporeans are among the fish parasites that affect fish productivity, as they impact fish growth and reproduction, resulting in large fish deaths in farms and hatcheries. This study has been focused on morpho-molecular identification for the myxosporean parasites infecting Nile tilapia from three governorates in Egypt and assessment of gene expression of different cytokines (Interleukin-1ßeta (IL-1ß), major histocompatibility complex class II (MHC-II), and clusters of differentiation 4 (CD-4) and 8 (CD-8)) in tissues. Additionally, this work aimed to correlate the developed histopathological alterations and inflammatory reactions in gills with immunohistochemical expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α). Finally, the infected fish's cortisol levels and blood glucose were assessed. Results of BLAST sequence analysis of the 18S rRNA for the collected protozoans confirmed Myxobolus agolus, M. brachysporus, M. tilapiae, and Henneguya species. The molecular characterization of the immunological status of gills revealed marked upregulation of different inflammatory cytokines in the gills of infected fish. There was a significantly increased serum cortisol and glucose level in infected fish compared with control, non-infected ones. Severe histopathological alterations were observed in the infected fish gills, associated with increased expression of iNOS and TNF-α and related to myxosporean infection. The present study provides new insights into oxidative stress biomarkers in Nile tilapia infected with Myxosporeans and elucidates the gill's immune status changes as a portal of entry for protozoa that contribute to tissue damage.


Cichlids , Fish Diseases , Gills , Myxozoa , Parasitic Diseases, Animal , Animals , Gills/parasitology , Gills/pathology , Gills/immunology , Cichlids/parasitology , Cichlids/immunology , Cichlids/genetics , Fish Diseases/parasitology , Fish Diseases/immunology , Parasitic Diseases, Animal/parasitology , Parasitic Diseases, Animal/immunology , Parasitic Diseases, Animal/pathology , Myxozoa/physiology , Biomarkers , Immunohistochemistry , Cytokines/metabolism , Egypt , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics
5.
Int J Mol Sci ; 25(11)2024 May 26.
Article En | MEDLINE | ID: mdl-38891963

Cutaneous field cancerization (CFC) refers to a skin region containing mutated cells' clones, predominantly arising from chronic exposure to ultraviolet radiation (UVR), which exhibits an elevated risk of developing precancerous and neoplastic lesions. Despite extensive research, many molecular aspects of CFC still need to be better understood. In this study, we conducted ex vivo assessment of cell differentiation, oxidative stress, inflammation, and DNA damage in CFC samples. We collected perilesional skin from 41 patients with skin cancer and non-photoexposed skin from 25 healthy control individuals. These biopsies were either paraffin-embedded for indirect immunofluorescence and immunohistochemistry stain or processed for proteins and mRNA extraction from the epidermidis. Our findings indicate a downregulation of p53 expression and an upregulation of Ki67 and p16 in CFC tissues. Additionally, there were alterations in keratinocyte differentiation markers, disrupted cell differentiation, increased expression of iNOS and proinflammatory cytokines IL-6 and IL-8, along with evidence of oxidative DNA damage. Collectively, our results suggest that despite its outwardly normal appearance, CFC tissue shows early signs of DNA damage, an active inflammatory state, oxidative stress, abnormal cell proliferation and differentiation.


Cell Differentiation , DNA Damage , Inflammation , Oxidative Stress , Skin Neoplasms , Ultraviolet Rays , Humans , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology , Male , Female , Middle Aged , Ultraviolet Rays/adverse effects , Aged , Keratinocytes/metabolism , Keratinocytes/pathology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Adult , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Skin/metabolism , Skin/pathology , Skin/radiation effects , Ki-67 Antigen/metabolism , Ki-67 Antigen/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Interleukin-6/metabolism , Interleukin-6/genetics
6.
Mol Biol Rep ; 51(1): 774, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38904794

BACKGROUND: Olive is an evergreen tree of Oleaceae Olea with numerous bioactive components. While the anti-inflammatory properties of olive oil and the derivatives are well-documented, there remains a dearth of in-depth researches on the immunosuppressive effects of olive fruit water extract. This study aimed to elucidate the dose-effect relationship and underlying molecular mechanisms of olive fruit extract in mediating anti-inflammatory responses. METHODS AND RESULTS: The impacts of olive fruit extract on the release of nitric oxide (NO), tumor necrosis factor (TNF-α), interleukins-6 (IL-6) and reactive oxygen species (ROS) were assessed in RAW264.7 cells induced by lipopolysaccharide (LPS). For deeper understanding, the expression of genes encoding inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α and IL-6 was quantitatively tested. Additionally, the expression patterns of MAPK and NF-κB pathways were further observed to analyze the action mechanisms. Results suggested that olive fruit extract (200, 500, 1000 µg/mL) markedly exhibited a dose-dependent reduction in the generation of NO, TNF-α, IL-6 and ROS, as well as the expression of correlative genes studied. The activation of ERK, JNK, p38, IκB-α and p65 were all suppressed when p65 nuclear translocation was further restricted by olive fruit extract in NF-κB and MAPK signal pathways. CONCLUSIONS: Olive fruit extract targeted imposing restrictions on the signal transduction of key proteins in NF-κB and MAPK pathways, and thereby lowered the level of inflammatory mediators, which put an enormous hindrance to inflammatory development. Accordingly, it is reasonable to consider olive fruit as a potent ingredient in immunomodulatory products.


Anti-Inflammatory Agents , Fruit , Lipopolysaccharides , NF-kappa B , Nitric Oxide , Olea , Plant Extracts , Reactive Oxygen Species , Signal Transduction , Animals , Olea/chemistry , Mice , RAW 264.7 Cells , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Fruit/chemistry , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Nitric Oxide/metabolism , Tumor Necrosis Factor-alpha/metabolism , MAP Kinase Signaling System/drug effects , Interleukin-6/metabolism , Interleukin-6/genetics , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Cell Survival/drug effects , Mitogen-Activated Protein Kinases/metabolism , Macrophages/drug effects , Macrophages/metabolism
7.
Front Immunol ; 15: 1411930, 2024.
Article En | MEDLINE | ID: mdl-38881891

Introduction: Sepsis is a life-threatening inflammatory condition caused by dysregulated host responses to infection. Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently discovered damage-associated molecular pattern that causes inflammation and organ injury in sepsis. Kupffer cells can be activated and polarized to the inflammatory M1 phenotype, contributing to tissue damage by producing proinflammatory mediators. We hypothesized that eCIRP promotes Kupffer cell M1 polarization in sepsis. Methods: We stimulated Kupffer cells isolated from wild-type (WT) and TLR4-/- mice with recombinant mouse (rm) CIRP (i.e., eCIRP) and assessed supernatant IL-6 and TNFα levels by ELISA. The mRNA expression of iNOS and CD206 for M1 and M2 markers, respectively, was assessed by qPCR. We induced sepsis in WT and CIRP-/- mice by cecal ligation and puncture (CLP) and assessed iNOS and CD206 expression in Kupffer cells by flow cytometry. Results: eCIRP dose- and time-dependently increased IL-6 and TNFα release from WT Kupffer cells. In TLR4-/- Kupffer cells, their increase after eCIRP stimulation was prevented. eCIRP significantly increased iNOS gene expression, while it did not alter CD206 expression in WT Kupffer cells. In TLR4-/- Kupffer cells, however, iNOS expression was significantly decreased compared with WT Kupffer cells after eCIRP stimulation. iNOS expression in Kupffer cells was significantly increased at 20 h after CLP in WT mice. In contrast, Kupffer cell iNOS expression in CIRP-/- mice was significantly decreased compared with WT mice after CLP. CD206 expression in Kupffer cells was not different across all groups. Kupffer cell M1/M2 ratio was significantly increased in WT septic mice, while it was significantly decreased in CIRP-/- mice compared to WT mice after CLP. Conclusion: Our data have clearly shown that eCIRP induces Kupffer cell M1 polarization via TLR4 pathway in sepsis, resulting in overproduction of inflammatory cytokines. eCIRP could be a promising therapeutic target to attenuate inflammation by preventing Kupffer cell M1 polarization in sepsis.


Kupffer Cells , Mice, Knockout , RNA-Binding Proteins , Sepsis , Animals , Kupffer Cells/immunology , Kupffer Cells/metabolism , Sepsis/immunology , Sepsis/metabolism , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Mice, Inbred C57BL , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Male , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Disease Models, Animal , Inflammation/immunology , Inflammation/metabolism , Tumor Necrosis Factor-alpha/metabolism , Mannose Receptor , Interleukin-6/metabolism
8.
Cell Death Dis ; 15(6): 449, 2024 Jun 26.
Article En | MEDLINE | ID: mdl-38926337

Psoriasis is an IL-23/Th17-mediated skin disorder with a strong genetic predisposition. The impact of its susceptibility gene nitric oxide synthase 2 (NOS2) remains unknown. Here, we demonstrate strong NOS2 mRNA expression in psoriatic epidermis, an effect that is IL-17 dependent. However, its complete translation to protein is prevented by the IL-17-induced miR-31 implying marginally upregulated NO levels in psoriatic skin. We demonstrate that lower levels of NO, as opposed to higher levels, increase keratinocyte proliferation and mediate IL-17 downstream effects. We hypothesized that the psoriatic phenotype may be alleviated by either eliminating or increasing cellular NO levels. In fact, using the imiquimod psoriasis mouse model, we found a profound impact on the psoriatic inflammation in both IMQ-treated NOS2 KO mice and wild-type mice treated with IMQ and the NO-releasing berdazimer gel. In conclusion, we demonstrate that IL-17 induces NOS2 and fine-tunes its translation towards a window of proinflammatory and hyperproliferative effects and identify NO donor therapy as a new treatment modality for psoriasis.


Interleukin-17 , Mice, Knockout , Nitric Oxide Synthase Type II , Nitric Oxide , Psoriasis , Psoriasis/genetics , Psoriasis/pathology , Animals , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Mice , Humans , Nitric Oxide/metabolism , Interleukin-17/metabolism , Keratinocytes/metabolism , Keratinocytes/pathology , Keratinocytes/drug effects , Imiquimod , Mice, Inbred C57BL , Disease Models, Animal , Cell Proliferation/drug effects
9.
J Microbiol Biotechnol ; 34(6): 1340-1347, 2024 Jun 28.
Article En | MEDLINE | ID: mdl-38783718

Ehretia asperula is a medicinal plant of the Ehretiaceae family used to treat inflammatory disorders, but the underlying mechanisms are not fully elucidated. The anti-inflammatory potential was determined based on enzyme cyclooxygenase-2 (COX-2) inhibition, which showed that the 95% ethanol extract (95ECH) was most effective with a half-maximal inhibitory concentration (IC50) value of 34.09 µg/mL. The effects of 95ECH on phagocytosis, NO production, gene, and protein expression of the cyclooxygenase 2/prostaglandin E2 (COX-2/PGE2) and inducible nitric oxide synthase/nitric oxide (iNOS/NO) pathways in lipopolysaccharide (LPS)-induced RAW264.7 cells were examined using the neutral red uptake and Griess assays, reverse-transcriptase polymerase chain reactions (RTPCR), and enzyme-linked immunosorbent assays (ELISA). The results showed that 95ECH suppressed phagocytosis and the NO production in activated macrophage cells (p < 0.01). Conversely, 95ECH regulated the expression levels of mRNAs for cytokines tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß) as well as the corresponding proteins. In addition, PGE2 production was inhibited in a dose-dependent manner by 95ECH, and the expression of iNOS and COX-2 mRNAs was decreased in activated macrophage cells, as expected. Therefore, 95ECH from E. asperula leaves contains potentially valuable compounds for use in inflammation management.


Anti-Inflammatory Agents , Cyclooxygenase 2 , Dinoprostone , Lipopolysaccharides , Macrophages , Nitric Oxide Synthase Type II , Nitric Oxide , Phagocytosis , Plant Extracts , Animals , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Phagocytosis/drug effects , Nitric Oxide/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Dinoprostone/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Cytokines/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics
10.
Bull Exp Biol Med ; 176(5): 555-561, 2024 Mar.
Article En | MEDLINE | ID: mdl-38717567

The levels of NO metabolites in the plasma and mRNA of the NOS3, ATG9B, and NOS2 genes in peripheral blood leukocytes of healthy people and patients with early forms of non-alcoholic fatty liver disease (steatosis and weak activity non-alcoholic steatohepatitis) were studied. In patients with steatohepatitis, the concentration of NO metabolites in the blood and the level of mRNA of the NOS2 gene were higher than in patients with steatosis and healthy people. These differences can be of diagnostic value for distinguishing between steatosis and weak activity steatohepatitis in non-alcoholic fatty liver disease. A correlation between the levels of NO metabolites and the expression of the NOS2 gene in weak activity steatohepatitis was established, which indicates activation of NO synthesis in non-alcoholic steatohepatitis due to the expression of the inducible NO synthase gene. The level of the NOS2 gene mRNA in peripheral blood leukocytes of patients with weak activity steatohepatitis correlated with the level of TNFα and IL-6 cytokines. An increase in the level of NO in the blood in weak activity steatohepatitis correlated with the level of MDA, an indicator of oxidative stress.


Interleukin-6 , Nitric Oxide Synthase Type III , Nitric Oxide Synthase Type II , Nitric Oxide , Non-alcoholic Fatty Liver Disease , Tumor Necrosis Factor-alpha , Humans , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Nitric Oxide/blood , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Male , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Female , Adult , Interleukin-6/blood , Interleukin-6/genetics , Middle Aged , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/genetics , RNA, Messenger/genetics , RNA, Messenger/blood , RNA, Messenger/metabolism , Oxidative Stress/genetics , Case-Control Studies , Malondialdehyde/blood
11.
Redox Biol ; 73: 103191, 2024 Jul.
Article En | MEDLINE | ID: mdl-38762951

Activation of inflammation is tightly associated with metabolic reprogramming in macrophages. The iron-containing tetrapyrrole heme can induce pro-oxidant and pro-inflammatory effects in murine macrophages, but has been associated with polarization towards an anti-inflammatory phenotype in human macrophages. In the current study, we compared the regulatory responses to heme and the prototypical Toll-like receptor (TLR)4 ligand lipopolysaccharide (LPS) in human and mouse macrophages with a particular focus on alterations of cellular bioenergetics. In human macrophages, bulk RNA-sequencing analysis indicated that heme led to an anti-inflammatory transcriptional profile, whereas LPS induced a classical pro-inflammatory gene response. Co-stimulation of heme with LPS caused opposing regulatory patterns of inflammatory activation and cellular bioenergetics in human and mouse macrophages. Specifically, in LPS-stimulated murine, but not human macrophages, heme led to a marked suppression of oxidative phosphorylation and an up-regulation of glycolysis. The species-specific alterations in cellular bioenergetics and inflammatory responses to heme were critically dependent on the availability of nitric oxide (NO) that is generated in inflammatory mouse, but not human macrophages. Accordingly, studies with an inducible nitric oxide synthase (iNOS) inhibitor in mouse, and a pharmacological NO donor in human macrophages, reveal that NO is responsible for the opposing effects of heme in these cells. Taken together, the current findings indicate that NO is critical for the immunomodulatory role of heme in macrophages.


Heme , Inflammation , Lipopolysaccharides , Macrophages , Nitric Oxide , Humans , Heme/metabolism , Animals , Nitric Oxide/metabolism , Mice , Macrophages/metabolism , Macrophages/drug effects , Lipopolysaccharides/pharmacology , Inflammation/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Oxidative Phosphorylation/drug effects , Energy Metabolism/drug effects , Glycolysis/drug effects
12.
Ecotoxicol Environ Saf ; 279: 116458, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38759536

Heavy metals interact with each other in a coexisting manner to produce complex combined toxicity to organisms. At present, the toxic effects of chronic co-exposure to heavy metals hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] on organisms are seldom studied and the related mechanisms are poorly understood. In this study, we explored the mechanism of the colon injury in mice caused by chronic exposure to Cr or/and Ni. The results showed that, compared with the control group, Cr or/and Ni chronic exposure affected the body weight of mice, and led to infiltration of inflammatory cells in the colon, decreased the number of goblet cells, fusion of intracellular mucus particles and damaged cell structure of intestinal epithelial. In the Cr or/and Ni exposure group, the activity of nitric oxide synthase (iNOS) increased, the expression levels of MUC2 were significantly down-regulated, and those of ZO-1 and Occludin were significantly up-regulated. Interestingly, factorial analysis revealed an interaction between Cr and Ni, which was manifested as antagonistic effects on iNOS activity, ZO-1 and MUC2 mRNA expression levels. Transcriptome sequencing further revealed that the expression of genes-related to inflammation, intestinal mucus and tight junctions changed obviously. Moreover, the relative contents of Cr(VI) and Ni(II) in the Cr, Ni and Cr+Ni groups all changed with in-vitro gastrointestinal (IVG)digestion, especially in the Cr+Ni group. Our results indicated that the chronic exposure to Cr or/and Ni can lead to damage to the mice colon, and the relative content changes of Cr(VI) and Ni(II) might be the main reason for the antagonistic effect of Cr+Ni exposure on the colon damage.


Chromium , Colon , Mucin-2 , Nickel , Animals , Chromium/toxicity , Nickel/toxicity , Mice , Colon/drug effects , Colon/pathology , Mucin-2/genetics , Mucin-2/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Gene Expression Profiling , Male , Digestion/drug effects , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Transcriptome/drug effects , Occludin/metabolism , Occludin/genetics , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology
13.
Int Immunopharmacol ; 135: 112333, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38805907

Macrophages are one of the important immune cells, which play important roles in innate and adaptive immune. However, the roles of macrophages in food allergy are not thoroughly understood. To investigate the roles of macrophages during food allergy, we focused on the relationship between macrophage polarization and allergic responses induced by tropomyosin (TM) in the present study. Arg 1 and CD206 expressions in the TM group were significantly higher than those of the PBS group, while iNOS and TNF-α expressions were no obvious difference, moreover, the morphology of macrophages stimulated by TM was similar to that of M2 macrophages. These results indicated macrophages were mainly polarized toward M2 phenotypes in vitro. The antibodies, mMCP-1, histamine and cytokines, revealed that macrophages could participate in food allergy, and macrophage polarization was associated with changes in allergic-related factors. The cytokine levels of M2 phenotypes were significantly higher than those of M1 phenotypes in peripheral blood. The mRNA expressions and protein levels of Arg1 and iNOS in the jejunum and peritoneal cells indicated that M2 phenotypes were the major macrophage in these tissues compared with M1 phenotypes. Hence, macrophage polarization plays an important role in food allergy.


Arginase , Food Hypersensitivity , Macrophages , Mice, Inbred BALB C , Palaemonidae , Tropomyosin , Animals , Tropomyosin/immunology , Food Hypersensitivity/immunology , Mice , Macrophages/immunology , Arginase/metabolism , Palaemonidae/immunology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Cytokines/metabolism , Disease Models, Animal , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Mannose-Binding Lectins/metabolism , Female , Mannose Receptor , Jejunum/immunology , Jejunum/pathology , Cells, Cultured , Histamine/metabolism , Macrophage Activation
14.
Microb Pathog ; 192: 106719, 2024 Jul.
Article En | MEDLINE | ID: mdl-38810768

Cimicifugae rhizoma is a traditional Chinese herbal medicine in China, and modern pharmacological research showed that it has obvious antiviral activity. Many polysaccharides have been proved to have immune enhancement and antiviral activity, but there are few studies on the biological activity of Cimicifuga rhizoma polysaccharide (CRP). The aim was to explore the character of CRP and its effects on improving immune activity and inhibiting transmissible gastroenteritis virus (TGEV). The monosaccharide composition, molecular weight, fourier transform infrared spectra and electron microscopy analysis of CRP was measured. The effect of CRP on immune activity in lymphocytes and RAW264.7 cells were studied by colorimetry, FITC-OVA fluorescent staining and ELISA. The effect of CRP on TGEV-infected PK-15 cells was determined using Real-time PCR, Hoechst fluorescence staining, trypan blue staining, acridine orange staining, Annexin V-FITC/PI fluorescent staining, DCFH-DA loading probe, and JC-1 staining. Network pharmacology was used to predict the targets of CRP in enhancing immunity and anti-TGEV, and molecular docking was used to further analyze the binding mode between CPR and core targets. The results showed that CRP was mainly composed of glucose and galactose, and its molecular weight was 64.28 kDa. The content of iNOS and NO in CRP group were significantly higher than the control group. CRP (125 and 62.5 µg/mL) could significantly enhance the phagocytic capacity of RAW264.7 cells, and imprive the content of IL-1ß content compared with control group. 250 µg/mL of CRP possessed the significant inhibitory effect on TGEV, which could significantly reduce the apoptosis compared to TGVE group and inhibit the decrease in mitochondrial membrane potential compared to TGVE group. The mRNA expression of TGEV N gene in CRP groups was significantly lower than TGEV group. PPI showed that the core targets of immune-enhancing were AKT1, MMP9, HSP90AA1, etc., and the core targets of TGE were CASP3, MMP9, EGFR, etc. Molecular docking show that CRP has binding potential with target. These results indicated that CRP possessed the better immune enhancement effect and anti-TGEV activity.


Antiviral Agents , Molecular Docking Simulation , Polysaccharides , Transmissible gastroenteritis virus , Animals , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , RAW 264.7 Cells , Transmissible gastroenteritis virus/drug effects , Antiviral Agents/pharmacology , Rhizome/chemistry , Interleukin-1beta/metabolism , Molecular Weight , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Cell Line , Lymphocytes/drug effects , Lymphocytes/immunology , Apoptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Spectroscopy, Fourier Transform Infrared , Monosaccharides , Nitric Oxide/metabolism , Immunologic Factors/pharmacology
15.
Nutrients ; 16(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38794644

Endothelial dysfunction is a crucial event in the early pathogenesis of cardiovascular diseases and is linked to magnesium (Mg) deficiency. Indeed, in endothelial cells, low Mg levels promote the acquisition of a pro-inflammatory and pro-atherogenic phenotype. This paper investigates the mechanisms by which Mg deficiency promotes oxidative stress and affects endothelial behavior in human umbilical vascular endothelial cells (HUVECs). Our data show that low Mg levels trigger oxidative stress initially by increasing NAPDH oxidase activity and then by upregulating the pro-oxidant thioredoxin-interacting protein TXNIP. The overproduction of reactive oxygen species (ROS) activates NF-κB, leading to its increased binding to the inducible nitric oxide synthase (iNOS) promoter, with the consequent increase in iNOS expression. The increased levels of nitric oxide (NO) generated by upregulated iNOS contribute to disrupting endothelial cell function by inhibiting growth and increasing permeability. In conclusion, we provide evidence that multiple mechanisms contribute to generate a pro-oxidant state under low-Mg conditions, ultimately affecting endothelial physiology. These data add support to the notion that adequate Mg levels play a significant role in preserving cardiovascular health and may suggest new approaches to prevent or manage cardiovascular diseases.


Human Umbilical Vein Endothelial Cells , Magnesium Deficiency , Magnesium , Nitric Oxide Synthase Type II , Nitric Oxide , Oxidative Stress , Reactive Oxygen Species , Humans , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Magnesium Deficiency/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Magnesium/metabolism , NF-kappa B/metabolism , Carrier Proteins/metabolism , Carrier Proteins/genetics , Endothelium, Vascular/metabolism
16.
J Ethnopharmacol ; 332: 118374, 2024 Oct 05.
Article En | MEDLINE | ID: mdl-38789093

ETHNOPHARMACOLOGICAL RELEVANCE: Picrasma quassioides (D. Don) Benn is a vascular plant belonging to the genus Picrasma of Simaroubaceae family and grows in Korea, China, India, Taiwan, and Japan. Picrasma quassioides extract has been reported to have anti-inflammatory, anti-bacterial, and anti-cancer properties. Moreover, this plant has been also traditionally used to alleviate symptoms of eczema, atopic dermatitis, psoriasis, scabies, and boils in skin. AIM OF THE STUDY: The Pq-EE has been reported in Chinese pharmacopoeia for its pharmacological effects on skin. However, the detailed mechanism on alleviating skin conditions is not understood. Hence, we investigated the skin improvement potential of Pq-EE against skin damage. MATERIALS AND METHODS: We used the human keratinocyte cell line (HaCaT) and mouse melanoma cell line (B16F10) to study the effects of Pq-EE on the epidermis. Additionally, in vitro antioxidant assays were performed using a solution that included either metal ions or free radicals. RESULTS: In colorimetric antioxidant assays, Pq-EE inhibited free radicals in a dose-dependent manner. The Pq-EE did not affect cell viability and promoted cell survival under UVB exposure conditions in the MTT assay. The Pq-EE downregulated the mRNA levels of apoptotic factors. Moreover, MMP1 and inflammatory cytokine iNOS mRNA levels decreased with Pq-EE treatment. With regard to protein levels, caspases and cleaved caspases were more powerfully inhibited by Pq-EE than UVB-irritated conditions. p53 and Bax also decreased with Pq-EE treatment. The melanin contents and secretion were decreased at nontoxic concentrations of Pq-EE. The pigmentation pathway genes also were inhibited by treatment with Pq-EE. CONCLUSIONS: In summary, we suggest the cell protective potential of Pq-EE against UVB and ROS, indicating its use in UV-protective cosmeceutical materials.


Anti-Inflammatory Agents , Antioxidants , Apoptosis , Melanins , Picrasma , Plant Extracts , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Apoptosis/drug effects , Humans , Mice , Picrasma/chemistry , Antioxidants/pharmacology , Melanins/metabolism , Ethanol/chemistry , HaCaT Cells , Keratinocytes/drug effects , Keratinocytes/radiation effects , Cell Line, Tumor , Melanoma, Experimental/drug therapy , Cell Survival/drug effects , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics
17.
Free Radic Biol Med ; 219: 184-194, 2024 Jul.
Article En | MEDLINE | ID: mdl-38636716

Hematopoietic stem cells (HSCs) replenish blood cells under steady state and on demand, that exhibit therapeutic potential for Bone marrow failures and leukemia. Redox signaling plays key role in immune cells and hematopoiesis. However, the role of reactive nitrogen species in hematopoiesis remains unclear and requires further investigation. We investigated the significance of inducible nitric oxide synthase/nitric oxide (iNOS/NO) signaling in hematopoietic stem and progenitor cells (HSPCs) and hematopoiesis under steady-state and stress conditions. HSCs contain low levels of NO and iNOS under normal conditions, but these increase upon bone marrow stress. iNOS-deficient mice showed subtle changes in peripheral blood cells but significant alterations in HSPCs, including increased HSCs and multipotent progenitors. Surprisingly, iNOS-deficient mice displayed heightened susceptibility and delayed recovery of blood progeny following 5-Fluorouracil (5-FU) induced hematopoietic stress. Loss of quiescence and increased mitochondrial stress, indicated by elevated MitoSOX and MMPhi HSCs, were observed in iNOS-deficient mice. Furthermore, pharmacological approaches to mitigate mitochondrial stress rescued 5-FU-induced HSC death. Conversely, iNOS-NO signaling was required for demand-driven mitochondrial activity and proliferation during hematopoietic recovery, as iNOS-deficient mice and NO signaling inhibitors exhibit reduced mitochondrial activity. In conclusion, our study challenges the conventional view of iNOS-derived NO as a cytotoxic molecule and highlights its intriguing role in HSPCs. Together, our findings provide insights into the crucial role of the iNOS-NO-mitochondrial axis in regulating HSPCs and hematopoiesis.


Fluorouracil , Hematopoiesis , Hematopoietic Stem Cells , Mitochondria , Nitric Oxide Synthase Type II , Nitric Oxide , Signal Transduction , Animals , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Hematopoietic Stem Cells/metabolism , Mice , Mitochondria/metabolism , Fluorouracil/pharmacology , Hematopoiesis/genetics , Nitric Oxide/metabolism , Regeneration , Mice, Knockout , Bone Marrow/metabolism , Mice, Inbred C57BL
18.
Fish Shellfish Immunol ; 149: 109571, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636736

Bacteria-enhanced inducible nitric oxide synthase (iNOS) overproduces nitric oxide (NO) leading to mitochondrial and cellular damage. In mammals, arginase (ARG), the enzyme consuming the same substrate l-arginine with iNOS, was believed to inhibit iNOS activity by competing the substrate. But in fish, this conception has been widely challenged. In this study, the gene expression using real-time quantitative PCR (RT-qPCR) technology showed that when stimulated by Aeromonas hydrophila (A. hydrophila), grass carp (gc) iNOS was up-regulated in head kidney monocytes/macrophages (M0/MФ), and its changes were not detected in the whole tissue of liver or spleen, showing a high degree of cell-specific expression pattern. At the same time, gcARG2 had a high basal expression in tissues and was up-regulated by A. hydrophila stimulation. Next, phthalaldehyde-primaquine reaction was first used in the determination of intracellular urea in fish cells. It was found that the induced gcARG2 led to an increase in the intracellular urea content. Moreover, urea and NO production in M0/MФ were increased in a substrate dose-dependent manner from 30 to 100 µM of l-arginine and reached the highest yield at 300 and 3000 µM of l-arginine, respectively. Furthermore, head kidney M0/MФ was cultured in RPMI1640 medium containing physiological concentration (500 µM) of l-arginine to evaluate the effect of ARG. Under A. hydrophila stimulation, treatment with the arginase inhibitor S-(2-boronoethyl)-l-cysteine (BEC) showed that inhibition of arginase could further enhance the NO production stimulated by A. hydrophila. This in turn led to a cumulation in peroxynitrite (ONOO-) content and an injury of the mitochondrial membrane potential. Our study showed for the first time that fish ARG in head kidney M0/MФ can limit excessive production of NO and harmful products by iNOS to maintain mitochondrial and cellular homeostasis.


Aeromonas hydrophila , Arginase , Carps , Fish Diseases , Fish Proteins , Gram-Negative Bacterial Infections , Mitochondria , Nitric Oxide , Animals , Aeromonas hydrophila/physiology , Arginase/genetics , Arginase/metabolism , Fish Diseases/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Nitric Oxide/metabolism , Carps/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Arginine
19.
Redox Biol ; 72: 103166, 2024 Jun.
Article En | MEDLINE | ID: mdl-38685170

S-nitrosylation (SNO) is an emerging paradigm of redox signaling protecting cells against oxidative stress in the heart. Our previous studies demonstrated that valosin-containing protein (VCP), an ATPase-associated protein, is a vital mediator protecting the heart against cardiac stress and ischemic injury. However, the molecular regulations conferred by VCP in the heart are not fully understood. In this study, we explored the potential role of VCP in cardiac protein SNO using multiple cardiac-specific genetically modified mouse models and various analytical techniques including biotin switch assay, liquid chromatography, mass spectrometry, and western blotting. Our results showed that cardiac-specific overexpression of VCP led to an overall increase in the levels of SNO-modified cardiac proteins in the transgenic (TG) vs. wild-type (WT) mice. Mass spectrometry analysis identified mitochondrial proteins involved in respiration, metabolism, and detoxification as primary targets of SNO modification in VCP-overexpressing mouse hearts. Particularly, we found that VCP itself underwent SNO modification at a specific cysteine residue in its N-domain. Additionally, our study demonstrated that glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis, also experienced increased SNO in response to VCP overexpression. While deletion of inducible nitric oxide synthase (iNOS) in VCP TG mice did not affect VCP SNO, it did abolish SNO modification in mitochondrial complex proteins, suggesting a dual mechanism of regulation involving both iNOS-dependent and independent pathways. Overall, our findings shed light on post-translational modification of VCP in the heart, unveiling a previously unrecognized role for VCP in regulating cardiac protein SNO and offering new insights into its function in cardiac protection.


Myocardium , Protein Processing, Post-Translational , Valosin Containing Protein , Animals , Mice , Mice, Transgenic , Myocardium/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Oxidation-Reduction , Oxidative Stress , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics
20.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R552-R566, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38586887

Nitric oxide is produced at low micromolar levels following the induction of inducible nitric oxide synthase (iNOS) and is responsible for mediating the inhibitory actions of cytokines on glucose-stimulated insulin secretion by islets of Langerhans. It is through the inhibition of mitochondrial oxidative metabolism, specifically aconitase and complex 4 of the electron transport chain, that nitric oxide inhibits insulin secretion. Nitric oxide also attenuates protein synthesis, induces DNA damage, activates DNA repair pathways, and stimulates stress responses (unfolded protein and heat shock) in ß-cells. In this report, the time- and concentration-dependent effects of nitric oxide on the expression of six genes known to participate in the response of ß-cells to this free radical were examined. The genes included Gadd45α (DNA repair), Puma (apoptosis), Hmox1 (antioxidant defense), Hsp70 (heat shock), Chop (UPR), and Ppargc1α (mitochondrial biogenesis). We show that nitric oxide stimulates ß-cell gene expression in a narrow concentration range of ∼0.5-1 µM or levels corresponding to iNOS-derived nitric oxide. At concentrations greater than 1 µM, nitric oxide fails to stimulate gene expression in ß-cells, and this is associated with the inhibition of mitochondrial oxidative metabolism. This narrow concentration range of responses is ß-cell selective, as the actions of nitric oxide in non-ß-cells (α-cells, mouse embryonic fibroblasts, and macrophages) are concentration dependent. Our findings suggest that ß-cells respond to a narrow concentration range of nitric oxide that is consistent with the levels produced following iNOS induction, and that these concentration-dependent actions are selective for insulin-containing cells.


Apoptosis Regulatory Proteins , Gene Expression Regulation , Insulin-Secreting Cells , Nitric Oxide Synthase Type II , Nitric Oxide , Animals , Nitric Oxide/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Mice , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Gene Expression Regulation/drug effects , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase (Decyclizing)/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Insulin/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Rats , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Membrane Proteins , Heme Oxygenase-1
...