Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.194
Filtrar
1.
Curr Opin Cell Biol ; 88: 102374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38824902

RESUMEN

Intracellular organization is a highly regulated homeostatic state maintained to ensure eukaryotic cells' correct and efficient functioning. Thanks to decades of research, vast knowledge of the proteins involved in intracellular transport and organization has been acquired. However, how these influence and potentially regulate the intracellular mechanical properties of the cell is largely unknown. There is a deep knowledge gap between the understanding of cortical mechanics, which is accessible by a series of experimental tools, and the intracellular situation that has been largely neglected due to the difficulty of performing intracellular mechanics measurements. Recently, tools required for such quantitative and localized analysis of intracellular mechanics have been introduced. Here, we review how these approaches and the resulting viscoelastic models lead the way to a full mechanical description of the cytoplasm, which is instrumental for a quantitative characterization of the intracellular life of cells.


Asunto(s)
Pinzas Ópticas , Humanos , Animales , Citoplasma/metabolismo , Reología , Fenómenos Biomecánicos
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124584, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838600

RESUMEN

Saccharomyces cerevisiae is the most common microbe used for the industrial production of bioethanol, and it encounters various stresses that inhibit cell growth and metabolism during fermentation. However, little is currently known about the physiological changes that occur in individual yeast cells during ethanol fermentation. Therefore, in this work, Raman spectroscopy and chemometric techniques were employed to monitor the metabolic changes of individual yeast cells at distinct stages during high gravity ethanol fermentation. Raman tweezers was used to acquire the Raman spectra of individual yeast cells. Multivariate curve resolution-alternating least squares (MCR-ALS) and principal component analysis were employed to analyze the Raman spectra dataset. MCR-ALS extracted the spectra of proteins, phospholipids, and triacylglycerols and their relative contents in individual cells. Changes in intracellular biomolecules showed that yeast cells undergo three distinct physiological stages during fermentation. In addition, heterogeneity among yeast cells significantly increased in the late fermentation period, and different yeast cells may respond to ethanol stress via different mechanisms. Our findings suggest that the combination of Raman tweezers and chemometrics approaches allows for characterizing the dynamics of molecular components within individual cells. This approach can serve as a valuable tool in investigating the resistance mechanism and metabolic heterogeneity of yeast cells during ethanol fermentation.


Asunto(s)
Etanol , Fermentación , Análisis de Componente Principal , Saccharomyces cerevisiae , Espectrometría Raman , Espectrometría Raman/métodos , Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Análisis de los Mínimos Cuadrados , Pinzas Ópticas , Análisis de la Célula Individual/métodos
3.
ACS Nano ; 18(24): 15617-15626, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38850556

RESUMEN

Ferritin, a spherical protein shell assembled from 24 subunits, functions as an efficient iron storage and release system through its channels. Understanding how various chemicals affect the structural behavior of ferritin is crucial for unravelling the origins of iron-related diseases in living organisms including humans. In particular, the influence of chemicals on ferritin's dynamics and iron release is barely explored at the single-protein level. Here, by employing optical nanotweezers using double-nanohole (DNH) structures, we examined the effect of ascorbic acid (reducing reagent) and pH on individual ferritin's conformational dynamics. The dynamics of ferritin increased as the concentration of ascorbic acid approached saturation. At pH 2.0, ferritin exhibited significant structural fluctuations and eventually underwent a stepwise disassembly into fragments. This work demonstrated the disassembly pathway and kinetics of a single ferritin molecule in solution. We identified four critical fragments during its disassembly pathway, which are 22-mer, 12-mer, tetramer, and dimer subunits. Moreover, we present single-molecule evidence of the cooperative disassembly of ferritin. Interrogating ferritin's structural change in response to different chemicals holds importance for understanding their roles in iron metabolism, hence facilitating further development of medical treatments for its associated diseases.


Asunto(s)
Ácido Ascórbico , Ferritinas , Pinzas Ópticas , Ferritinas/química , Ferritinas/metabolismo , Cinética , Ácido Ascórbico/química , Concentración de Iones de Hidrógeno , Conformación Proteica , Hierro/química , Humanos
4.
Langmuir ; 40(26): 13721-13727, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38899455

RESUMEN

Optical tweezers (OT) have evolved into powerful single molecule force spectroscopy tools to investigate protein folding-unfolding dynamics. To stretch a protein of interest using OT, the protein must be flanked with two double stranded DNA (dsDNA) handles. However, coupling dsDNA handles to the protein is often of low yield, representing a bottleneck in OT experiments. Here, we report a handle-free, all-protein-based OT method for investigating protein folding/unfolding dynamics. In this new method, we employed disordered elastin-like polypeptides (ELPs) as a molecular linker and the mechanically stable cohesin-dockerin (Coh-Doc) pair as the prey-bait system to enable the efficient capture and stretching of individual protein molecules. This novel approach was validated by using model proteins NuG2 and RTX-v, yielding experimental results comparable to those obtained by using the dsDNA handle approach. This new method provides a streamlined and efficient OT approach to investigate the folding-unfolding dynamics of proteins at the single molecule level, thus expanding the toolbox of OT-based single molecule force spectroscopy.


Asunto(s)
Pinzas Ópticas , Pliegue de Proteína , ADN/química , Desplegamiento Proteico , Péptidos/química , Proteínas/química
6.
Protein Sci ; 33(6): e4996, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747383

RESUMEN

The Sec61 translocon allows the translocation of secretory preproteins from the cytosol to the endoplasmic reticulum lumen during polypeptide biosynthesis. These proteins possess an N-terminal signal peptide (SP) which docks at the translocon. SP mutations can abolish translocation and cause diseases, suggesting an essential role for this SP/Sec61 interaction. However, a detailed biophysical characterization of this binding is still missing. Here, optical tweezers force spectroscopy was used to characterize the kinetic parameters of the dissociation process between Sec61 and the SP of prepro-alpha-factor. The unbinding parameters including off-rate constant and distance to the transition state were obtained by fitting rupture force data to Dudko-Hummer-Szabo models. Interestingly, the translocation inhibitor mycolactone increases the off-rate and accelerates the SP/Sec61 dissociation, while also weakening the interaction. Whereas the translocation deficient mutant containing a single point mutation in the SP abolished the specificity of the SP/Sec61 binding, resulting in an unstable interaction. In conclusion, we characterize quantitatively the dissociation process between the signal peptide and the translocon, and how the unbinding parameters are modified by a translocation inhibitor.


Asunto(s)
Pinzas Ópticas , Canales de Translocación SEC , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cinética , Unión Proteica , Señales de Clasificación de Proteína , Transporte de Proteínas , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
7.
Sci Adv ; 10(22): eadn2208, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820156

RESUMEN

PR65 is the HEAT repeat scaffold subunit of the heterotrimeric protein phosphatase 2A (PP2A) and an archetypal tandem repeat protein. Its conformational mechanics plays a crucial role in PP2A function by opening/closing substrate binding/catalysis interface. Using in silico saturation mutagenesis, we identified PR65 "hinge" residues whose substitutions could alter its conformational adaptability and thereby PP2A function, and selected six mutations that were verified to be expressed and soluble. Molecular simulations and nanoaperture optical tweezers revealed consistent results on the specific effects of the mutations on the structure and dynamics of PR65. Two mutants observed in simulations to stabilize extended/open conformations exhibited higher corner frequencies and lower translational scattering in experiments, indicating a shift toward extended conformations, whereas another displayed the opposite features, confirmed by both simulations and experiments. The study highlights the power of single-molecule nanoaperture-based tweezers integrated with in silico approaches for exploring the effect of mutations on protein structure and dynamics.


Asunto(s)
Simulación de Dinámica Molecular , Pinzas Ópticas , Mutación Puntual , Conformación Proteica , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/metabolismo , Humanos
8.
Arch Microbiol ; 206(6): 243, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700700

RESUMEN

The antibacterial effect of nanoparticles is mainly studied on the ensembles of the bacteria. In contrast, the optical tweezer technique allows the investigation of similar effects on individual bacterium. E. coli is a self-propelled micro-swimmer and ATP-driven active microorganism. In this work, an optical tweezer is employed to examine the mechanical properties of E. coli incubated with ZnO and Ag nanoparticles (NP) in the growth medium. ZnO and Ag NP with a concentration of 10 µg/ml were dispersed in growth medium during active log-growth phase of E. coli. This E. coli-NP incubation is further continued for 12 h. The E. coli after incubation for 2 h, 6 h and 12 h were separately studied by the optical tweezer for their mechanical property. The IR laser (λ = 975 nm; power = 100 mW) was used for trapping the individual cells and estimated trapping force, trapping stiffness and corner frequency. The optical trapping force on E. coli incubated in nanoparticle suspension shows linear decreases with incubation time. This work brings the importance of optical trapping force measurement in probing the antibacterial stress due to nanoparticles on the individual bacterium.


Asunto(s)
Antibacterianos , Escherichia coli , Nanopartículas del Metal , Pinzas Ópticas , Plata , Óxido de Zinc , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Óxido de Zinc/farmacología , Óxido de Zinc/química , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Antibacterianos/farmacología
9.
Biochem Biophys Res Commun ; 716: 150009, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38697010

RESUMEN

The SOS response is a condition that occurs in bacterial cells after DNA damage. In this state, the bacterium is able to reсover the integrity of its genome. Due to the increased level of mutagenesis in cells during the repair of DNA double-strand breaks, the SOS response is also an important mechanism for bacterial adaptation to the antibiotics. One of the key proteins of the SOS response is the SMC-like protein RecN, which helps the RecA recombinase to find a homologous DNA template for repair. In this work, the localization of the recombinant RecN protein in living Escherichia coli cells was revealed using fluorescence microscopy. It has been shown that the RecN, outside the SOS response, is predominantly localized at the poles of the cell, and in dividing cells, also localized at the center. Using in vitro methods including fluorescence microscopy and optical tweezers, we show that RecN predominantly binds single-stranded DNA in an ATP-dependent manner. RecN has both intrinsic and single-stranded DNA-stimulated ATPase activity. The results of this work may be useful for better understanding of the SOS response mechanism and homologous recombination process.


Asunto(s)
ADN Bacteriano , Escherichia coli , Microscopía Fluorescente , Imagen Individual de Molécula , Microscopía Fluorescente/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Imagen Individual de Molécula/métodos , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Respuesta SOS en Genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Unión Proteica , Rec A Recombinasas/metabolismo , Rec A Recombinasas/genética , Pinzas Ópticas
10.
Opt Lett ; 49(9): 2341-2344, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691714

RESUMEN

In the fields of biomedicine and microfluidics, the non-contact capture, manipulation, and spin of micro-particles hold great importance. In this study, we propose a programmable non-contact manipulation technique that utilizes photoacoustic effect to spin and transport living shrimp eggs. By directing a modulated pulsed laser toward a liquid-covered stainless-steel membrane, we can excite patterned Lamb waves within the membrane. These Lamb waves occur at the interface between the membrane and the liquid, enabling the manipulation of nearby particles. Experimental results demonstrate the successful capture, spin, and transport of shrimp eggs in diameter of 220 µm over a distance of about 5 mm. Calculations indicate that the acoustic radiation force and torque generated by our photoacoustic manipulation system are more than 299.5 nN and 41.0 nN·mm, respectively. The system surpasses traditional optical tweezers in terms of force and traditional acoustic tweezers in terms of flexibility. Consequently, this non-contact manipulation system significantly expands the possibilities for applications in various fields, including embryo screening, cell manipulation, and microfluidics.


Asunto(s)
Óvulo , Técnicas Fotoacústicas , Animales , Técnicas Fotoacústicas/métodos , Presión , Pinzas Ópticas , Penaeidae
11.
Anal Chem ; 96(15): 5824-5831, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38573047

RESUMEN

Infectious diseases pose a significant threat to global health, yet traditional microbiological identification methods suffer from drawbacks, such as high costs and long processing times. Raman spectroscopy, a label-free and noninvasive technique, provides rich chemical information and has tremendous potential in fast microbial diagnoses. Here, we propose a novel Combined Mutual Learning Net that precisely identifies microbial subspecies. It demonstrated an average identification accuracy of 87.96% in an open-access data set with thirty microbial strains, representing a 5.76% improvement. 50% of the microbial subspecies accuracies were elevated by 1% to 46%, especially for E. coli 2 improved from 31% to 77%. Furthermore, it achieved a remarkable subspecies accuracy of 92.4% in the custom-built fiber-optical tweezers Raman spectroscopy system, which collects Raman spectra at a single-cell level. This advancement demonstrates the effectiveness of this method in microbial subspecies identification, offering a promising solution for microbiology diagnosis.


Asunto(s)
Escherichia coli , Pinzas Ópticas , Espectrometría Raman/métodos
12.
Cell Rep ; 43(4): 114110, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607912

RESUMEN

Transmembrane transporter proteins are essential for maintaining cellular homeostasis and, as such, are key drug targets. Many transmembrane transporter proteins are known to undergo large structural rearrangements during their functional cycles. Despite the wealth of detailed structural and functional data available for these systems, our understanding of their dynamics and, consequently, how they function is generally limited. We introduce an innovative approach that enables us to directly measure the dynamics and stability of interdomain interactions of transmembrane proteins using optical tweezers. Focusing on the osmoregulatory ATP-binding cassette transporter OpuA from Lactococcus lactis, we examine the mechanical properties and potential interactions of its substrate-binding domains. Our measurements are performed in lipid nanodiscs, providing a native-mimicking environment for the transmembrane protein. The technique provides high spatial and temporal resolution and allows us to study the functionally relevant motions and interdomain interactions of individual transmembrane transporter proteins in real time in a lipid bilayer.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas Bacterianas , Lactococcus lactis , Pinzas Ópticas , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Lactococcus lactis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Unión Proteica , Dominios Proteicos , Imagen Individual de Molécula , Estabilidad Proteica , Membrana Dobles de Lípidos/metabolismo , Membrana Dobles de Lípidos/química
13.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612810

RESUMEN

Light is a key environmental component influencing many biological processes, particularly in prokaryotes such as archaea and bacteria. Light control techniques have revolutionized precise manipulation at molecular and cellular levels in recent years. Bacteria, with adaptability and genetic tractability, are promising candidates for light control studies. This review investigates the mechanisms underlying light activation in bacteria and discusses recent advancements focusing on light control methods and techniques for controlling bacteria. We delve into the mechanisms by which bacteria sense and transduce light signals, including engineered photoreceptors and light-sensitive actuators, and various strategies employed to modulate gene expression, protein function, and bacterial motility. Furthermore, we highlight recent developments in light-integrated methods of controlling microbial responses, such as upconversion nanoparticles and optical tweezers, which can enhance the spatial and temporal control of bacteria and open new horizons for biomedical applications.


Asunto(s)
Nanopartículas , Células Procariotas , Archaea/genética , Pinzas Ópticas
14.
ACS Nano ; 18(16): 10738-10757, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38609349

RESUMEN

Biomolecular condensates play important roles in a wide array of fundamental biological processes, such as cellular compartmentalization, cellular regulation, and other biochemical reactions. Since their discovery and first observations, an extensive and expansive library of tools has been developed to investigate various aspects and properties, encompassing structural and compositional information, material properties, and their evolution throughout the life cycle from formation to eventual dissolution. This Review presents an overview of the expanded set of tools and methods that researchers use to probe the properties of biomolecular condensates across diverse scales of length, concentration, stiffness, and time. In particular, we review recent years' exciting development of label-free techniques and methodologies. We broadly organize the set of tools into 3 categories: (1) imaging-based techniques, such as transmitted-light microscopy (TLM) and Brillouin microscopy (BM), (2) force spectroscopy techniques, such as atomic force microscopy (AFM) and the optical tweezer (OT), and (3) microfluidic platforms and emerging technologies. We point out the tools' key opportunities, challenges, and future perspectives and analyze their correlative potential as well as compatibility with other techniques. Additionally, we review emerging techniques, namely, differential dynamic microscopy (DDM) and interferometric scattering microscopy (iSCAT), that have huge potential for future applications in studying biomolecular condensates. Finally, we highlight how some of these techniques can be translated for diagnostics and therapy purposes. We hope this Review serves as a useful guide for new researchers in this field and aids in advancing the development of new biophysical tools to study biomolecular condensates.


Asunto(s)
Condensados Biomoleculares , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Microscopía de Fuerza Atómica , Pinzas Ópticas , Humanos , Microscopía/métodos
15.
Small ; 20(23): e2307329, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38509856

RESUMEN

Single-cell arrays have emerged as a versatile method for executing single-cell manipulations across an array of biological applications. In this paper, an innovative microfluidic platform is unveiled that utilizes optoelectronic tweezers (OETs) to array and sort individual cells at a flow rate of 20 µL min-1. This platform is also adept at executing dielectrophoresis (DEP)-based, light-guided single-cell retrievals from designated micro-wells. This presents a compelling non-contact method for the rapid and straightforward sorting of cells that are hard to distinguish. Within this system, cells are individually confined to micro-wells, achieving an impressive high single-cell capture rate exceeding 91.9%. The roles of illuminating patterns, flow velocities, and applied electrical voltages are delved into in enhancing the single-cell capture rate. By integrating the OET system with the micro-well arrays, the device showcases adaptability and a plethora of functions. It can concurrently trap and segregate specific cells, guided by their dielectric signatures. Experimental results, derived from a mixed sample of HepG2 and L-O2 cells, reveal a sorting accuracy for L-O2 cells surpassing 91%. Fluorescence markers allow for the identification of sequestered, fluorescence-tagged HepG2 cells, which can subsequently be selectively released within the chip. This platform's rapidity in capturing and releasing individual cells augments its potential for future biological research and applications.


Asunto(s)
Pinzas Ópticas , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/instrumentación , Humanos , Separación Celular/instrumentación , Separación Celular/métodos , Microfluídica/métodos , Microfluídica/instrumentación
16.
J Mol Biol ; 436(9): 168544, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508303

RESUMEN

Bacteriophage T4 gene 32 protein (gp32) is a single-stranded DNA (ssDNA) binding protein essential for DNA replication. gp32 forms stable protein filaments on ssDNA through cooperative interactions between its core and N-terminal domain. gp32's C-terminal domain (CTD) is believed to primarily help coordinate DNA replication via direct interactions with constituents of the replisome. However, the exact mechanisms of these interactions are not known, and it is unclear how tightly-bound gp32 filaments are readily displaced from ssDNA as required for genomic processing. Here, we utilized truncated gp32 variants to demonstrate a key role of the CTD in regulating gp32 dissociation. Using optical tweezers, we probed the binding and dissociation dynamics of CTD-truncated gp32, *I, to an 8.1 knt ssDNA molecule and compared these measurements with those for full-length gp32. The *I-ssDNA helical filament becomes progressively unwound with increased protein concentration but remains significantly more stable than that of full-length, wild-type gp32. Protein oversaturation, concomitant with filament unwinding, facilitates rapid dissociation of full-length gp32 from across the entire ssDNA segment. In contrast, *I primarily unbinds slowly from only the ends of the cooperative clusters, regardless of the protein density and degree of DNA unwinding. Our results suggest that the CTD may constrain the relative twist angle of proteins within the ssDNA filament such that upon critical unwinding the cooperative interprotein interactions largely vanish, facilitating prompt removal of gp32. We propose a model of CTD-mediated gp32 displacement via internal restructuring of its filament, providing a mechanism for rapid ssDNA clearing during genomic processing.


Asunto(s)
Bacteriófago T4 , ADN de Cadena Simple , Proteínas de Unión al ADN , Unión Proteica , Proteínas Virales , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Replicación del ADN , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , ADN Viral/genética , ADN Viral/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , Pinzas Ópticas , Dominios Proteicos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/química
17.
Methods Enzymol ; 694: 167-189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38492950

RESUMEN

This chapter presents the integration of magnetic tweezers with single-molecule FRET technology, a significant advancement in the study of nucleic acids and other biological systems. We detail the technical aspects, challenges, and current status of this hybrid technique, which combines the global manipulation and observation capabilities of magnetic tweezers with the local conformational detection of smFRET. This innovative approach enhances our ability to analyze and understand the molecular mechanics of biological systems. The chapter serves as our first formal documentation of this method, offering insights and methodologies developed in our laboratory over the past decade.


Asunto(s)
ADN , Transferencia Resonante de Energía de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia/métodos , Pinzas Ópticas , Nanotecnología/métodos , Fenómenos Magnéticos
18.
Methods Enzymol ; 694: 1-49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38492947

RESUMEN

Magnetic tweezers have become popular with the outbreak of single molecule micromanipulation: catching a single molecule of DNA, RNA or a single protein and applying mechanical constrains using micron-size magnetic beads and magnets turn out to be easy. Various factors have made this possible: the fact that manufacturers have been preparing these beads to catch various biological entities-the ease of use provided by magnets which apply a force or a torque at a distance thus inside a flow cell-some chance: since the forces so generated are in the right range to stretch a single molecule. This is a little less true for torque. Finally, one feature which also appears very important is the simplicity of their calibration using Brownian motion. Here we start by describing magnetic tweezers used routinely in our laboratory where we have tried to develop a device as simple as possible so that the experimentalist can really focus on the biological aspect of the biomolecules that he/she is interested in. We discuss the implications of the various components and their important features. Next, we summarize what is easy to achieve and what is less easy. Then we refer to contributions by other groups who have brought valuable insights to improve magnetic tweezers.


Asunto(s)
Magnetismo , Imanes , Magnetismo/métodos , ADN , Campos Magnéticos , Movimiento (Física) , Pinzas Ópticas
19.
Methods Enzymol ; 694: 83-107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38492959

RESUMEN

Mechanical forces are critical to protein function across many biological contexts-from bacterial adhesion to muscle mechanics and mechanotransduction processes. Hence, understanding how mechanical forces govern protein activity has developed into a central scientific question. In this context, single-molecule magnetic tweezers has recently emerged as a valuable experimental tool, offering the capability to measure single proteins over physiologically relevant forces and timescales. In this chapter, we present a detailed protocol for the assembly and operation of our magnetic tape head tweezers instrument, specifically tailored to investigate protein dynamics. Our instrument boasts a simplified microscope design and incorporates a magnetic tape head as the force-generating apparatus, facilitating precise force control and enhancing its temporal stability, enabling the study of single protein mechanics over extended timescales spanning several hours or even days. Moreover, its straightforward and cost-effective design ensures its accessibility to the wider scientific community. We anticipate that this technique will attract widespread interest within the growing field of mechanobiology and expect that this chapter will provide facilitated accessibility to this technology.


Asunto(s)
Fenómenos Mecánicos , Mecanotransducción Celular , Proteínas , Magnetismo/métodos , Fenómenos Magnéticos , Pinzas Ópticas
20.
Nat Commun ; 15(1): 2748, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553446

RESUMEN

Biopolymer topology is critical for determining interactions inside cell environments, exemplified by DNA where its response to mechanical perturbation is as important as biochemical properties to its cellular roles. The dynamic structures of chiral biopolymers exhibit complex dependence with extension and torsion, however the physical mechanisms underpinning the emergence of structural motifs upon physiological twisting and stretching are poorly understood due to technological limitations in correlating force, torque and spatial localization information. We present COMBI-Tweez (Combined Optical and Magnetic BIomolecule TWEEZers), a transformative tool that overcomes these challenges by integrating optical trapping, time-resolved electromagnetic tweezers, and fluorescence microscopy, demonstrated on single DNA molecules, that can controllably form and visualise higher order structural motifs including plectonemes. This technology combined with cutting-edge MD simulations provides quantitative insight into complex dynamic structures relevant to DNA cellular processes and can be adapted to study a range of filamentous biopolymers.


Asunto(s)
ADN , Fenómenos Mecánicos , ADN/química , Biopolímeros , Microscopía Fluorescente , Pinzas Ópticas , Fenómenos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...